深度学习的概念,发展状况以及和机器学习的概念和分类区别和应用

摘要:来源:towardsdatascience.com作者:GeorgeSeif编译:肖琴【新智元导读】深度学习已成为大多数AI问题的首选技术,使得经典机器学习相形见绌。但是,尽管深度学习有很好的性能,经
来源:towardsdatascience.com作者:George Seif 编译:肖琴【新智元导读】深度学习已成为大多数AI问题的首选技术,使得经典机器学习相形见绌。但是,尽管深度学习有很好的性能,经典机器学习方法仍有一些优势,而且在一些特定情况下最好使用经典机器学习方法,例如线性回归或决策树,而不是使用一个大型深度网络。本文将对比深度学习和经典机器学习,分别介绍这两种技术的优缺点。近年来,深度学习已成为大多数AI问题的首选技术,使得经典机器学习相形见绌。原因很明显,深度学习在语音、自然语言、视觉和游戏等许多任务上都表现出卓越的性能。然而,尽管深度学习具有如此好的性能,经典机器学习方法仍有一些优势,而且在一些特定情况下最好使用经典机器学习方法,例如线性回归或决策树,而不是使用一个大型深度网络。本文将对比深度学习和经典机器学习,分别介绍这两种技术的优缺点以及它们在哪些问题/如何得到最佳使用。深度学习优于经典机器学习一流的性能:在许多领域,深度网络已经取得了远远超过经典ML方法的精度,包括语音、自然语言、视觉、游戏等。在许多任务中,经典的ML方法甚至无法与深度学习比较。例如,下图显示了ImageNet数据集上不同方法的图像分类精度;蓝色表示经典ML方法,红色表示深度卷积神经网络(CNN)方法。深度学习方法的分类错误率远远低于经典ML方法。用数据进行有效的扩展:与经典ML算法相比,如果有更多的数据,深度网络可以更好地扩展。下图是一个简单的例子。很多时候,用深度网络来提高准确性的最佳建议就是使用更多的数据!但使用经典ML算法时,这种快速简单的方法几乎没有效果,通常需要更复杂的方法来提高精度。不需要特征工程:经典的ML算法通常需要复杂的特性工程。通常,需要先在数据集上执行探索性数据分析。然后,可以降低维度以便于处理。最后,必须仔细选择最佳的特征,以传递给ML算法。在使用深度学习时,不需要这样的特征工程,因为只需将数据直接传递给网络,通常就可以立即实现良好的性能。这完全消除了整个过程中繁重而且很有挑战性的特征工程阶段。适应性强,易于迁移:与经典的ML算法相比,深度学习技术可以更容易地适应不同的领域和应用。首先,迁移学习可以使预训练的深度网络对同一领域的不同应用生效。例如,在计算机视觉中,预训练的图像分类网络通常用作目标检测和分割网络的特征提取前端。将这些预训练的网络作为前端,可以简化整个模型的训练,并且通常有助于在更短的时间内实现更高的性能。此外,不同领域使用深度学习的基本思想和技术往往是可以转移的。例如,一旦了解了语音识别领域的深度学习基础理论,那么学习如何将深度网络应用于自然语言处理就不太困难了,因为两者所需的基础知识非常相似。但对于经典ML来说,情况并非如此,因为构建高性能ML模型需要特定领域和特定应用的ML技术和特征工程。对于不同的领域和应用,经典ML的知识基础是非常不同的,并且往往需要在每个单独的领域进行广泛的专门研究。经典机器学习优于深度学习在小数据上能更好地工作:为了实现高性能,深度学习需要非常大的数据集。之前提到的预训练的网络在120万张图像上进行了训练。对于许多应用来说,这样大的数据集是不容易获得的,花费昂贵而且耗时。对于较小的数据集,经典的ML算法通常优于深度学习。财务和计算上都更便宜:有大量的数据,又需要在合理时间内训练完,深度学习要求使用高端GPU。这些GPU非常昂贵,但是如果没有它们,就很难实现高性能的深度网络。要有效地使用这样的高端GPU,还需要一个快速的CPU、SSD存储、快速而且容量大的RAM。经典的ML算法只需要一个像样的CPU就可以训练得很好,并不需要最好的硬件。因为它们的计算成本不高,因此可以在较短的时间里更快地迭代,并尝试多种不同的技术。更容易解释:由于经典ML涉及直接的特征工程,这些算法很容易解释和理解。此外,由于我们对数据和底层算法有了更深入的了解,调参和更改模型设计也更简单。另一方面,深层学习是一个“黑盒子”,即使是现在,研究人员也不能完全了解深层网络的“内部”。由于缺乏理论基础,超参数和网络设计也是一个很大的挑战。原文链接:https://towardsdatascience.com/deep-learning-vs-classical-machine-learning-9a42c6d48aa【加入社群】新智元 AI 技术 + 产业社群招募中,欢迎对 AI 技术 + 产业落地感兴趣的同学,加小助手微信号: aiera2015_1 入群;通过审核后我们将邀请进群,加入社群后务必修改群备注(姓名 - 公司 - 职位;专业群审核较严,敬请谅解)。
本文仅代表作者观点,不代表百度立场。本文系作者授权百度百家发表,未经许可,不得转载。
分享到微信朋友圈
打开微信,点击 “ 发现 ”
使用 “ 扫一扫 ” 即可将网页分享至朋友圈。
扫一扫在手机阅读、分享本文
百家号作者平台APP
扫码下载安卓客户端
便捷管理文章信息
随时查看文章收益入门级攻略:机器学习 VS. 深度学习 - 简书
入门级攻略:机器学习 VS. 深度学习
本文以浅显易懂的语言介绍了机器学习和深度学习的定义及应用,以及在源数据要求,硬件支持,特征工程、问题解决方式、执行时间及可解释性等方面的区别,对于新手入门有很大启示意义。楔子:机器学习和深度学习现在很火,你会发现突然间很多人都在谈论它们。如下图所示,机器学习和深度学习的趋势对比(来自Google trend,纵轴表示搜索热度):
本文将会以简单易懂的语言及示例为大家详细解释深度学习和机器学习的区别,并介绍相关用途。机器学习和深度学习简介机器学习Tom Mitchell关于机器学习的定义被广泛引用,如下所示:对于某类任务T和性能度量P,如果一个计算机程序在T上以P衡量的性能随着经验E而不断自我完善,那么我们称这个计算机程序在从经验E学习。“A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P if its performance at tasks in T, as measured by P, improves with experience E ”上面的抽象定义可能使你感到困惑,相信下面几个简单的示例会让你恍然大悟。【例1 根据身高预测体重】假设你要创建一个根据人的身高预测体重的系统。第一步是收集数据,收集完之后画出数据分布图如下所示。图中的每个点都代表一条数据,横坐标表示身高,纵坐标表示体重。我们可以画一条简单的直线来根据身高预测体重,比如:
Weight (in kg) = Height (in cm) - 100如果这条直线预测身高很准确,那怎样来衡量它的性能呢?比如以预测值和真实值之间的差值来衡量预测模型的性能。当然,源数据越多,模型效果就越好。如果效果不好,那么可以使用其他方法来提升模型性能,如增加变量(如性别)或者改变预测直线。【例2 风暴预测系统】假定要构建一个风暴预测系统,你手头上有过去发生的风暴数据以及这些风暴发生前三个月的天气数据。那么怎样构建一个风暴预测系统呢?
首先要做的是清洗数据并找到数据中的隐藏模式,比如导致风暴产生的条件。我们可以对一些条件建模,比如温度是否大于40摄氏度,湿度是否介于80到100之间,然后将这些特征输入模型。你要做的就是充分利用历史数据,然后预测是否会产生风暴。在这个例子中,评价的指标是正确预测风暴发生的次数。我们可以重复预测过程多次,然后将性能结果返回系统。回到最初机器学习的定义,我们将风暴预测系统定义如下:任务T是找到造成风暴的大气条件,性能P是在模型参数学习好之后,正确预测的次数,经验E是系统的迭代过程。深度学习深度学习其实很早之前就出现了,随着近几年的炒作,又逐渐火起来了。深度学习是一种特殊的机器学习,它将现实世界表示为嵌套的层次概念体系(由较简单概念间的联系定义复杂概念,从一般抽象概括到高级抽象表示),从而获得强大的性能与灵活性。Deep learning is a particular kind of machine learning that achieves great power and flexibility by learning to represent the world as nested hierarchy of concepts, with each concept defined in relation to simpler concepts, and more abstract representations computed in terms of less abstract ones.【例1 图形检测】假设我们要将矩形和其他图形区别开。人眼首先是检测这个图形是否有4条边(简单概念)。如果有4条边,在检测它们是否相连,闭合且垂直,以及是否相等(嵌套层次概念)。事实上,我们将一个复杂的任务(矩形识别)分解成一些简单低抽象层次的任务。深度学习本质上是在更大的范围内做这件事。
【例2 猫还是狗】这个案例是构建一个能够识别图片中动物是猫或者狗的系统。
如果使用机器学习解决这个问题,首先要定义一些特征,比如该动物是否有胡须、耳朵;如果有耳朵,那么耳朵是否是尖的。简单地说,我们要定义面部特征,然后让系统识别出在动物分类中哪些是重要特征。而深度学习会一次性完成这些任务,深度学习会自动找到对分类任务重要的特征,而机器学习不得不人工指定。深入学习工作流程如下:1. 首先在图片中找到和猫或者狗最相关的边界;2. 然后找到形状和边界的组合,如是否能找到胡须和耳朵;3. 在复杂概念的连续分层识别后,就能够确定哪些特征对识别猫狗起重要作用。机器学习和深度学习的对比
数据依赖深度学习和传统机器学习最重要的区别是它的性能随着数据量的增加而增强。如果数据很少,深度学习算法性能并不好,这是因为深度学习算法需要大量数据才能很好理解其中蕴含的模式。这种情况下,使用人工指定规则的传统机器学习占据上风。如下图所示:
深度学习算法严重依赖于高端机,而传统机器学习在低端机上就可以运行。因为深度学习需要进行大量矩阵乘法操作,而GPU可以有效优化这些操作,所以GPU成为其中必不可少的一部分。特征工程特征工程将领域知识输入特征提取器,降低数据复杂度,使数据中的模式对学习算法更加明显,得到更优秀的结果。从时间和专业性方面讲,这个过程开销很高。机器学习中,大部分使用的特征都是由专家指定或根据先验知识确定每个数据域和数据类型。比如,特征可以是像素值,形状,纹理,位置,方向。大多数机器学习方法的性能依赖于识别和抽取这些特征的准确度。
深度学习算法试图从数据中学习高层特征,这是深度学习与众不同的一部分,同时也是超越传统机器学习的重要一步。深度学习将每个问题归结为开发新特征提取器,如卷积神经网络在底层学习如边和直线种种低层特征,然后是面部部分特征,最后是人脸的高层特征。问题解决方案
当使用传统机器学习方法解决问题时,经常采取化整为零,分别解决,再合并结果求解的策略。而深度学习主张end-to-end模型,输入训练数据,直接输出最终结果,让网络自己学习如何提取关键特征。比如说你要进行目标检测,需要识别出目标的类别并指出在图中的位置。
典型机器学习方法将这个问题分为两步:目标检测与目标识别。首先,使用边框检测技术,如grabcut,扫描全图找到所有可能的对象,对这些对象使用目标识别算法,如HOG/SVM,识别出相关物体。深度学习方法按照end-to-end方式处理这个问题,比如YOLO net通过卷积神经网络,就能够实现目标的定位与识别。也就是原始图像输入到卷积神经网络中,直接输出图像中目标的位置和类别。执行时间通常,深度学习需要很长时间训练,因为深度学习中很多参数都需要远超正常水平的时间训练。ResNet大概需要两周时间从零开始完成训练,而机器学习只需要从几秒到几小时不等的训练时间。测试所需要的时间就完全相反,深度学习算法运行需要很少的时间。然而,和KNN(K近邻,一种机器学习算法)相比,测试时间会随着测试数据量的增加而增加。不过并非所有的机器学习算法都需要很长时间,某些也只需要很少的测试时间。可解释性假定使用深度学习给文章自动评分,你会发现性能会很不错,并且接近人类评分水准。但它不能解释为什么给出这样的分数。在运行过程中,你可以发现深度神经网络的哪些节点被激活,但你不知道这些神经元是对什么进行建模以及这每层在干什么,所以无法解释结果。另一方面,机器学习算法如决策树按照规则明确解释每一步做出选择的原因,因此像决策树和线性/逻辑斯蒂回归这类算法由于可解释性良好,在工业界应用很广泛。机器学习和深度学习应用场景上面介绍了一些机器学习的应用领域:1.计算机视觉:如车牌号识别,人脸识别;2.信息检索:如搜索引擎,文本检索,图像检索;3.营销:自动邮件营销,目标识别;4.医疗诊断:癌症诊断,异常检测;5.自然语言处理:语义分析,照片标记;6.在线广告,等等。下图总结了机器学习的应用领域,总的来说应用范围十分广泛。
谷歌是业内有名的使用机器学习/深度学习的公司,如下图所示,谷歌将深度学习应用到不同的产品。
即时测试为了评估你是否真正理解了机器学习和深度学习的区别,这里将会有一个快速测试,可以在提交答案。你要做的就是分别使用机器学习和深度学习解决下面的问题,并决定哪个方法更好。【场景1】 假设你要开发一个无人驾驶汽车系统,该系统以相机拍摄的原始数据作为输入,然后预测方向盘转动的方向及角度。【场景2】给定一个人的信用凭证和背景信息,评估是否可以给他发放贷款。【场景3】创建一个将俄语文本翻译为印度语的系统。未来趋势前面总结了机器学习和深度学习的区别,本节对二者未来趋势:1. 鉴于工业界使用数据科学和机器学习呈增加的趋势,在业务中使用机器学习对那些想要生存下来的公司变得越发重要。同时,了解更多的基础知识也十分有必要。2. 深度学习给人越来越多的惊喜,将来也会一直是这样。深度学习被证明是已有技术中最先进的最好的技术之一。3. 深度学习和机器学习和研究还在继续,不像以前那样在学术界发展受限。目前机器学习和深度学习在工业界和学术界呈爆炸式发展。并且受到比以前更多的基金支持,很有可能成为人类发展的关键点之一。尾声本文将深度学习和机器学习进行了详细对比,希望能够激励大家去学到更多知识。请参考和。【作者简介】
, 数据科学爱好者,深度学习,醉心于人工智能。以上为译文本文由北邮老师推荐,组织翻译。文章原标题《Deep Learning vs. Machine Learning – the essential differences you need to know!》,作者:,译者:李烽,审校:段志成-海棠
汇集阿里技术精粹,http://yq.aliyun.com
欢迎关注:
官方微博@阿里云云栖社区
官方微信号 yunqiinsight
机器学习(Machine Learning)&深度学习(Deep Learning)资料(Chapter 1) 注:机器学习资料篇目一共500条,篇目二开始更新 希望转载的朋友,你可以不用联系我.但是一定要保留原文链接,因为这个项目还在继续也在不定期更新.希望看到文章的朋友...
机器学习(Machine Learning)&深度学习(Deep Learning)资料(Chapter 1) 廖君机器学习资料 注:机器学习资料篇目一共500条,篇目二开始更新 希望转载的朋友,你可以不用联系我.但是一定要保留原文链接,因为这个项目还在继续也在不定期更新....
《Brief History of Machine Learning》 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机、神经网络、决策树、SVM、Adaboost到随机森林、Deep Learning. 《Deep Learning in Neural Netw...
【链接】http://www.cnblogs.com/subconscious/p/4107357.html 在本篇文章中,我将对机器学习做个概要的介绍。本文的目的是能让即便完全不了解机器学习的人也能了解机器学习,并且上手相关的实践。这篇文档也算是EasyPR开发的番外篇,...
From:http://www.tuicool.com/articles/rqIRJb2本文收集了百来篇关于机器学习和深度学习的资料,含各种文档,视频,源码等。而且原文也会不定期的更新,望看到文章的朋友能够学到更多。《Brief History of Machine Lea...
【出发】 我在家里排行老五,从小到大,家里的事情不是有父母担着就是有哥哥姐姐帮忙,家里的事情从来就不用我操心。6月26日晚上6点半,在我会深圳的路上,我哥一个电话告诉我,老爸被电线杆砸伤了,要让他回去。接着晚上8点,我妈打电话给我,让我回去老家,她一个人没有办法照顾。我才知...
【同读一本书.徐猛】-049
——————————————————————《谈话的力量》 ———————————— 正文:
第一,提问题的时候要持愿意倾听的态度。无论你多么善于交际,如果你只是冷冷地流于形式,对方最终会感觉到你只不过是在设法让他...
现代社会,日新月异的科学技术让人们的生活更加便利,在医学界也是如此,不论是医院还是药店,医生或者服务员都会向患者推荐西医的治疗方法或者西药,似乎在我国流传了五千年的中医,已经在人们的视野里销声匿迹。 微博名人,北京积水潭烧伤科医师“烧伤超人阿宝”便是一位坚定的“中医无用论”...
最早学习的是C语言,并以此安身立命,后面陆陆续续在工作中接触到了C++,Python以及Go语言。今天突然想起一个问题:这些面向对象编程的语言区别于面向过程的语言的主要特性是什么?总结了下,有以下三点: 封装 所谓封装,也就是把客观事物封装成抽象的类,并且类可以把自己的数据...
我相信,在这个世界上,一定有一个宛如黑洞一样的地方。那里一眼望去,黑黢黢没有丝毫光亮,四周静寂,没有欢声也没有悲鸣。 它微微敞开的漆黑大门像一面氤氲了雾气的镜。 人们像是锦衣华服载歌载舞的天使, 有时却是挥舞着红色镰刀收割死亡的死神。 在这里,人们无法爱自己也无力去爱他人,...& & & 现在深度学习在机器学习领域是一个很热的概念,不过经过各种媒体的转载播报,这个概念也逐渐变得有些神话的感觉:例如,人们可能认为,深度学习是一种能够模拟出人脑的神经结构的机器学习方式,从而能够让计算机具有人一样的智慧;而这样一种技术在将来无疑是前景无限的。那么深度学习本质上又是一种什么样的技术呢?
深度学习是什么
& & & 深度学习是机器学习领域中对模式(声音、图像等等)进行建模的一种方法,它也是一种基于统计的概率模型。在对各种模式进行建模之后,便可以对各种模式进行识别了,例如待建模的模式是声音的话,那么这种识别便可以理解为语音识别。而类比来理解,如果说将机器学习算法类比为排序算法,那么深度学习算法便是众多排序算法当中的一种(例如冒泡排序),这种算法在某些应用场景中,会具有一定的优势。
深度学习的“深度”体现在哪里
& & & 论及深度学习中的“深度”一词,人们从感性上可能会认为,深度学习相对于传统的机器学习算法,能够做更多的事情,是一种更为“高深”的算法。而事实可能并非我们想象的那样,因为从算法输入输出的角度考虑,深度学习算法与传统的有监督机器学习算法的输入输出都是类似的,无论是最简单的Logistic Regression,还是到后来的SVM、boosting等算法,它们能够做的事情都是类似的。正如无论使用什么样的排序算法,它们的输入和预期的输出都是类似的,区别在于各种算法在不同环境下的性能不同。
& & & 那么深度学习的“深度”本质上又指的是什么呢?深度学习的学名又叫深层神经网络(Deep Neural Networks ),是从很久以前的人工神经网络(Artificial Neural Networks)模型发展而来。这种模型一般采用计算机科学中的图模型来直观的表达,而深度学习的“深度”便指的是图模型的层数以及每一层的节点数量,相对于之前的神经网络而言,有了很大程度的提升。
& & & 深度学习也有许多种不同的实现形式,根据解决问题、应用领域甚至论文作者取名创意的不同,它也有不同的名字:例如卷积神经网络(Convolutional Neural Networks)、深度置信网络(Deep Belief Networks)、受限玻尔兹曼机(Restricted Boltzmann Machines)、深度玻尔兹曼机(Deep&Boltzmann Machines)、递归自动编码器(Recursive Autoencoders)、深度表达(Deep Representation)等等。不过究其本质来讲,都是类似的深度神经网络模型。
& & & 既然深度学习这样一种神经网络模型在以前就出现过了,为什么在经历过一次没落之后,到现在又重新进入人们的视线当中了呢?这是因为在十几年前的硬件条件下,对高层次多节点神经网络的建模,时间复杂度(可能以年为单位)几乎是无法接受的。在很多应用当中,实际用到的是一些深度较浅的网络,虽然这种模型在这些应用当中,取得了非常好的效果(甚至是the state of art),但由于这种时间上的不可接受性,限制了其在实际应用的推广。而到了现在,计算机硬件的水平与之前已经不能同日而语,因此神经网络这样一种模型便又进入了人们的视线当中。
2012年6月,《纽约时报》披露了Google Brain项目,吸引了公众的广泛关注。这个项目是由著名的斯坦福大学机器学习教授Andrew Ng和在大规模计算机系统方面的世界顶尖专家Jeff Dean共同主导,用16000个CPU Core的并行计算平台训练一种称为“深层神经网络”(DNN,Deep Neural Networks)
从Google Brain这个项目中我们可以看到,神经网络这种模型对于计算量的要求是极其巨大的,为了保证算法实时性,需要使用大量的CPU来进行并行计算。
& & & 当然,深度学习现在备受关注的另外一个原因,当然是因为在某些场景下,这种算法模式识别的精度,超过了绝大多数目前已有的算法。而在最近,深度学习的提出者修改了其实现代码的Bug之后,这种模型识别精度又有了很大的提升。这些因素共同引起了深层神经网络模型,或者说深度学习这样一个概念的新的热潮。
深度学习的优点
为了进行某种模式的识别,通常的做法首先是以某种方式,提取这个模式中的特征。这个特征的提取方式有时候是人工设计或指定的,有时候是在给定相对较多数据的前提下,由计算机自己总结出来的。深度学习提出了一种让计算机自动学习出模式特征的方法,并将特征学习融入到了建立模型的过程中,从而减少了人为设计特征造成的不完备性。而目前以深度学习为核心的某些机器学习应用,在满足特定条件的应用场景下,已经达到了超越现有算法的识别或分类性能。
深度学习的缺点
深度学习虽然能够自动的学习模式的特征,并可以达到很好的识别精度,但这种算法工作的前提是,使用者能够提供“相当大”量级的数据。也就是说在只能提供有限数据量的应用场景下,深度学习算法便不能够对数据的规律进行无偏差的估计了,因此在识别效果上可能不如一些已有的简单算法。另外,由于深度学习中,图模型的复杂化导致了这个算法的时间复杂度急剧提升,为了保证算法的实时性,需要更高的并行编程技巧以及更好更多的硬件支持。所以,目前也只有一些经济实力比较强大的科研机构或企业,才能够用深度学习算法,来做一些比较前沿而又实用的应用。
本文转载自:
欢迎加入我爱机器学习QQ14群:
微信扫一扫,关注我爱机器学习公众号
欢迎加入我爱机器学习QQ14群:
最新文章列表
NIPS 2016 — Day 1 Highlights NIPS 2016 — Day 2 Highlights:...
2018年四月 &(6)
2018年三月 &(21)
2018年二月 &(20)
2018年一月 &(21)
2017年十二月 &(19)
2017年十一月 &(20)
2017年十月 &(31)
2017年九月 &(47)
2017年八月 &(58)
2017年七月 &(60)
2017年六月 &(67)
2017年五月 &(66)
2017年四月 &(65)
2017年三月 &(54)
2017年二月 &(48)
2017年一月 &(54)
2016年十二月 &(62)
2016年十一月 &(97)
2016年十月 &(97)
2016年九月 &(124)
2016年八月 &(83)
2016年七月 &(13)
2016年六月 &(10)
2016年五月 &(7)
2016年四月 &(9)
2016年三月 &(7)
2016年二月 &(2)
2016年一月 &(3)
2015年十二月 &(5)
2015年十一月 &(4)
2015年十月 &(2)
2015年九月 &(2)
2015年八月 &(3)
2015年七月 &(6)
2015年六月 &(8)
2015年五月 &(4)
2015年四月 &(1)
2015年三月 &(3)
2015年二月 &(1)
2015年一月 &(2)
2014年十二月 &(4)
2014年十一月 &(2)
2014年十月 &(3)
2014年九月 &(4)
2014年八月 &(22)
2014年七月 &(40)
2014年六月 &(61)
2014年五月 &(63)
2014年四月 &(187)
2014年三月 &(4798)
2014年二月 &(764)
2014年一月 &(330)
2013年十二月 &(145)
2013年十一月 &(126)
2013年十月 &(216)
2013年九月 &(284)
2013年八月 &(327)
2013年七月 &(275)
2013年六月 &(315)
2013年五月 &(228)
2013年四月 &(175)
2013年三月 &(186)
2013年二月 &(118)
2013年一月 &(210)
2012年十二月 &(221)
2012年十一月 &(155)
2012年十月 &(143)
2012年九月 &(98)
2012年八月 &(99)
2012年七月 &(109)
2012年六月 &(75)
2012年五月 &(88)
2012年四月 &(78)
2012年三月 &(78)
2012年二月 &(50)
2012年一月 &(17)
2011年十二月 &(27)
2011年十一月 &(6)
2011年十月 &(11)
2011年九月 &(13)
2011年八月 &(13)
2011年七月 &(19)
2011年六月 &(18)
2011年五月 &(6)
2011年四月 &(12)
2011年三月 &(15)
2011年二月 &(6)
2011年一月 &(9)
2010年十二月 &(6)
2010年十一月 &(11)
2010年十月 &(5)
2010年九月 &(8)
2010年八月 &(5)
2010年七月 &(12)
2010年六月 &(4)
2010年五月 &(7)
2010年四月 &(6)
2010年三月 &(12)
2010年二月 &(7)
2010年一月 &(2)
2009年十二月 &(5)
2009年十一月 &(16)
2009年十月 &(6)
2009年九月 &(7)
2009年八月 &(7)
2009年七月 &(5)
2009年六月 &(6)
2009年五月 &(6)
2009年四月 &(4)
2009年三月 &(7)
2009年二月 &(6)
2009年一月 &(1)
2008年十二月 &(4)
2008年十一月 &(5)
2008年十月 &(1)
2008年八月 &(1)
2008年七月 &(3)
2008年六月 &(3)
2008年五月 &(3)
2008年三月 &(1)
2007年十二月 &(1)
2007年十月 &(1)
2007年八月 &(4)
2007年七月 &(1)

我要回帖

更多关于 机器学习中的敏感性和特异性的概念 的文章

 

随机推荐