函数图象多点,圆的切线方程程知道,如何求解析式?

的图象过点
处的切线方程为
的解析式;(2)求函数
的单调区间.
°神水盟1533
的图象过点
处的切线方程为
的解析式;(2)求函数
的单调区间.
的增区间;
先利用点P,得到d="2" ,然后求导数,利用在x=-1处的斜率为6,得到b,c的值。所以(2)根据一问,我们就可以求得函数的单调区间:
的增区间;
为您推荐:
扫描下载二维码已知函数的图象在点处的切线方程为。(Ⅰ)求函数的解析式;(Ⅱ)若关于x的方程在区间上恰有两个相异实根,求m的取值范围。
(Ⅰ)(Ⅱ)
本试题主要是考查了导数在研究函数中的运用。(1)利用导数来研究解析式,根据切线的斜率即为导数几何意义的运用得到(2)第二问求解导数,然后根据导数的正负得到增减区间,然后分析极值,得到最值。解:(Ⅰ),
1分由题意得
4分(Ⅱ)由得,
5分在区间上单调递减,上单调递增,,
7分所以当时,关于x的方程在区间上恰有两个相异实根。8分
解方程.(1)x2-10x+25=0(2)4x2-3x-1=0(3)(x+3)(x-1)=5(4)4y2=8y+1
已知,x=1+
,求x2-3xy+y2的值.
-1,x2-y2=8,则a=______.
高考全年学习规划
该知识易错题
该知识点相似题
高考英语全年学习规划讲师:李辉
更多高考学习规划:
客服电话:400-676-2300
京ICP证050421号&京ICP备号 &京公安备110-1081940& 网络视听许可证0110531号
旗下成员公司高考函数题型及方法总结_百度文库
两大类热门资源免费畅读
续费一年阅读会员,立省24元!
高中精品题库
最新高考模拟题
名校精品试卷
高考函数题型及方法总结
上传于||暂无简介
阅读已结束,如果下载本文需要使用1下载券
想免费下载本文?
定制HR最喜欢的简历
下载文档到电脑,查找使用更方便
还剩8页未读,继续阅读
定制HR最喜欢的简历
你可能喜欢当前位置:
>>>已知函数的图象经过点(0,-1),且在处的切线方程是。(1)求的解析..
已知函数的图象经过点(0,-1),且在处的切线方程是。(1)求的解析式;(2)求函数的单调增区间.
题型:解答题难度:中档来源:浙江省期中题
解:(1)∵,∴&&&&&&&&&&&&&&&&&&&&&&&&&&∵&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& 又切点,∴&&&&&&&&&&&&∴&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& (2)由,&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&即,得或,∴增区间为和.&&&&&&&&
马上分享给同学
据魔方格专家权威分析,试题“已知函数的图象经过点(0,-1),且在处的切线方程是。(1)求的解析..”主要考查你对&&函数的单调性与导数的关系,函数解析式的求解及其常用方法,导数的概念及其几何意义&&等考点的理解。关于这些考点的“档案”如下:
现在没空?点击收藏,以后再看。
因为篇幅有限,只列出部分考点,详细请访问。
函数的单调性与导数的关系函数解析式的求解及其常用方法导数的概念及其几何意义
导数和函数的单调性的关系:
(1)若f′(x)&0在(a,b)上恒成立,则f(x)在(a,b)上是增函数,f′(x)&0的解集与定义域的交集的对应区间为增区间; (2)若f′(x)&0在(a,b)上恒成立,则f(x)在(a,b)上是减函数,f′(x)&0的解集与定义域的交集的对应区间为减区间。 利用导数求解多项式函数单调性的一般步骤:
①确定f(x)的定义域; ②计算导数f′(x); ③求出f′(x)=0的根; ④用f′(x)=0的根将f(x)的定义域分成若干个区间,列表考察这若干个区间内f′(x)的符号,进而确定f(x)的单调区间:f′(x)&0,则f(x)在对应区间上是增函数,对应区间为增区间;f′(x)&0,则f(x)在对应区间上是减函数,对应区间为减区间。
函数的导数和函数的单调性关系特别提醒:
若在某区间上有有限个点使f′(x)=0,在其余的点恒有f′(x)&0,则f(x)仍为增函数(减函数的情形完全类似).即在区间内f′(x)&0是f(x)在此区间上为增函数的充分条件,而不是必要条件。&函数解析式的常用求解方法:
(1)待定系数法:(已知函数类型如:一次、二次函数、反比例函数等):若已知f(x)的结构时,可设出含参数的表达式,再根据已知条件,列方程或方程组,从而求出待定的参数,求得f(x)的表达式。待定系数法是一种重要的数学方法,它只适用于已知所求函数的类型求其解析式。 (2)换元法(注意新元的取值范围):已知f(g(x))的表达式,欲求f(x),我们常设t=g(x),从而求得,然后代入f(g(x))的表达式,从而得到f(t)的表达式,即为f(x)的表达式。(3)配凑法(整体代换法):若已知f(g(x))的表达式,欲求f(x)的表达式,用换元法有困难时,(如g(x)不存在反函数)可把g(x)看成一个整体,把右边变为由g(x)组成的式子,再换元求出f(x)的式子。(4)消元法(如自变量互为倒数、已知f(x)为奇函数且g(x)为偶函数等):若已知以函数为元的方程形式,若能设法构造另一个方程,组成方程组,再解这个方程组,求出函数元,称这个方法为消元法。 (5)赋值法(特殊值代入法):在求某些函数的表达式或求某些函数值时,有时把已知条件中的某些变量赋值,使问题简单明了,从而易于求出函数的表达式。 平均变化率:
一般地,对于函数y =f(x),x1,x2是其定义域内不同的两点,那么函数的变化率可用式表示,我们把这个式子称为函数f(x)从x1到x2的平均变化率,习惯上用表示,即平均变化率&&上式中的值可正可负,但不为0.f(x)为常数函数时,&
瞬时速度:如果物体的运动规律是s=s(t),那么物体在时刻t的瞬时速度v就是物体在t到这段时间内,当时平均速度的极限,即若物体的运动方程为s=f(t),那么物体在任意时刻t的瞬时速度v(t)就是平均速度v(t,d)为当d趋于0时的极限.
函数y=f(x)在x=x0处的导数的定义:
一般地,函数y=f(x)在x=x0处的瞬时变化率是,我们称它为函数y=f(x)在x=x0处的导数,记作或,即。
如果函数y =f(x)在开区间(a,6)内的每一点都可导,则称在(a,b)内的值x为自变量,以x处的导数称为f(x为函数值的函数为fx)在(a,b)内的导函数,简称为f(x)在(a,b)内的导数,记作f′(x)或y′.即f′(x)=
切线及导数的几何意义:
(1)切线:PPn为曲线f(x)的割线,当点Pn(xn,f(xn))(n∈N)沿曲线f(x)趋近于点P(x0,f(x0))时,割线PPn趋近于确定的位置,这个确定的位置的直线PT称为点P处的切线。 (2)导数的几何意义:函数f(x)在x=x0处的导数就是切线PT的斜率k,即k=。瞬时速度特别提醒:
①瞬时速度实质是平均速度当时的极限值.②瞬时速度的计算必须先求出平均速度,再对平均速度取极限,
&函数y=f(x)在x=x0处的导数特别提醒:
①当时,比值的极限存在,则f(x)在点x0处可导;若的极限不存在,则f(x)在点x0处不可导或无导数.②自变量的增量可以为正,也可以为负,还可以时正时负,但.而函数的增量可正可负,也可以为0.③在点x=x0处的导数的定义可变形为:&&&&
导函数的特点:
①导数的定义可变形为: ②可导的偶函数其导函数是奇函数,而可导的奇函数的导函数是偶函数,③可导的周期函数其导函数仍为周期函数,④并不是所有函数都有导函数.⑤导函数与原来的函数f(x)有相同的定义域(a,b),且导函数在x0处的函数值即为函数f(x)在点x0处的导数值.⑥区间一般指开区间,因为在其端点处不一定有增量(右端点无增量,左端点无减量).
导数的几何意义(即切线的斜率与方程)特别提醒:
①利用导数求曲线的切线方程.求出y=f(x)在x0处的导数f′(x);利用直线方程的点斜式写出切线方程为y-y0 =f′(x0)(x- x0).②若函数在x= x0处可导,则图象在(x0,f(x0))处一定有切线,但若函数在x= x0处不可导,则图象在(x0,f(x0))处也可能有切线,即若曲线y =f(x)在点(x0,f(x0))处的导数不存在,但有切线,则切线与x轴垂直.③注意区分曲线在P点处的切线和曲线过P点的切线,前者P点为切点;后者P点不一定为切点,P点可以是切点也可以不是,一般曲线的切线与曲线可以有两个以上的公共点,④显然f′(x0)&0,切线与x轴正向的夹角为锐角;f′(x0)&o,切线与x轴正向的夹角为钝角;f(x0) =0,切线与x轴平行;f′(x0)不存在,切线与y轴平行.
发现相似题
与“已知函数的图象经过点(0,-1),且在处的切线方程是。(1)求的解析..”考查相似的试题有:
860885807934571566280593412907786158(本小题满分12分)设函数
处的切线方程
的解析式,并判断函数
的_百度知道

我要回帖

更多关于 圆的切线方程 的文章

 

随机推荐