材料力学广义胡克定律,胡克定律,这个微段的平衡方程式怎么列出来的?我高数不怎么好,求详细过程

> 材料力学心得体会
材料力学心得体会
时间: 来源: 本文已影响人
篇一:材料力学学习心得 材料力学学习体会 摘要:本文对我在学习材料力学中的心得体会作了 关键词:力学性能,生活,体会 引言:
材料力学是研究材料在各种外力作用下产生的应变、应力、强度、刚度、稳定和导致各种材料破坏的极限。材料力学是所有工科学生必修的学科,是设计工业设施必须掌握的知识。这学期,从第一章的绪论到附录一的平面图形的几何性质,使我更深入的了解了材料力学,学会了如何应用材料力学解决生活总的实际问题,以及对材料力学有了更深刻的体会。 一:综述 在材料力学中,将研究对象被看作均匀、连续且具有各向同性的线性弹性物体。但在 实际研究中不可能会有符合这些条件的材料,所以须要各种理论与实际方法对材料进行实验比较。 包括两大部分:一部分是材料的力学性能,而且也是固体力学其他分支的计算中必不 可缺少的依据;另一部分是对杆件进行力学分析。杆件按受力和变形可分为拉杆、压杆、受弯曲的梁和受扭转的轴等几大类。杆中的内力有轴力、剪力、弯矩和扭矩。杆的变形可分为伸长、缩短、挠曲和扭转。在处理具体的杆件问题时,根据材料性质和变形情况的不同,可将问题分为三类: ①线弹性问题。在杆变形很小,而且材料服从胡克定律的前提下,对杆列出的所有方程 都是线性方程,相应的问题就称为线性问题。对这类问题可使用叠加原理,即为求杆件在多种外力共同作用下的变形,可先分别求出各外力单独作用下杆件的变形,然后将这些变形叠加,从而得到最终结果。 ②几何非线性问题。若杆件变形较大,就不能在原有几何形状的基础上分析力的平衡, 而应在变形后的几何形状的基础上进行分析。这样,力和变形之间就会出现非线性关系,这类问题称为几何非线性问题。 ③物理非线性问题。在这类问题中,材料内的变形和内力之间不满足线性关系,即材 料不服从胡克定律。在几何非线性问题和物理非线性问题中,叠加原理失效。解决这类问题可利用卡氏第一定理、克罗蒂-恩盖塞定理或采用单位载荷法等。 二:生活中的材料力学 生活中机械常用的连接件,如铆钉、键、销钉、螺栓等的变形属于剪切变形,在设计时 应主要考虑其剪切应力。汽车的传动轴、转向轴、水轮机的主轴等发生的形变属于扭转变形。火车轴、起重机大梁的变形均属于弯曲变形。有些杆件在设计时必须同时考虑几个方面的变形,如车床主轴工作时同时发生扭转、弯曲及压缩三种基本变形;钻床立柱同时发生拉伸与弯曲两种变形 在生活中我们用的很多包装袋上都会剪出一个小口,其原理就用到了材料力学的应力集中,使里面的食品便于撕开 三:心得体会提起材料力学,那是一件头疼的事。也许你不能想象4个小时没做出一道题是一种什么感觉。 提起材料力学,那是一件有趣的事。因为你能够通过错误发现思维竟有如此多的漏洞。材料力学,那是人类社会几百年来的结晶。它很好的将神秘的理论力学与实际工程 联结在一起。可以这样说,没有材料力学的发展,就没有当今的人类社会。 同样,学习材料力学也是一个过程,是一个从理论到实践的过程。理论力学过于强调字 母与计算的效果,而忽略了实际的需要。材料力学则恰到好处地填补了这个漏洞。
材料力学在生活中的应用十分广泛。大到机械中的各种机器,建筑中的各个结构,小到生活中的塑料食品包装,很小的日用品各种物件都要符合它的强度、刚度、稳定性要求才能够安全、正常工作,所以材料力学就显得尤为重要。 在解决材料力学问题的过程中,每一个环节都很重要。比如初始的审题,模型的理想化,计算方法及计算结果、答案分析、得出结论等等。无论在哪个环节出现问题,都会导致错误结论的产生。对于现在来说,这也许只是丢点分数,但是当以后我们步入到工程实际中,这些错误将是致命的。且不说计算错误,就是少保留一位小数而使得国家上万元的投资付诸东流的事例也是存在的。所以,学习材料力学一定要培养认真仔细的习惯,马虎不得。只有养成这样良好的习惯,将来才能更好的为人民、为国家服务。 今后我们步入社会,也许从事的专业与机械无关。但是我们在学习材料力学的过程中所培养出来的素质是其他学科不能给予的,即能够在把握整体的同时关系局部,能够将所有的事物有条理的串接在一起,能够在任何时刻都清晰冷静的找出问题关键并付之妥善的解决方法,能够从各种现象中看出本质,能够灵活地将理论中的东西贯穿于实际工作中……。所以,学习材料力学并不仅仅是学习几个枯燥的公式和几种材料的性质,而是学习一种方法,一种看待事物分析问题的方法。这才是它给予我们真正有价值的东西!篇二:材料力学之收获与体会
《材料力学小论文》
题目:专业:班级:姓名:学号:日期: 材料力学之收获与体会机械设计制造及其自动化
机制1104班梁杰斌年 6月12日
13 通过几个月对材料力学性能的学习,对本课程学习内容作出以下总结:
一、材料的拉伸性能: 拉伸试验设备
拉伸试验虽然是简单的、但却是最重要的应用最广泛的力学性能试验方法。 拉伸试验可以测定材料的弹性、强度、塑性、应变硬化和韧性等许多重要的力学性能指标。这些性能指标统称为拉伸性能。它是材料的基本力学性能。根据拉伸性能可以预测材料的其他力学性能。 二、弹性变形与塑性变形: 弹性材料实用图塑性材料实用图 任何构件在服役过程中都要承受一定的应力,但又不能产生塑性变形。对于某些零构件,例如精密机床的构件,即使是微小的弹性变形也不允许,否则就会降低零件的加工精度。零构件的刚度决定于两个因素:构件的几何和材料的刚度。表征材料的力学性能指标是弹性模量。当应力超过极限,金属就开始塑性变形。塑性是材料的一种非常重要的力学性能。正是因为金属有塑性,才能利用不同的加工方法将其制成各种几何形状的零件。在加工过程中,应当提高材料的塑性,降低塑性变形应力――弹性极限和屈服强度。在服役过程中,应当提高材料的弹性极限和屈服强度,使零构件能承受更大的应力,同时也要有相当的塑性以防止脆性断裂。 本章联系金属的微观结构讨论了弹性性能、弹性不完善性、塑性变形、应变硬化及有关的力学性指标和测定方法以及它们在工程中的实用意义。 三、其它静加载下的力学性能: 扭曲实验仪器
机械和工程的很多零件是在扭曲、弯矩或轴向压力作用下服役的。因此,需要测定材料在扭转、弯曲和轴向压缩加载下的力学性能,作为零件设计,材料选用和制订热处理工艺的根据。若不考虑零件服役时的力学状态,采用不恰当的力学性能指标来评价材料,很有可能造成材料选用不合理,热处理工艺不当,以致零件的早期失效。在工程中往往还应用一些低塑性、以至脆性材料,如高碳工具钢、铸造合金和结构陶瓷等,制作工具和零件。这些材料当拉伸试验时,由于应力状态的柔度因数较小只能测得强度性能,而塑性性能不能精确的测定;或者,两种材料的塑性相差甚微,无法测定孰优孰劣。因此,也有必要在软应力的状态下,如扭转和压缩,测定这类材料的力学性能,对材料的性能或韧行工艺进行评估。
生活中、工程中有很多杆件是受扭转的自行车的中轴受扭转车轮受力图 机械传动构件中,有很多受扭转的杆件薄壁圆筒扭转 扭转时的切应力 ?? r0 10 扭矩和扭矩图 求内力的方法――截面法 T ?? 扭矩 x 若取右段,将得到同样的结果 ?M (F)?0 T?m 例
已知: 传动轴为无缝钢管,D=90mm,
t = 2.5mm,Tmax= 1.5kN?m,
[?]=60MPa。 求:校核轴的强度。 解:计算Wρ ?? dD?2t ?0.944? DD W?? ?D3 16 (1??)? 4 ??903 16 (1?0.mm3 ? 强度校核 ?max?T1500 ?W? ?51MPa?[?] 安全篇三:材料力学性能学习与体会 《材料的力学性能》之学习收获与体会 转眼间半个学期就将过去,而《材料的力学性能》也即将结课,跟着孙老师学习这门课,真的让我收获不少。不仅给学到了课本上的知识,还从孙老师那里了解到很多这方面的前沿科学,学到不少做人的道理等,而且还激发了我们做学问的兴趣与追求。 首先说一下本课程的学习内容。按课本的说法,分为三部分,第一部分,课本的前七章,主要阐述金属的形变和断裂过程,机制和基本理论,材料在一次静加载条件下的力学性能。在各种加载方式下,所测定的力学性能指标用于评价零件在服役过程中的抗过载实效能力和安全性。第二部分,也就是第八至第十一章,论述了疲劳、蠕变、环境效应和磨损。这是机件常见的四种失效形式。材料对这四种形式失效的抗力将决定零件的寿命。最后三章介绍了复合材料,高分子材料和陶瓷材料的力学性能。在我看来,所谓的材料力学性能主要就是说金属的弹性,塑性和强度等力学性能。而本课程的内容就是运用《金属学》的理论和知识,对《材料力学》的进一步说明,补充和扩展。通过对《材料力学》,《金属学》和本课程的学习,进一步加强对材料的力学性能的认识和理解。下面就本课程各章节学习的收获简述如下: 第一章
材料的拉伸性能 本章首先学习的就是拉伸试验,记得在学习《材料力学》时已经做过拉伸实验,但那时只知道做实验,并不太清楚其意义之所在,现在才知道拉伸试验的重要性,因为通过拉伸试验不但可以测定材料的弹性、强度、塑性、应变硬化和韧性等许多重要的力学性能指标,而且还可以预测材料的其它力学性能,如抗疲劳、断裂等性能。要想得到材料的力学性能,就必须做拉伸试验,做出材料的应力――应变曲线,通过曲线就可以比较方便地得到材料的比例极限、弹性极限、屈服极限、拉伸强度和延伸率等。应当指出,应力――应变曲线有先上升后下降的趋势是应为那是工程应力――工程应变曲线,与《材料力学》里所说的真应力――真应变曲线是有区别的,且真应力比工程应力大,真应变比工程应变小。 第二章弹性变形与塑性变形 弹性变形:金属的弹性变形可以用双原子模型加以说明(本文来自: 千 叶 帆文摘:材料力学心得体会),即金属原子间的结合是两原子间吸引力和排斥力相互作用的结果,但金属的实际弹性变形量与理论值相差很远。弹性常数主要就是指弹性模量E和切变模量G,影响弹性模量的内部因素有纯金属的弹性模量,合金元素与第二相的影响;外部因素有温度,加载速率和冷变形的影响。至于弹性极限与弹性比功在之前的《材料力学》中也有提及,只是在这里对弹性极限的规定和弹性比功的说明更加详细。而弹性不完善性在日常生活中也有遇见,只是在这里才知道它的理论罢了。 塑性变形:金属塑性变形的主要方式是滑移和孪生。实用金属材料的塑性变性特点有(1)各晶粒塑性变形的非同时性和不均一性,(2)各晶粒塑性变形的相互制约性与协调性。屈服强度标志着金属对起塑性变形的抗力,是重要力学性能之一。提高纯金属的屈服强度主要有增加晶体中的位错密度,细化晶粒等方法。提高合金的屈服强度主要有固溶强化,第二相强化等方法。而且屈服强度还受环境因素的影响,如温度、加载速度、应力状态的影响。本章最后还 详尽地介绍了形变强化的原理及应用,但非重点,这里就不多说了。 第三章其它静加载下的力学性能 本章主要学习了扭转、弯曲、压缩、剪切等试验方法及测定的力学性能指标。应为相关内容已在《材料力学》里面比较详尽地介绍了,这里就不再多说了。 第四章材料的硬度 本章的内容大多也是温故之前的知识了,因为在《金属学》的课程里已经做过布氏硬度,洛氏硬度的测量实验,而在本学期的《金属冶金学》的实验课中又测了维氏硬度,至于显微硬度和肖氏硬度只能从书中了解,没有做过实验。 第五章 断裂 本章主要学习的是脆性断裂和延性断裂。脆性断裂的宏观特征,理论上讲,是断裂前不发生塑性变形。其微观机制又解理断裂和沿晶断裂,解理断口的宏观形貌是较为平坦的,发亮的结晶状断面,微观形貌有河流状花样和舌状花样。沿晶断裂是裂纹沿晶界扩展的一种脆性断裂,其形貌多呈粒状。此外还深入地分析了理论强度和脆性断裂的位错理论。延性断裂的过程是“微孔形核――微孔长大――微孔聚合”三部曲,其微观特征是韧窝形貌,断口宏观形貌大多呈纤维状。最后还学习了脆性,韧性在受温度,加载速度和微观结构影响下的转变。 第六章切口强度与切口冲击韧性 在《材料力学》,《机械设计》等课程里总有关于应力集中的问题,学完此章才有跟深刻的理解,甚至还学到了应变集中与局部应变的计算。而且通过对切口裂纹的分析,根据切口根部裂纹形成准则可以估算切口强度,评估切口敏感度。在实验课里做了切口冲击韧性测定实验,加深了对切口冲击韧性的意义及应用的理解和记忆。最后一节的低温脆性的学习也让我们从理论的高度理解这些常识性的问题。 第七章断裂韧性 本章扼要介绍裂纹应力分析,裂纹扩展的物理过程,断裂韧性的物理意义、测定及实用意义以及提高材料的断裂韧性途径等。而本章的重点不过就是5个应力强度因子,他们反映了裂纹尖端区域应力场的强度。 第八章金属的疲劳 关于金属的疲劳在《机械设计》中已经学过,并且应用到机械的设计中,只是在这里介绍得更详细并加了一些新内容罢了。如疲劳失效过程和机制的阐述,还有老师强调的塑性材料疲劳断口的形貌特点的描述;增加了冲击疲劳以及延寿技术等新内容。 第九章材料在高温下的力学性能 本章主要学习高温蠕变现象,蠕变抗力和持久强度,蠕变损伤和断裂机制,应力松弛、高温疲劳以及疲劳和蠕变的交互作用等;同时,还讨论改善高温力学性能的途径,而本章的科学前沿就是高温合金。 第十章环境介质作用下金属的力学性能 本章学习了材料的应力腐蚀断裂,氢脆和腐蚀疲劳的特征、评定指标及破坏机理,介绍提高材料环境敏感断裂抗力的途径以及防止环境敏感断裂的措施。 第十一章金属的磨损与接触疲劳 关于金属磨损和接触疲劳,在《机械设计》中特别是齿轮失效中已略有介绍,而在这里更加深入地学习研究磨损和接触疲劳的机制及影响因素,以便提高零件的耐磨性,延长使用寿命。 剩下的几章教学提纲没有要求,老师也没有讲,但我认为作为材料类的学生有必要看一下,虽然有些理论没有完全弄懂,但一些重要概念还是要知道的,而且复合材料,高分子材料,陶瓷材料都是很有发展前途的材料,也有助于了解比较先进的科学。以上就是我的,也许不是很全面,没有把每章的引言部分抄下来,但却都是我所学到的。 通过这门课的学习,让我对材料的力学性能有了更深刻的了解,而且会用理论知识去解释一些表面的力学现象。虽然这是一门考查课,但我还是很重视的,刚开始基本都是按考试课的去学习,而且上自习的时候还经常复习,但后来感觉没必要把所有东西都记住,也就上课时专心听罢了。不过我感觉学这门课的最大收获还是遇上了孙老师,他是我在大学里遇到的少见的好老师之一,他没有完全按照课本上的内容来讲(虽然没预习有时我跟不上),而是必要的地方细讲,没必要的地方让我们自己去看,而且还补充了很多前沿的科学知识。此外他还教了我们不少做人的道理以及一些做学问的方法,总之他是大部分学生公认的好老师。
相关热词搜索:,,,,关于材料力学的问题这个答案为什么是D呢?AC段,CB段的变形应该是一样的.根据胡克定律F=-kx,既然x一样,k一样,那么两端的受力不是一样的吗?如图
当然不一样,要考虑轴向刚度问题.作用点离两端距离不同.远端刚度小,近端刚度大.可以这样解释:假设C点在力的作用下移动了极小的位移S.S/L为AC段应变,而S/2L为CB段应变,应力等于应变乘以杆件弹性模量.轴力又等于应力乘以面积.故得出以上结果.
为您推荐:
其他类似问题
扫描下载二维码材料力学每章习题与重点_百度文库
两大类热门资源免费畅读
续费一年阅读会员,立省24元!
材料力学每章习题与重点
上传于||暂无简介
阅读已结束,如果下载本文需要使用0下载券
想免费下载更多文档?
定制HR最喜欢的简历
下载文档到电脑,查找使用更方便
还剩99页未读,继续阅读
定制HR最喜欢的简历
你可能喜欢材料力学部分答案_百度文库
两大类热门资源免费畅读
续费一年阅读会员,立省24元!
材料力学部分答案
上传于||暂无简介
阅读已结束,如果下载本文需要使用1下载券
想免费下载本文?
定制HR最喜欢的简历
下载文档到电脑,查找使用更方便
还剩18页未读,继续阅读
定制HR最喜欢的简历
你可能喜欢【图文】材料力学总复习娄_百度文库
两大类热门资源免费畅读
续费一年阅读会员,立省24元!
评价文档:
材料力学总复习娄
上传于||文档简介
&&材​料​力​学​总​复​习​娄
大小:840.50KB
登录百度文库,专享文档复制特权,财富值每天免费拿!
你可能喜欢

我要回帖

更多关于 胡克定律实验 的文章

 

随机推荐