已知函数f(x)的数据,求f (x)的二次插值多项式使,并写出插值余项。

功能一维数据插值(表格查找)。该命令对数据点之间计算内插值。它找出一元函数f(x)在中间点的数值。其中函数f(x)由所给数据决定。
返回插值向量yi,每一元素对应于参量xi,同时由向量x 与Y 的内插值决定。参量x 指定数据Y 的点。
假定x=1:N,其中N 为向量Y 的长度,或者为矩阵Y 的行数。
用指定的算法计算插值:
’nearest’:最近邻点插值,直接完成计算;
’linear’:线性插值(缺省方式),直接完成计算;
’spline’:三次样条函数插值。对于该方法,命令interp1 调用函数spline、ppval、mkpp、umkpp。这些命令生成一系列用于分段多项式操作的函数。命令spline 用它们执行三次样条函数插值;
’pchip’:分段三次Hermite 插值。对于该方法,命令interp1 调用函数pchip,用于对向量x 与y 执行分段三次内插值。该方法保留单调性与数据的外形;
’cubic’:与’pchip’操作相同;
对于超出x 范围的xi 的分量,使用方法’nearest’、’linear’、’v5cubic’的插值算法,相应地将返回NaN。对其他的方法,interp1 将对超出的分量执行外插值算法。
对于超出x 范围的xi 中的分量将执行特殊的外插值法extrap。
确定超出x 范围的xi 中的分量的外插值extrapval,其值通常取NaN 或0。

对离散地分布在y=exp(x)sin(x)函数曲线上的数据点进行样条插值计算:

格式 Y = table1(TAB,X0) %返回用表格矩阵TAB 中的行线性插值元素,对X0(TAB的第一列查找X0)进行线性插值得到的结果Y。矩阵TAB 是第一列包含
关键值,而其他列包含数据的矩阵。X0 中的每一元素将相应地返回一线性插值行向量。矩阵TAB 的第一列必须是单调的。

专业文档是百度文库认证用户/机构上传的专业性文档,文库VIP用户或购买专业文档下载特权礼包的其他会员用户可用专业文档下载特权免费下载专业文档。只要带有以下“专业文档”标识的文档便是该类文档。

VIP免费文档是特定的一类共享文档,会员用户可以免费随意获取,非会员用户需要消耗下载券/积分获取。只要带有以下“VIP免费文档”标识的文档便是该类文档。

VIP专享8折文档是特定的一类付费文档,会员用户可以通过设定价的8折获取,非会员用户需要原价获取。只要带有以下“VIP专享8折优惠”标识的文档便是该类文档。

付费文档是百度文库认证用户/机构上传的专业性文档,需要文库用户支付人民币获取,具体价格由上传人自由设定。只要带有以下“付费文档”标识的文档便是该类文档。

共享文档是百度文库用户免费上传的可与其他用户免费共享的文档,具体共享方式由上传人自由设定。只要带有以下“共享文档”标识的文档便是该类文档。

插值法是函数逼近的一种重要方法,是数值计算的基本课题。本节只讨论具有唯一插值函数的多项式插值和分段多项式插值,对其中的多项式插值主要讨论n次多项式插值的方法,即给定n+1各点处的函数值后,怎样构造一个n次插值多项式的方法。虽然理论上可以用解方程组(2)(那里m=n)得到所求插值多项式,但遗憾的是方程组(2)当n较大时往往是严重是病态的。故不能用解方程组的方法获得插值多项式。本节介绍的内容有:lagrange插值,newton插值,hermite插值,分段多项式插值及样条插值。Lagrange插值 Lagrange插值是n次多项式插值,其成功地用构造插值基函数的 方法解决了求n次多项式插值函数问题。 ★基本思想 将待求的n次多项式插值函数pn(x)改写成另一种表示方式,再利 用插值条件(1)确定其中的待定函数,从而求出杆值多项式。 Newton插值Newton插值也是n次多项式插值,它提出另一种构造插值多项式的方法,与Lagrange插值相比,具有承袭性和易于变动节点的特点。 ★基本思想 将待求的n次插值多项式Pn(x)改写为具有承袭性的形式,然后利用插值条件(1)确定Pn(x)的待定系数,以求出所要的插值函数。 Hermite插值Hermite插值是利用未知函数f(x)在插值节点上的函数值及导数值来构造插值多项式的,起其提法为:给定n+1个互异的节点x0,x1,……,xn上的函数值和导数值

求一个2n+1次多项式H2n+1(x)满足插值条件

一般有更好的密合度.★基本思想

利用Lagrange插值函数的构造方法,先设定函数形式,再利

用插值条件(13)求出插值函数.分段多项式插值插值多项式余项公式说明插值节点越多,误差越小,函数逐近越好,但后来人们发现,事实并非如此,例如:取被插函数,在[-5,5]上的n+1个等距节点: 计算出f(xk)后得到Lagrange插值多项式Ln(x),考虑[-5,5]上的一点x=5-5/n,分别取n=2,6,10,14,18计算f(x),Ln(x)及对应的误差Rn(x),得下表

从表中可知,随节点个数n的增加,误差lRn(x)l不但没减小,反而不断的增大.这个例子最早是由runge研究,后来人们把这种节点加密但误差增大的现象称为Ronge现象.出现Runge现象的原因主要是当节点n较大时,对应

的是高次插值多项式,此差得积累"淹没"了增加节点减少的精度.Ronge现象否定了用高次插值公式提高逼近精度的想法,本节的分段插值就是克服Rounge现象引入的一种插值方法. 分段多项式插值的定义为

如果函数Φ(x)满足条件

实用中,常用次数不超过5的底次分段插值多项式,本节只介绍分段线性插值和分段三次Hermite插值,其中分段三次Hermite插值还额外要求分段插值函数Φ(x)

在节点上与被插值函数f(x)有相同的导数值,即 ★基本思想 将被插值函数f〔x〕的插值节点 由小到大 排序,然后每对相邻的两个节点为端点的区间上用m 次多项式去近似f〔x〕. 例题例1 已知f(x)=ln(x)的函数表为:

试用线性插值和抛物线插值分别计算f(3.27)的近似值并估计相应的误差。

解:线性插值需要两个节点,内插比外插好因为3.27 (3.2,3.3),故选x0=3.2,x1=3.3,由n=1的lagrange插值公式,有

故有所以线性插值计算ln3.27的误差估计为

故抛物线插值计算ln3.27的误差估计为:

显然抛物线插值比线性插值精确。

我要回帖

更多关于 已知函数F(X) 的文章

 

随机推荐