如何用科学计算机解矩阵一个行列式再取行列式问题以及如何永计算机设计方程方程组进行解决

int t; //标记最大的数所在的行 //以下代码輸入系数矩阵A,右端项b //在屏幕中输出用户输入的一个行列式再取行列式A //当某一行大于k时将其赋值给k并将其所在行标记下来 if(t!=i) //当t不等于i时交换這两行的所有元素

重新写了下求一个行列式再取行列式的值,请大家多多指教


矩阵乘法规则看起来比较复杂鈈容易理解其乘法规则背后隐含的意义。现举一个例子说明矩阵乘法的意义如下图所示,一个商店出售Beef piechicken pie,vegetable pie其单价分别为3元,4元2元。此外还统计出了每天上述三种pie的售货量,求每天的总销售额

我们可以创建一个以不同pie单价为元素的1X3的矩阵,如下图所示然后乘以烸天不同pie的售货量,这样就可以得到每天的销售总额

矩阵乘法,很重要的一点就是要注意矩阵的order即A*B不一定等于B*A。另外要做A*B运算时,偠保证A的列要与B的行所属物理意义相同比如上例中A的列分别是beef pie, chicken pie vegetable pie,分别对应于B中的行beefchicken,vegetable这样两个矩阵相乘才有意义。这也是做矩陣乘法时为何要保证A的列数=B的行数的原因之一

一个行列式再取行列式是由一些数据排列成的方阵经过规定的计算方法而得到的一个数。當然如果一个行列式再取行列式中含有未知数,那么一个行列式再取行列式就是一个多项式它本质上代表一个数值,这点请与矩阵区別开来矩阵只是一个数表,一个行列式再取行列式还要对这个数表按照规则进一步计算,最终得到一个实数、复数或者多项式

一个行列式再取行列式的几何意义是什么呢?

一个解释是一个行列式再取行列式就是一个行列式再取行列式中的行或列向量所构成的超平行多面体嘚有向面积或有向体积;

另一个解释是矩阵A的一个行列式再取行列式detA就是线性变换A下的图形面积或体积的伸缩因子

这两个几何解释一个昰静态的体积概念,一个是动态的变换比例概念但具有相同的几何本质,因为矩阵A表示的(矩阵向量所构成的)几何图形相对于单位矩陣E的所表示的单位面积或体积(即正方形或正方体或超立方体的容积等于1)的几何图形而言伸缩因子本身就是矩阵矩阵A表示的几何图形嘚面积或体积,也就是矩阵A的一个行列式再取行列式

二阶一个行列式再取行列式的几何意义:

二阶一个行列式再取行列式的几何意义是xoy岼面上以行向量为邻边的平行四边形的有向面积。

二阶一个行列式再取行列式的几何意义就是由一个行列式再取行列式的向量所张成的平荇四边形的面积另外,两个向量的叉积也是这个公式

二阶一个行列式再取行列式的另一个意义就是是两个行向量或列向量的叉积的数徝,这个数值是z轴上(在二维平面上z轴的正向想象为指向读者的方向)的叉积分量。如果数值是正值则与z坐标同向;负值就与z坐标反姠。如果我们不强调叉积是第三维的向量也就是忽略单位向量,那么二阶一个行列式再取行列式就与两个向量的叉积完全等价了

二阶┅个行列式再取行列式性质的几何解释:

两向量在同一条直线上,显然围成的四边形的面积为零因此一个行列式再取行列式为零

这个性質由一个行列式再取行列式的叉积特性得到,交换一个行列式再取行列式的两行就是改变了向量a和向量b的叉积顺序,根据因此一个行列式再取行列式换号。

把一个行列式再取行列式的一行的k倍加到另一行则一个行列式再取行列式值不变,即

矩阵的一个行列式再取行列式等于其转置矩阵的一个行列式再取行列式(根据一个行列式再取行列式的定义可证)

(1)用一个数k乘以向量a,b中之一的a则平行四边形的媔积就相应地增大了k倍;

(2)把向量a,b中的一个乘以数k之后加到另一个上,则平行四边形的面积不变;

(3)以单位向量(10),(01)构成的平行四邊形(即单位正方形)的面积为1。

三阶一个行列式再取行列式的几何意义:

一个3×3阶的一个行列式再取行列式是其行向量或列向量所张成的平荇六面体的有向体积

一个一个行列式再取行列式可以通过拆分某一个列向量得到两个一个行列式再取行列式的和

一个行列式再取行列式嘚有两行或者两列元素相同,它对应的空间平行六面体的两条邻边重合相当于三维空间中六面体被压成了高度为零的二维平面,显然這个平面的三维体积为零。

一个一个行列式再取行列式对应着一个数值这个数值是对一个行列式再取行列式中的元素经过运算得到的。這个运算是与元素的位置有关系的因此你改变了一个行列式再取行列式中列向量或行向量的位置当然会改变一个行列式再取行列式的结果。幸而只改变结果的符号一般地,一个一个行列式再取行列式的值对应矩阵A的列向量的一个固定顺序当detA为负值时,它确定原象的一個反射所以,这种变换改变了原象的定向

这就是说,平行六面体的体积的k倍等于六面体的三条棱中一条棱长的k倍这是显然的。因为竝方体的体积增大可以沿着立方体某一棱方向增大相同的倍数

此性质表述了以为底面积的平行六面体在a方向上进行了切向变换,变换的後的六面体因为底面积不变高也不变,因此体积不变

矩阵A的一个行列式再取行列式等于矩阵A转置的一个行列式再取行列式

一个行列式洅取行列式化为对角形的几何解释:

一个一个行列式再取行列式的第i行加上j行的K倍,可以使第i行的某一个元素变为0而这个一个行列式再取行列式的值不变。这个性质在化简一个行列式再取行列式时非常有用

一个二阶一个行列式再取行列式所表示的平行四边形被变成了一個对角一个行列式再取行列式所表示的正(长)方形。

三阶一个行列式再取行列式有类似的变换情形对角化的过程会把一个平行六面体變化为一个等体积的立方体或长方体。

那么n阶一个行列式再取行列式我们亦不怀疑的认为也可以被表示成一个n维的长方体的几何图形

二階一个行列式再取行列式乘积项的几何意义:

对于二阶一个行列式再取行列式而言,既然二阶一个行列式再取行列式的几何图形是一个有方向的面积那么从二阶一个行列式再取行列式公理化定义?看,又是如何构成这个面积的呢显然,式中项和项的和构成了这个面积(面积方向的确定:叉积的右手定则)

三阶一个行列式再取行列式乘积项的几何意义:

与二阶一个行列式再取行列式的乘积项的几何解释類似,三阶一个行列式再取行列式的乘积项可以看成具有有方向的小长方体的体积。也就是说在三阶方阵张成的三维平行六面体可以汾解为一个个由各座标分量混合积构成的小长方体。这些小长方体共有六块其体积具有方向。

n阶一个行列式再取行列式乘积项的几何意義:

N阶一个行列式再取行列式的超平行多面体的几何图形是由行(或列)向量张成的而且这个n维超平行多面体与一个n维超长方体等体积。

比洳一个二阶一个行列式再取行列式可以分拆成两个这样的二阶对角一个行列式再取行列式:

一个三阶一个行列式再取行列式可以拆分成六個(其余的一个行列式再取行列式值等于零)三阶对角一个行列式再取行列式:

一个一个行列式再取行列式的整体几何意义是有向线段(┅阶一个行列式再取行列式)或有向面积(二阶一个行列式再取行列式)或有向体积(三阶一个行列式再取行列式及以上)

因此,一个荇列式再取行列式最基本的几何意义是由各个坐标轴上的有向线段所围起来的所有有向面积或有向体积的累加和这个累加要注意每个面積或体积的方向或符号,方向相同的要加方向相反的要减,因而这个累加的和是代数和。

克莱姆法则的几何意义:

1750年瑞士的克莱姆發现了用一个行列式再取行列式求解现行方程组的克莱姆(Cramer)法则。这个法则在表述上简洁自然思想深刻,包含了对多重一个行列式再取行列式的计算是对一个行列式再取行列式与线性方程组之间关系的深刻理解。如果我们不能从几何上解释这个法则就不可能领会向量、一个行列式再取行列式和线性方程组之间的真正关系。

二阶克莱姆法则的几何解释:

三阶克莱姆法则的几何解释:

过程与二阶类似參考二阶的推导过程。

克莱姆法则的意义是可以用方程组的系数和常数项的一个行列式再取行列式把方程组的解简洁的表达出来但在实際工程应用中由于计算量较大,常常采用高斯消元法来解大型的线性方程组



我要回帖

更多关于 一个行列式再取行列式 的文章

 

随机推荐