能中分化鳞状细胞癌的细胞占分裂后形成的许多细胞中的大部分吗

当前位置: >>
精品课件 新浙教版科学七年级上2-2细胞
TRAVELJuly 10, 2015 细胞的发现和细胞学说一、细胞发现史:1、秦汉时期:《尔雅》记载了590多种动物和 植物,并纳入一定的分类系统。 2、17世纪前:人们试图回答植物和动物的组 成,但受观察工具的限制。3、1590年:一位荷兰人用两块透镜制造出了 第一台显微镜。 4、1665年:英国科学家胡克发现了细胞。
细胞很小,一般只有一到几十微米之间。 5、1831年:英国科学家布朗发现了植物细胞 内有细胞核。6、德国诗人歌德提出:是否存在一种组成生 命现象的“原型”。7、德国科学家提出:自然界存在一种构成生 命的“原液”。 8、19世纪40年代:德国科学家施莱登和施旺提 出了“细胞学说”。认为动物和植物都是由相同的基本单位-----“细胞”所构成。 施旺施莱登二、细胞学说的内容 ?所有的动物和植物都是由细胞构成的 ; ?细胞是生物体结构和功能的单位; ?细胞是由细胞分裂产生的。 了解了细胞是构成生物体的基本 思考 单位后,你急于想了解细胞的哪些知 识呢? 如:细胞的大小、细胞的结构、颜色等。[问题]现在我们可以借助什么仪器来观察细胞呢? 借助仪器:光学显微镜。 显微镜的结构和使用1、显微观察工具的发展史胡克所用显微镜 光学显微镜电子显微镜 实 验 室 中 的 显 微 镜 目镜镜筒 转换器 物镜 载物台 遮光器 反光镜 光学显微镜 粗准焦螺旋 细准焦螺旋 镜臂 压片夹 镜柱 镜座 目镜? 显微镜的光学部分 目镜越长放 ? 作用:放大物象 大倍数越小 ? 镜头上标有放大倍数问题与解决:目镜有 长有短,是长的目镜 放大倍数大还是短的 目镜放大倍数大? 物镜? 显微镜的光学部分 ? 作用:放大物象 物镜越长放 ? 镜头上标有放大倍数 大倍数越大 ? 有低倍物镜、高倍物镜两 种问题与解决:1、物镜有 长有短,是长的物镜放 大倍数大还是短的物 镜放大倍数大? 2、怎么计算显微镜的 放大倍数? 载物台? 显微镜的机械部分? 作用:安放玻片标 本 反光镜? 显微镜的照明部分 ? 作用:反射光线 ? 有平面镜、凹面镜两种问题与解决:你认为什 么时候使用平面镜(或 凹面镜)? 镜座? 显微镜的机械部 分? 作用:稳定显微 镜 镜柱? 显微镜的机械部分 ? 作用:支持作用 镜臂? 显微镜的机械部分 ? 作用:握镜作用 粗准焦螺旋? 显微镜的机械部分 ? 作用:升降镜筒,升 降幅度较大 细准焦螺旋? 显微镜的机械部分 ? 作用:升降镜筒,升 降幅度较小 问题:你认为什么时候 使用粗(或细)准焦螺 旋? 镜筒? 显微镜的机械部分 ? 作用:安放镜头? 把目镜和物镜聚合 起来 转换器? 显微镜的机械部分? 作用:安放和转换 物镜镜头 弹簧夹片? 显微镜的机械部分? 作用:固定玻片标 本 通光孔? 显微镜的机械部分 ? 作用:使光线通过 遮光器? 显微镜的照明部分 ? 作用:调节通光量 2、显微镜的使用安放 调焦对光放片观察整理 显微镜下观察到的各种形状的细胞:色素细胞平滑肌细胞精子细胞 石细胞毛细胞
洋葱表皮细胞神经细胞肌细胞导管和筛管细胞 精子和卵细胞 动物细胞和植物细胞的结构 是一样的吗? 动物细胞结构:细胞膜作用: 保护细胞并控制细胞与外界之间物质交换细胞核作用:内含遗传物质,起传宗接代作用细胞质运用显微镜作用: 许多生命活动的场所细胞的基本结构是:细胞膜、 细胞质、细胞核。 植物细胞的结构:细胞壁 保护、支持(纤维素组成) 细胞膜 保护、控制物质进出 叶绿体 光合作用的场所(内 含叶绿素) 细胞核 含有遗传物质 (染色体、基因) 液泡 充满细胞液 细胞质 能流动,加速细胞内 外物质的交换 细胞壁 细胞膜 细胞质 细胞核 液泡 叶绿体动 物 细 胞 和 植 物 细 胞结构对比 归纳: 动物细胞和植物细胞结构的比较细胞膜 细胞质 细胞核 细胞壁 液泡 动物 细胞有 有 有 无 无叶绿 体无植物 细胞有有有有有有动植物细胞都具有的结构:细胞膜、细胞质、细胞 核。 植物细胞特有的结构:细胞壁、液泡、叶绿体。 1、细胞壁有何作用?细胞壁由纤维素组成,有保护细胞和支持细胞的作用。2、什么叫细胞液?细胞液和细胞质一样吗?细胞液是液泡里的液体。我们平时吃的水果里的 液体一般都是细胞液。3、叶绿体和叶绿素有何不同?叶绿体是植物细胞质中的椭圆形小体,里面含有 叶绿素,是植物细胞进行光合作用的场所; 叶绿素可以吸收太阳能,是叶绿体里的物质。 思考:1、高大的树木之所以能“顶天立地”, 与植物细胞中的什么结构有关? 2、植物的叶为什么通常是绿色的? 你知道吗?一个小小的人的受精卵是 怎样发育成一个婴儿的呢?受精卵分裂、生长、分化?生物个体 一、细胞的分裂: 一个母细胞经过一系列复杂的变化后,分裂成两个 子细胞的过程。 计算一个母细胞分裂六次可得 到多少个子细胞?[思考]细胞分裂在生物的生长过程中有何意义? 细胞分裂的意义:单细胞生物增加个体 数量;多细胞生物增加细胞数量。 思考细胞分裂刚结束时,子细胞和 母细胞在结构、形态、大小上 是否一样? 二、细胞的生长:细胞吸收营养物质,合成 自身的组成物质,不断地 长大。 三、细胞的分化:子细胞发生变化,形成 具有不同形态和功能的 细胞。 细胞分裂是一个相对独立 的过程,而细 胞的生长和分 化常常是相伴 而行的;细胞 的分裂、生长 和分化是不断 进行的。母细胞 分裂 生长 分裂 生长生长和分化生长和分化 想一想1、细胞的生长和分化是否同时进行的? 2、能分化的细胞占分裂后形成的许多 细胞中的大部分吗? 讨论试从细胞的角度对下 例问题进行思考。1、人体的伤口为何会愈合? 2、人的头屑脱落的现象。3、将蚯蚓切成两段,为什么剩 下部分会重新成为新的个体。 小结:1、组成生物体结构和功能的基本单位是什么? 细胞 2、动、植物细胞的基本结构是什么? 细胞膜、细胞质、细胞核 3、植物细胞所特有的结构是什么?细胞壁、叶绿体、液泡 下图是动物细胞细胞膜作用: 保护细胞并控制细胞与外界之间物质交换细胞核作用:内含遗传物质,起传宗接代作用细胞质作用: 许多生命活动的场所 下图是植物细胞细胞壁 保护、支持(纤维素组成)只有成熟的 植物细胞才 有大液泡细胞膜 保护、控制物质进出 叶绿体 光合作用的场所(内 含叶绿素) 细胞核 含有遗传物质 (染色体、基因) 液泡 充满细胞液 细胞质 能流动,加速细胞内 外物质的交换 动 物 细 胞 和 植 物 细 胞结构对比细胞壁 细胞膜 细胞质 细胞核 液泡 叶绿体 练习 细胞膜 、 1. 细胞的基本结构包括 _________ 细胞核 和 _________ 细胞质 三部分。 _________2. 细胞生命活动的场所是( B ) A.细胞膜 B.细胞质 C.细胞核 D.液泡3. 细胞生命活动的控制中心是( C ) A.细胞膜 B.细胞质 C.细胞核 D.液泡 练习 4. 细胞学说的主要内容是什么? 1)所有的动物和植物都是由细胞构成的 2)细胞是生物体结构和功能的单位 3)细胞是由细胞分裂产生的 练习 5.植物细胞一般具有立方体或多面体的 形状,这是因为植物细胞具有( A ) (A)细胞壁 (B)细胞膜 (C)液泡 (D)细胞质 6.下列结构中,不是所有的成熟植物细 胞均有的是( C ) (A)叶绿体 (B)细胞壁 (C)液泡 (D)细胞核 练习 7.将菠菜浸泡在凉水中,清水不变色, 用开水浸泡菠菜后,水会变成绿色。这 是因为开水损伤了菠菜细胞的什么结构 (A) (A)细胞膜 (B)细胞壁 (C)细胞核 (D)细胞质 练习8.右图是植物细胞的结构示意 图,请根据图回答下列问题( 括号内填字母,横线上填写结 构名称):(1)我们用刀切鲜橙时,流出的黄色汁液主要来自图中 液泡 结构 ( E) 。 (2)如是将植物比喻为“绿色工厂”,那么光能转变成 化学能的“机器”是( C) 叶绿体 。 细胞核 内。 (3)细胞的控制中心位于( D ) (4)与植物细胞相比,动物细胞没有字母为( A ) ( C ) 和( E )的结构。
浙教版新教材科学七年级上第二章整理 2 隐藏&& 第一节:生物与非生物 1、生物...2、细胞的各部分结构及作用。 细胞的基本结构分别是细胞膜、细胞质、细胞核,...2016秋七年级科学上册 2.2《细胞》(第3课时)教案 浙教版_科学_初中教育_教育专区。第 2 节 细胞【教学目标】 1、明确动植物细胞的区别。 2、学会制作临时装...搜 试试 7 帮助 全部 DOC PPT TXT PDF XLS ...新浙教版七年级科学上册第二单元复习提纲_科学_初中教育...目的:防止细胞干涸,或者产生气泡 3、撕:用解剖刀把...浙教版七年级上第二章课件_数学_初中教育_教育专区。2.1 有理数的加法 【...a (1≤ a &10,即带一位整数的数)与 10 的幂相乘 形式,叫做科学记数法...浙教版科学七年级上册第二章小结_科学_初中教育_教育专区。第二章小结 1 所有的...3 细胞学说:所有的动物植物都第二章小结 1 所有的生物都具有的共同特征:能...新浙教版七年级上科学2.3生物体的结构层次 隐藏&& 2.3 生物体的结构层次 ――雅文教育 一、细胞的分裂、生长和分化 细胞分裂: 概念: 特点: 1.子细胞体积是...浙教版新教材科学七年级上... 暂无评价 6页 免费如要投诉违规内容,请到百度文库...第二节:细胞 1、细胞学说创立的历史: 1665 年英国科学家罗伯特?胡克首先利用...搜试试 7 悬赏文档 全部 DOC PPT TXT PDF XLS ...浙教版七年级科学上册总复习提纲(新)_科学_初中教育...被染色最深的结构是细胞的细胞核。染色的目的是:...浙教版新科学七年级上第二章第二节2.2_细胞(第二课时)导学稿_科学_初中教育_教育专区。第二节 细胞(二) (显微镜的使用) 【学习目标】 1、说明显微镜的构造...搜试试 7 悬赏文档 全部 DOC PPT TXT PDF XLS ...学年新浙教版科学七年级上册一、二章识图...(4)真菌细胞的结构中比图示细胞多了___、 ___ ...
All rights reserved Powered by
copyright &copyright 。文档资料库内容来自网络,如有侵犯请联系客服。细胞分化(cellular differentiation),指的是在中,一个在分裂的时候,其子细胞的受到调控,例如DNA甲基化,变成不同类型的过程。类如全能(totipotent)的在分裂到一定程度时,其子细胞就会开始向特定的方向分化,形成胎儿的,,等器官。分化后的细胞在其结构,功能上都会出现差异,而且成为了所谓的“单能性”细胞(unipotent),就是其只能分裂得出同等细胞类型的子细胞。但是所有这些子细胞的(Genome)却是与“祖宗”的干细胞一样的。研究细胞分化,对理解的发生,如的出现有着重要意义。
从水平看,细胞分化意味着各种细胞内合成了不同的专一蛋白质(如水晶合成,合成,肌细胞合成和等),而专一蛋白质的合成是通过细胞内一定在一定的时期的选择性表达实现的。因此,基因调控是细胞分化的核心问题。
正常情况下,细胞分化是稳定、不可逆的。一旦细胞受到某种刺激发生变化,开始向某一方向分化后,即使引起变化的刺激不再存在,分化仍能进行,并可通过细胞分裂不断继续下去。这种变化不同于各种生理活动,如刺激等所引起的细胞变化,后者在刺激作用消失以后,细胞又将恢复到原来的状况。
胚胎细胞在显示特有的形态结构、生理功能和生化特征之前,需要经历一个称作决定的阶段。在这一阶段中,细胞虽然还没有显示出特定的形态特征,但是内部已经发生了向这一方向分化的特定变化。
例如,的器官芽是幼虫中一些还没有分化但已经决定分化方向的细胞团。在变态时它们产生腿、翅膀、触角等。每一器官芽的发育方向都已决定,而且这种决定是稳定的、可的。这种器官芽如果到成虫腹腔内会继续维持未分化的状态;但如果移植到正要变态的幼虫的适当部位就能被诱发分化;甚至在成虫腹腔内连续移植长达9年(大约经过1800次细胞分裂)之后,再移植到正要变态的幼虫体内,它们仍能各自按已决定的构造方向分化(见异形型)。
的早晚,因动物及组织的不同而有差异,但一般情况下都是渐进的过程。例如,在两栖类,把早期的体节从正常部位移植到同一胚胎的还可改变分化的方向,不形成肌肉而形成及红细胞等。但是到神经胚晚期节,就不能改变体节分化的方向。可见,这时期体节的分化已稳定地决定了。
有一些事实说明,在细胞分化中,细胞核起决定作用。伞藻(一种单细胞海生绿藻)的移核实验就是一例。它的细胞有明显的分化。由、柄和顶帽3部分组成,核位于分枝的假根中。不同种的伞藻的顶帽,形状各异,如地中海伞藻和锯齿伞藻顶帽形状不同,前者如伞形,后者呈形。如果把这两种伞藻的顶帽都切除,然后把地中海伞藻的柄部嫁接到锯齿伞藻的具有细胞核的假根上,最初形成的顶帽是中间类型的。但如果再将这中间类型的藻柄切下,嫁接到另一锯齿藻的假根上,这次形成的顶帽就是锯齿伞藻的。相反,将锯齿伞藻的藻柄嫁接到地中海伞藻的假根上也得到相同的结果,即顶帽的性质由假根决定。如果将两种带核的伞藻细胞嫁接在一起,嫁接个体的顶帽则是中间类型的。虽然顶帽的形态是由细胞核决定,但是,核的影响并不是立即表现的。如果在发育的较早时期,几个星期以后能够形成正常顶帽;如果将细胞分割为二,一半有核,一半无核,以后两半都能形成完整的顶帽。这些观察说明,形成顶帽的信息,在顶帽形成以前很久就从细胞核传递给细胞质了;在细胞质中这种信息可以不立即表达。很可能是由细胞核产生出惰性的信使核糖核酸(mRNA)事先释放到细胞质内,它可以在细胞质中存在相当长的时间而不被翻译。
一般认为细胞核内含有该种的全套。在条件具备时,它可使所在细胞发育分化为由各种类型细胞所组成的完整个体。如将根的小块在含有椰乳的中培养,这些在正常情况下不分裂的细胞会长成组织团块,脱落下来的游离细胞能形成幼芽。更直接的证据是从培养的,髓部小块形成的组织团块上取脱落的细胞,单个分离培养能得到有根和叶的幼芽,再移植到土壤中,会长出开花的植物。即从单个细胞长出了整棵植物,证明体细胞的核具有全能性(见潜能)。
在动物中,情况比较复杂,可以和上述植物实验相比的是细胞核移植的工作。是将一个细胞的核放进另一个事先已经去掉细胞核(或者用照射将核杀死)的未受精的卵中。这样既排除了母体细胞核的影响,又因移植的细胞核多是双倍体,为正常发育提供了条件。在两栖类,把囊胚期和早期的细胞核移植到内能使卵子正常发育,说明它们是全能的。
移植晚期原肠胚或者再晚时期的核,正常发育的百分率就明显下降,除少数外,往往在原肠胚以前就夭折了。移植爪蟾肠的核也会有一部分发育到蝌蚪。用其他一些成体的细胞,如经过培养的角化和的核也都能得到一些能游泳的蝌蚪。尽管接受移植核的许多卵子中只有一部分能正常发育,但至少说明这部分核中仍然含有形成神经、、肌肉、骨骼以及其他蝌蚪组织所需要的基因,它们还是全能的。
晚期的外源细胞核移植到去核卵后,卵发育能力有所减小。除去技术上的原因外,还可能是由于移植的胚胎晚期或成体组织的细胞核内的复制速度,同卵子细胞质中的情况不相配合,造成所致。
其间关系可以从谈起。如马副后的第1次卵裂是中纬裂,也就是把卵子分成上下两个,在进行第 2次卵裂的时候,上方裂球中的染色体发生断裂,只有中部的碎片排列在上,将来分配到两个子细胞,两端的加粗的染色体部分则脱落在细胞质中,以后。下方的裂球以通常的方式进行分裂,每一子细胞都分配到完整的染色体。第3次卵裂的时候,下方裂球之一重复进行染色体消减的过程,而另一个则不消减。后者分裂形成的两个细胞仍然有一个发生消减,其结果只有一个细胞含有完整的染色体。这就是。所有经过染色体消减的细胞都发育为体细胞。在以后的发育中原始继续而产生成体的生殖细胞。因此,只有生殖细胞含有全套的染色体。实验指出,染色体消减是由核周围的细胞质决定的。在卵裂开始以前,使卵受离心作用,如果纺锤体移位90°,两个裂球便由一上一下变为一左一右,而且两个裂球都含有“细胞质”。这样在下一次卵裂时,两个裂球的染色体都不消减。这样的卵分裂到4细胞时期,动植物极各有两个裂球,植物极的两个裂球在下次分裂时染色体维持原状,而的两个则发生染色体消减。离心实验改变了卵裂的方式,也改变了发生染色体消减的情况,说明“植物极的细胞质”的存在,使这些细胞的染色体维持原状,并决定了它们形成生殖细胞的命运。马副裂过程中把这种细胞质逐渐局限到某个裂球,使这个裂球得以保留全套染色体(见)。
许多动物卵子细胞质的分布有明显的区域性。这种区域性虽然不影响染色体的行为,但对于以后胚胎器官发育却有决定性作用。
软体动物角贝的卵子可以区分3层细胞质:动物极和植物极各有一层清澈的细胞质,在这两层之间是一层较宽的颗粒性细胞质,它组成卵子的主要部分。在卵裂开始的时候,植物极清澈的细胞质层形成圆球形的突出部分,称为极叶和一个裂球相连,在第 1次卵裂结束的时候它又缩回,和这个裂球融合为一。因此这个裂球(CD裂球)包含所有3层细胞质,而另外一个裂球(AB裂球)只包含动物极清澈的细胞质层和。第2次卵裂开始的时候,CD裂球再次形成极叶,在4细胞时期,极叶仍只和一个裂球(D裂球)相连。这样,4个裂球在细胞质的组成上是不均等的,只有D裂球包含了所有极叶的物质。这 4个裂球在以后的发育分化中命运也不一样。如果在4细胞时期,将裂球分离培养,只有包含极叶的裂球可以发育为一个完整的虽然较小的担轮幼虫;另外 3个则只能发育为缺少结构的、有缺陷的幼虫。如果在第1或者第2次卵裂期将极叶切除, 虽然卵子包含动物极的和颗粒性的细胞质,而且也包含应有的细胞核,但因为缺少极叶的物质,也只能发育为一个缺少中胚层结构的、有缺陷的幼虫。这就清楚地证明,是极叶中包含的细胞质而不是细胞核,决定裂球能独特地分化出中胚层结构。
中国家童第周等利用核移植的技术,也证实了卵质在性状发生中的作用。他们把金鱼囊胚期细胞核移到去核的鳑鲏子中;虽然发育到幼鱼的例子极少,但是发育的过程都比较正常,一些基本的发育的特点,如胚胎的,对称性以及早期的卵裂进程等都和鳑鲏鱼一样,幼鱼的体形也和鳑鲏鱼的幼鱼没有区别。这些性状的出现似乎完全根据细胞质。
细胞质对细胞核的作用,还表现在对核功能活动的影响。爪蟾不同时期的卵,其细胞核的活动情况不同:正在生长的,核合成而不合成;成熟中的卵母细胞核中的浓缩,将进行;受精卵由于准备卵裂,核中进行DNA合成。如果把成体不再进行分裂的脑细胞的核到以上各期的去核内,细胞核首先在体积上迅速增大,功能活动的变化也十分显著;活动的情况则因卵细胞的发育时期而不同:在正在生长的卵母细胞里,合成RNA;在成熟中的卵母细胞里,移植核内染色质浓缩;在受精卵里,合成DNA。移植核的功能活动和各时期卵细胞原来的细胞核的活动情况是一致的。
细胞质对细胞核功能活动的影响,在分化了的细胞中也可看到。如培养的人宫颈上皮──HeLa细胞──的DNA和RNA合成都很活跃;鸡的红细胞虽然有核,但是处于不活跃状态,不进行DNA合成,RNA合成也很微弱。用的方法,使去掉细胞核的HeLa细胞的细胞质和鸡的红细胞融合,便可使后者的细胞核体积增大,浓缩的染色质变得松散,原来已经失去的合成RNA和DNA的功能在寄主HeLa细胞质的影响下,重新恢复了。鸡红细胞核合成的RNA最初分散在细胞核内,过2、3天当出现以后,即迁移到细胞质,并可以在HeLa细胞中表达,合成出鸡的血红蛋白。
任何细胞的细胞核和细胞质在功能上都是一个统一的整体,在发育和分化中也不例外。
例如在美西螈中有一种,含有隐性“o”。杂合体“+/o”是正常的,体“o/o”才出现异常。纯合体,,只能到达,纯合体雌性产生的卵子虽然能够受精并正常卵裂,但是,在形成开始以后发育受阻,一般只能到达新月期,随即死亡。少数能够发育到原肠形成阶段,但是进一步的分化就停顿了。这种不正常发育和无关。假如雄性是杂合体。精子有可能携带正常基因“+”或致死基因“o”,纯合体(o/o)的卵子和这两种精子分别受精后发育受阻的情况完全相同,这说明不是由于受精后基因的组合所致,而完全是由于卵质的缺陷。这种卵质的缺陷又是过程中受母体基因影响的结果。如果给受精卵或者刚开始卵裂的卵子注射正常成熟卵子的细胞质,只要占到卵体积的1~5%,就可以使大多数胚胎完成原肠形成。有时还可以产生游泳的幼虫。由此可见,胚胎的夭折是由于纯合体的卵子细胞质中缺乏了正常细胞质所具有的某种有效物质。特别值得注意的是,如果注射卵核未破裂的卵母细胞的细胞质,几乎没有任何效果,而卵母细胞的却含有高浓度的有效物质,0.2~0.5%就有效。显然,这种物质是存在于细胞核内的,当卵母细胞核的破裂,核液和细胞质相混的时候,才进到细胞质里,细胞质才获得使胚胎正常发育的作用。已经知道,这种有效物质可能是蛋白质性质的大分子物质。
虽然这方面的例证知道得还不多,研究得这样清楚的更少,但是它提示,核质的相互关系应该从发育的整个过程,包括卵子发生,来进行考虑。因为,卵细胞核在这一阶段的活动实际是给以后的奠定了物质基础。
细胞间的相互作用是各式各样的,可以是诱导作用,也可以是抑制作用。就作用方式来说,有的作用需要细胞的直接接触,另一些所需要的可能是间隔一定距离的化学物质的扩散。
两栖类胚胎背部的细胞,在中胚层的作用下,分化为,以后发育为。这种中轴器官的诱导作用在脊椎动物具有普遍性,一般认为,脊索中胚层细胞释放某种物质,诱导外胚层细胞分化为(见胚胎诱导作用)。
诱导不但在中轴器官的形成中起作用,也在以后器官的发生中起作用。对于来自的一些结构的形成和分化,在上皮附近的聚集常常是必不可少的,但是,上皮对间质细胞的依赖关系在不同情况下并不一样。
脊椎动物的皮肤有各种衍生结构,包括牙齿、、羽毛、鳞片和皮腺。鸡的皮肤有两种衍生结构,鳞片和羽毛。腿下部的皮肤上有鳞片,羽毛则覆盖身体的其他部位。已经知道,这些上皮的衍生结构是中胚层细胞诱导产生的,鸡胚皮肤的移植实验指出,皮肤衍生结构的不同是下衬中胚层的区域性差异决定的。如果将中胚层移植到胚胎翅膀外胚层下面,翅膀羽毛将按大腿羽毛的形态和排列而分化。如果将羽毛区域的中胚层和无羽毛区域的外胚层混合,会分化出羽毛。如果羽毛区的外胚层和鳞片区的中胚层混合,外胚层则会形成鳞片。最后一个实验还说明在正常形成羽毛的外胚层中保存了形成鳞片的能力。异纲动物间移植的实验指出,上皮细胞的反应受本身遗传性质的限制。把小鼠腹部移植到鸡的除去的上皮之下,结果长出羽毛。小鼠中胚层的作用本来是诱导上皮形成毛发,但是,鸡的上皮对这一诱导刺激是按它本身的遗传性形成羽毛,而不形成毛发。
间质细胞的存在对体内腺体上皮的形成和分化是必不可少的。这些腺体包括、、和,它们对间质细胞的依赖程度有很大差异。在离体条件下,胰腺只要有间质细胞存在就可以继续发育;可是,唾腺上皮对间质细胞的要求就与胰腺不同。分别培养唾腺上皮和它自身的间质细胞都能成活,但不能正常分化,不分枝,间质细胞只能长成单层细胞。如果使两者接近,它们才能分化为分枝的腺体,并获得腺体的功能。来自其他部位的间质细胞不一定能完全取代唾腺本身的间质细胞,唾腺(鳃下腺)芽体和不同来源的间质细胞,大多数间质细胞不能使上皮分化,而小鼠肺间质细胞却能使鳃下分枝并形成腺体,但是,所用的肺间质细胞的量,必须大于鳃下腺本身的间质细胞的量。可见唾腺上皮的发生对间质细胞的来源虽然要求严格些,但是唾腺间质细胞并不是唯一能促使它分化的,在一定程度上也可为来自其他部位的间质细胞所代替。间质细胞的作用,在上皮与唾腺间质细胞的组合中,给人以更深刻的印象。乳腺上皮与自身的间质细胞一起培养,形成直而细的管状结构,但是与唾腺的间质细胞一起,则形成分枝较多,而末端较膨大的结构,外形上很像唾腺。
细胞间的相互影响还包括对细胞分化的抑制作用。如在蝾螈幼虫或成体摘除水晶体后,可以从背部的虹彩再生出一个新的。虹彩本来主要是由组成,摘除水晶体之后,背方边缘的色素细胞的色素颗粒减少,变得透明,同时细胞分裂加速,形成细胞团,以后分化为水晶体。进一步的分析指出,再生水晶体的能力局限在虹彩背部的边缘层而不是虹彩的任何部分都具有这种能力。摘掉水晶体后,把虹彩的其他区域移到背部,不出现再生。虹彩背部的再生能力在其他位置也可以表现出来。如把这部分组织移到另一只摘除水晶体的眼睛,不是位于背部,而是使它位于腹部,仍旧可以由它再生出水。
既然这部分细胞有生长水晶体的能力,为什么在正常的眼睛里不表现?如把虹彩的背部移到另一只未摘除水晶体的眼睛里,不管使它位于那一部位,都长不出水晶体。如在摘除水晶体的眼睛里,经常注射完整的(带有水晶体的)眼腔液体,在注射期间,虹彩背部的细胞也长不出水晶体。由此可见,虹彩背部的细胞本来具有产生水晶体的能力,正常水晶体会产生一种物质,对此起抑制作用。这种抑制作用,随着水晶体的摘除而消失,虹彩背部形成水晶体的能力才得以显示。
不同分化细胞中,基因的表达不同其调节控制可以从两个方面考虑:①的调控。在分化细胞中只有为完成分化所需要的蛋白质的基因可以,产生mRNA指导有关蛋白质的合成;②转录后的调控。在分化细胞的细胞核中不限于选择性地转录某些所需要的mRNA而是转录出多种mRNA;这些不需要的mRNA或者在细胞核中即被降解,不进入细胞质,或者即使进入细胞质也不被翻译,而只有分化所需要的mRNA才选择性地被翻译。后一种情况称为翻译水平的调节。这些可能性各自都有一些实验证据。
相当多的事实说明,的基因调控属转录调控,也就是mRNA合成的调控。用分析染色质结构的工作指出,转录和非转录的基因对酶解的反应不同。用DNasel处理小鸡红细胞核,基因被降解,而基因则不受影响,前者在小鸡红细胞核中是转录活跃的,后者则不是。同样,在小鸡细胞中,卵清蛋白基因在DNasel短暂处理后就被消化。而在这种细胞中它也是转录活跃的。转录活跃基因对酶处理的敏感性说明,组成这种染色质的的排布或许处于较为伸展的状态,因而更容易受到酶的影响。这也就指出,在不同的细胞中,不同的基因有的转录活跃,另一些就不活跃,因而决定转录能否进行。
最令人信服的转录水平调控的证据,是转录活跃区段在上的表现。在某些昆虫,例如果蝇和摇幼虫的一些增大的细胞中,在光镜下可以清楚地观察到多线染色体。它们是间期染色体,是多次染色体复制而不伴随细胞分裂的结果,它们的横断面均比正常染色体粗 10000倍,这就使在正常染色体上看不到的结构细节能够显示出来。这些染色体上满布横纹,由相间的深色带和浅色带间组成,在深色带上,DNA的含量比带间要多得多。有足够的事实证明,多线染色体的带相当于一组基因,甚至单个基因。应该特别指出的是,同一个体,不论哪种细胞的多线染色体,其一般形态都是相同的,也就是相应的染色体都具有相同的带和带间。可是在某些带上呈现的情况,称为。各种细胞形成胀泡的部位不相同,在一种细胞中染色体的某些部位形成胀泡,而在另一种细胞中则在另一些部位。已经知道,分化细胞中的胀泡反映了这种细胞特有的旺盛的基因转录活动。显示,在胀泡处(RNA特有的)的参入量特别多,说明这个部位正在进行着旺盛的RNA合成。
比较各种细胞多线染色体胀泡的型式,可以看到转录既有时间的、也有空间的调节。在同一种细胞的不同发育时期,胀泡的型式不相同。另一方面,不同类型细胞各自具有独特的胀泡型式,摇纹的唾腺中大多数一种清澈的物质,少数细胞的分泌物含有颗粒,后者的分泌物比前者的分泌物多一种蛋白质,正是这一种额外成分使分泌物具有颗粒形态。这两种细胞的同一多线染色体的转录活动也不一样,清澈的细胞有3个巨大胀泡,这是唾腺所特有的,认为是产生清澈分泌物基因活动的表现。颗粒细胞也有这3个胀泡,但是它们还有一个额外的,分泌物的颗粒成分的遗传信息显然是位于这个额外的胀泡上,而这种分泌物的合成也是依赖于这个胀泡的形成。
另一方面,细胞质并不只是一条装配线,核里产生哪些mRNA,它就合成哪些蛋白质。例如原肠早期细胞核中的RNA,其复杂性要比上的(mRNA)大10倍以上,这说明,某些的mRNA在核糖体上的出现是经过转录后调节的。同一个体的两种细胞之间 RNA复杂性的比较,指出同样情况。两种细胞的核 RNA之间的复杂性的差别,要比这两种细胞核糖体上的RNA(mRNA)的差别小得多。这就是说,虽然两种细胞用于合成蛋白质的mRNA不同,但是细胞核中产生的RNA却很相似。这似乎指出,要保证在正确的时间、在正确的细胞里产生某种专一的蛋白质,而且产生一定的量,在相当程度上依赖于转录后的调节。
目前,关于调节是怎样进行的,还了解较少。曾经有人提出过一些解释,如翻译的延迟,如卵子在受精前已合成mRNA,但是不立即进行翻译;各种mRNA的寿命不同,合成细胞专有的蛋白质所需要的mRNA寿命长些,其他的则很快降解。这些解释对于某些事例可能是适用的,但是很可能调节的机制也是各式各样的。
在翻译这一环节的调节情况也比较复杂。首先关于细胞质能否有选择地翻译某些mRNA,而不翻译其他的,一般得到的结论似乎是否定的。兔珠蛋白的mRNA注射到爪蟾卵母细胞,就能被翻译成珠,许许多多其他动物和植物来源的mRNA都能有效地在卵母细胞中翻译成相应的蛋白质。是否可能因为卵母细胞是未分化的细胞,没有特有的mRNA,所以可以无选择地进行翻译,特化的细胞是否也是这样?有人把兔珠蛋白mRNA注射到受精卵中,使它发育到蝌蚪,再将蝌蚪纵向剖成两部分:背部即中轴部分包括肌肉、神经和脊索,腹部包括和其他组织。然后分别测定这两部分珠蛋白的合成,发现不包括红细胞的中轴部分,在珠蛋白的合成上,和蝌蚪的其他部分一样。因此,可以认为分化的细胞和卵母细胞一样,也不能在翻译水平上进行调控。但是,对于能够翻译的mRNA,并不是“一视同仁”地进行翻译。可能存在着起动阶段的调节,以至两种mRNA的翻译速度不同,例如 α-珠蛋白mRNA合成蛋白的速度只是β-珠蛋白mRNA的60%。也可能存在着所谓的“mRNA专一的翻译因子”,例如鸡的和白肌中各自有mRNA和肌球蛋白mRNA专一的翻译因子,二者不能彼此代替。后一情况并不意味着每种mRNA都有专一的翻译因子,而只是提示,某些分化细胞具有翻译因子,可以识别专一的mRNA,使它们可以更有效地利用。
细胞分化中基因表达的调节控制是一个十分复杂的过程,很可能在的各个水平,从mRNA的转录、加工到翻译,都会有调控的机制。甚至在DNA水平也可能存在调控机制(如基因的丢失、放大、移位、修筛以及染色质结构的变化等)。可能不同的细胞在其发育中的基因表达的调节控制不同;也可能相同的细胞在其发育的各阶段中,调节控制的机制不同。在目前的情况,似乎不应该强调基因表达在某平的调节控制,而忽略其他的可能性。
出自A+医学百科 “细胞分化”条目
转载请保留此链接
关于“细胞分化”的留言:
目前暂无留言

我要回帖

更多关于 白细胞分化抗原 的文章

 

随机推荐