高盐养猪废水盐分处理,养猪废水盐分中含有盐分怎么处理?

高盐废水处理十年经验浅谈
高盐废水处理十年经验浅谈&&&
本人自99年接触高盐废水处理至今,摸爬滚打了这些年,对于高盐废水的处理有一点粗浅的认识,说出来供大家特别是入行不久的水友们参考。&
初识高盐废水----生化:&&不行;耐盐菌生化:&&&感觉被骗了;稀释生化:&水费高,排量大,效果差(如果稀释到足以顺利生化的程度那要很多的清水,除非你的原水量很小),行不通;&
蒸发高盐废水初探------没有合适的设备、运行费用高,搁浅;&
高盐废水处理技术考察------膜技术除盐:&&&设备昂贵,易堵,易污染,且浓液无法处理,不适合(如果你对膜技术的原理和应用做了认真了解,并且明白什么是&废水&,就会知道不适合的含义);&
再考察------电解除盐:含氯化钠的废水电解,无论是离子膜法还是隔膜法,都因为含有有机物的问题而无法满足电解要求;退一步说,即使可行你能解决极板的问题、安全的问题(你污水站总不能建成个氯碱厂吧)、后续处理的问题等?含其他盐类的废水电解更不行。&高盐废水终探-------只有蒸发了,只要有合适的设备可以将盐以固体的形式分离出来,运行费用高点毕竟是个可以解决问题的办法。&
水友们,高盐废水别再对耐盐菌(耐盐有限度、受废水中有机物成分的影响大)、膜法除盐(废水成分太复杂且那只是浓缩过程而不是分离过程,对废水根本不适合)、电解除盐(之所以是废水,那废水中就不是只含盐类,所含的其他物质会造成你根本电解不下去,&
同时电解是不能脱盐的,物质是守恒的,阳离子是电解不掉的,那是怎么去脱盐呢?)等技术报希望了,那些不适合用到&废水&上!提醒大家少走弯路,仅供参考。&最后说一句,我们需要处理的是&废水&,那里面不单单涉及到盐的问题!&&&&&
对高盐废水有些许研究,我想请教楼主就十年经验来讲,所谓高盐到底是多少含量适合生化,多少适合蒸发?&&
所提的问题乍一看是新手才提的问题,实际上是高手之问题,这个问题也是很多人迷茫的问题;偶也曾经为该问题请教过不少高人,做过不少试验。粗浅的心得与大家分享:&其实这个问题无论让谁回答都是片面之见,因为不同的废水进行生化对含盐量、含盐种类的适应度具有很大的差异性,而我们谁都不可能对各种废水进行含盐量的生化试验或运行过各种废水的生化处理系统;所以生化对含盐量的适合性很难有个定论。一般对于工业废水来讲,无机盐类的含量超过1%(不用电导率法测含盐量,而是用焚烧法测含盐量)对生化会有影响,影响程度跟废水中有机物的成分有关;超过1.5%,不是生化进行不下去而是你的生化效果将大打折扣;超过2%(B/C值很高的水除外)进行生化就要小心了。微生物是生物,渗透压是需要平衡的。有的同志问了,海水的含盐量一般3-4%,为啥有那么多的生物,那是亿万年进化的结果!&
以上仅供参考。可能有的工程适应的盐度高一些,注意偶说的是规模化、稳定、长时间运行的工程;如果你还认为确实有盐度很高的工程在运行,那麽先想一下:使用啥办法测盐度的,准确否?你是听说的盐度和运行效果的结果,还是自己亲身运行过的,运行了多长时间?运行费用多少?避免道听途说。&
至于盐含量多少适合蒸发(只从盐含量的角度谈适不适合,不谈费用),从我们目前的设备来看,超过3%就可以(不是适合)蒸发,最适合的是盐含量下限5%,上限与不同盐类在水中的溶解度有关。&
抛开盐含量,适不适合蒸发最大的关键是水量,另外还有水质。&参考,多交流&&&&&&&&&
高盐污水产生途径广泛,水量也逐年增加。最小化高盐废水排放对环境产生的影响要求去除含盐污水中的污染物。但是由于高盐的毒害和抑制作用,生物处理技术实施遇到极大阻碍。&
1&高盐废水产生途径&
1.1海水代用排放的废水&&所谓海水代用就是将海水不进行淡化处理而直接替代某些场合使用的淡水资源。&&在工业上,海水可以广泛的用作锅炉冷却水,应用到热电、核电、石化、冶金、钢铁厂等行业上。发达国家年海水冷却水用量已经超过了1000亿m3。目前我国海水的年利用量为60多亿m3。青岛电厂1936年就开始将海水作为工业冷却水,至今已经有60多年的历史。目前,青岛市电力、化工、纺织等行业的12家临海企业,年用海水8.37亿m3。天津年利用海水达到18亿m3。此外,秦皇岛热电厂、黄道热电厂和上海石化总厂等70多家临海火力发电、核电、化工、石化等企业均已不同的方式直接利用海水。对于印染、建材、制碱、橡胶以及海产品加工等行业,海水还可以作为工业的生产用水。&&城市生活用水。在城市生活中,海水可以替代淡水作为冲厕水。目前香港海水冲厕的普及率高达70%以上,未来计划普及率提高到100%,并因此成为世界上唯一以海水作为冲厕水的城市。而在大连、天津、青岛、烟台等城市的个别单位,也有采用海水冲厕的实践,但规模较小。&
1.2工业生产废水&&一些行业,如印染、造纸、化工和农药等,在生产中产生高含盐量的有机废水。&
1.3&其他高盐废水&&船舶压舱水&&废水最小化生产中产生的污水&&大型船舰上产生的生活污水&
2&无机盐对微生物的抑制原理&
2.1&抑制原理&&含盐废水主要毒物是无机毒物,即高浓度的无机盐。&&有毒物质对废水生物处理的影响与毒物的类型和浓度有关,一般随着浓度升高可分为刺激作用、抑制作用和毒害作用三大类。&&&高浓度无机盐对废水生物处理的毒害作用主要是通过升高的环境渗透压而破坏微生物的细胞膜和菌体内的酶,从而破坏微生物的生理活动。&&①微生物在等渗透压下生长良好。微生物在质量为5~8.5g/L的NaCI溶液中,红血球在质量为9g/L的NaCI溶液中形态和大小不变,并生长良好;②在低渗透压(&(NaCI)=0.1g/L)下,溶液水分子大量渗入微生物体内,使微生物细胞发生膨胀,严重者破裂,导致微生物死亡;③在高渗透压(&(NaCI)=200g/L)下,微生物体内水分子大量渗到体外,使细胞发生质壁分离。&&&
2.2&淡水微生物在不同盐度下的存活率&&不同生活在淡水环境下或者淡水处理构筑物中的微生物接种到高盐环境下,仅有部分微生物存活。这是盐度对微生物的一种选择。将淡水微生物的存活率定义为100%,当盐度超过20g/L,其存活率低于40%。因此,当盐度超过20g/:L,一般认为用不同淡水微生物无法进行处理。&
3&适盐微生物的分类与利用&&&
耐盐微生物:能耐受一定浓度的盐溶液,但在无盐条件下生长最好,其生长也不需要大量无机盐。&&嗜盐微生物:指在高盐条件下可以生长的细菌,其生长离不开高盐环境。按照最佳生长盐度范围可以分为三类。海洋菌:&最佳生长盐度1~3%中度嗜盐菌:&最佳生长盐度3~15%极度嗜盐菌:&最佳生长盐度15~30%&
4&生物处理高盐污水遇到的问题盐度适应差&&
传统活性污泥法驯化处理盐度低于2%含盐废水。&&当盐度环境变为淡水环境时,污泥的适应性会很快消失。盐度变化影响大&&盐度在0.5~2%变化通常会对处理系统产生严重的干扰。&&突然变化盐度比逐渐变化盐度对系统的干扰更大&&从高盐变为无盐产生影响比低盐环境变为高盐环境产生的影响要大降解速率缓慢&&随着盐度的升高有机物降解速率下降,因此低F/M更适合含盐废水的处理。污泥流失严重&&盐度改变污泥中微生物的组成,改变了污泥的沉淀性和出水SS,污泥流失严重.&
5&高盐污水生物处理工程对策
5.1&驯化淡水微生物&&适应于生活在淡水生物处理设施中的微生物在进入一定浓度的含盐环境内,会通过自身的渗透压调节机制来平衡细胞内的渗透压或保护细胞内的原生质,这些调节机制包括聚集低分子量物质来形成新的胞外保护层,调节自身的代谢途径,改变基因组成等,因此,正常活性污泥可以在一定盐度范围内通过一定时间的驯化处理含盐废水。&&虽然污泥通过驯化可以提高系统耐盐范围,提高系统的处理效率,但是,驯化污泥中的微生物对盐度的耐受范围有限,而且对环境的变化敏感。当盐度环境变化时,微生物的适应性会立刻消失。驯化只是微生物适应环境的暂时生理调整,不具有遗传特性。这种适应性的敏感对污水处理工程的实施很不利。&&研究认为,在盐度小于20g/L条件下,可以通过盐度驯化处理含盐污水。但是驯化盐度浓度必须逐渐提高,分阶段的将系统驯化到要求盐度水平。突然高盐环境会造成驯化的失败和启动的延迟。&
5.2&稀释进水盐度&&既然高盐成为微生物的抑制和毒害剂,那么将进水进行稀释,使盐度低于毒域值,生物处理就不会收到抑制。这种方法简单,易于操作和管理;其缺点就是增加处理规模,增加基建投资,增加运行费用,浪费水资源。&
5.3&利用适盐微生物&&接种或者基因固定化适盐微生物处理高盐污水是一种有效的处理方法。此种方法可以处理超过3%的高盐污水,这是不同驯化法无法实现的。其筛选出的某些具有特定污染物去除的适盐菌可以具有高的专性降解能力,大大提高处理效果。筛选接种物来源于海洋或者河口底泥、晒盐场底物和其他高盐环境下的活性物质。筛选往往有一定的程序和基因化措施。&&这种方法的缺点是启动时间长,前期启动费用高。但是对于高盐污水生物处理而言,是可行的方法。&
5.4&添加拮抗剂&&拮抗作用是指一种毒物的毒害作用因另一种物质的存在或者增加而降低的情况。&&目前研究,发现K会对Na产生拮抗作用,减少Na盐对微生物的毒害作用。吸钾排钠作用,主要原理可能是Na+/K+反向转运功能。细菌的生长虽然需要高钠的环境,细胞内的Na浓度并不高,如盐杆菌光介导的H+质子泵具有Na+/K+反向转运功能,即具有吸收和浓缩K+和向胞外排放Na+的能力.&K+作为一种相容性溶质,可以调节渗透压达到细胞内外平衡,其浓度高达7mol/L,以维持内外同样的水活度.例如嗜盐厌氧菌、嗜盐硫还原菌及嗜盐古菌是采用细胞内积累高浓度K+来对抗胞外的高渗环境.例酵母中的Na+/K+反向载体可以将多余的盐分排出体外,提高酵母的耐盐性.&
5.5&选择合适处理工艺&&不同的处理工艺影响微生物的耐盐范围。&污泥处理&活性污泥工艺&生物滤池&自净化&两段接触氧化法&NaCI(mg/L)&&000~&&&&研究普遍认为生物膜法的耐盐能力大于悬浮活性污泥法。另外,&加设厌养段可以大大提高后继好氧段的耐盐范围。&
6&高盐污水生物处理的设计要求&
6.1&增设盐度调节池&&盐度变化对稳定的系统产生极大的影响,表现为处理效率的急剧下降和污泥的大量流失。设计时应设立调节池保证盐度的相对稳定。可以在调节池进出口设立电导监测装置,加强盐度的在线的控制于反馈,防止盐度冲击造成处理系统处理的失败。&
6.2&减少污泥负荷&&盐度降低生物降解的速率,因此设计负荷要相对减少。很多研究已经证明,在高盐环境下污泥指数降低,因此,不必担心过低负荷造成的污泥膨胀。&
6.3&增加污泥浓度&&高盐处理污泥的蓄凝性差,污泥流失严重。因此,在设计中应保证高的污泥浓度。这也是提高处理效率的一种手段。还可以在设计污泥浓缩池时,保证额外的污泥储量,当污泥流失时,迅速补给。&
6.4&加大澄清池停留时间&&高盐影响蓄凝性,因此加长的停留时间有力于污泥的沉降。&
6.5&加大曝气量&&微生物在高盐环境的适应表现为好氧呼吸速率加大,因此呼吸会造成额外的氧耗量。提高水中溶解氧浓度利于微生物的新陈代谢作用。提供其适应高盐环境的生理要求。&&&
对于电镀废水或类型相似的废水,其中的含盐量是很高的,而且有机物的含量应该是不高的,一般只有几十mg/L,高的有几百mg/L,一般是不需要采取生化处理的,所以也很少有人这样做。&
如果要采取生化处理,现在可行的办法一般是稀释,把含盐量降低到可生化的范围内,一般电导率在10000以下基本上没有问题,氯离子一般5000mg/L以下,硫酸根一般10000mg/L以下,这样生化是基本能正常运行的。&
根据你说回收重金属,可以采取几个方法,一个是化学沉淀后取其污泥,交回收公司进行回收,另一个可行的方法是选择性离子交换,将再生液交回收公司回收重金属,产生废水的工厂厂内一般是不直接做回的。&
另外:现在对废水除盐采用反渗透是可行的,一般回收70%的成本是每吨水几块钱,出水就是纯水,可以直接回用于生产线,其他方法如离子交换等在成本上就吃不消。
我来说两句 ()
本月热门下载
水利热门论文
Copyright & 2007 - 2012
All Rights Reserved.
MSN: civilcn#163.com E-mail: 手机:扫二维码下载作业帮
3亿+用户的选择
下载作业帮安装包
扫二维码下载作业帮
3亿+用户的选择
水处理-盐份污水处理的出水盐分在 8000mg/l 请问水处理要求出水盐份的指标是多少 3000?除了导致水密度高 悬浮物沉淀变差 还有别的影响么
作业帮用户
扫二维码下载作业帮
3亿+用户的选择
根据《中华人民共和国城镇污水处理厂污染物排放标准》(GB1),城镇污水处理厂排入地表水域的常规污染物标准值分为一级标准、二级标准、三级标准.一级标准分为A标准和B标准.一级标准的A标准是城镇污水处理厂出水作为回用水的基本要求.当污水处理厂出水引入稀释能力较小的河湖作为城镇景观用水和一般回用水等用途时,执行一级标准的A标准.城镇污水处理厂出水排入GB3838地表水Ⅲ类功能水域(划定的饮用水水源保护区和游泳区除外)、GB3097海水二类功能水域和湖、库等封闭或半封闭水域时,执行一级标准的B标准.城镇污水处理厂出水排入GB3838 地表水Ⅳ、Ⅴ类功能水域或GB3097海水三、四类功能海域,执行二级标准.非重点控制流域和非水源保护区的建制镇的污水处理厂,根据当地经济条件和水污染控制要求,采用一级强化处理工艺时,执行三级标准.但必须预留二级处理设施的位置,分期达到二级标准.
为您推荐:
其他类似问题
扫描下载二维码高含盐有机废水处理与回用技术
我的图书馆
高含盐有机废水处理与回用技术
& & & 目前,含盐废水的排放带来十分严重的环境污染,特别是工业含盐有机废水,不仅含有高浓度的盐,还含有大量的有毒、难降解有机物,对环境危害极大。根据国内外有关研究报道,近期发展起来的该类废水的处理方法主要有生物与物化组合工艺、电化学以及膜处理法等。根据盐的种类和浓度不同,盐水分离的方法有:纳滤、反渗透(RO)、多效蒸发等。以某企业高含盐有机废水为处理对象,根据其含盐量高、有机污染物浓度高的特点,结合企业实际,建立了一套三效蒸发器+MBR+RO相结合的废水深度处理与回用系统。采用该组合工艺不仅能实现废水达标排放,同时可实现废水的循环利用和零排放,达到节能减排的要求。通过对工程运行情况进行分析,评价了该废水处理与回用系统的有效性和稳定性。1 、项目情况介绍1.1 水量水质& & & &某企业喷粉线排放的高浓度废水主要包括预脱脂、主脱脂、纳米陶瓷涂层废水换 槽及洗槽水、废水做纯水产生的RO浓水等,设计处理水量为132.4 t/d。原水水质指标:COD≤8 000 mg/L,SS≤200 mg/L,电导率≤30 000 μS/cm,pH为10~13。经过处理后的回用水水质要求:COD≤10 mg/L,电导率≤30 μS/cm,pH为6~9。1.2 测定指标与方法& & & &COD:重铬酸钾法;SS:重量法;pH:玻璃电极法;电导率:电导率仪法。1.3 工艺流程& & & &该喷粉线高浓度废水污染物种类包括硅酸盐、碳酸盐、表面活性剂等,含盐量极高,因此考虑将该废水收集后进行三效蒸发,冷凝液进入MBR,通过生物代谢作用去除有机物,出水经保安过滤器和RO系统进一步深度处理后回用,为确保回用水质达到回用要求,RO系统设置为部分产水回到前面,以稀释RO进水。三效蒸发器产生的少量结晶浓缩液经离心脱水后固废委外处置,清液循环蒸发处理。RO系统浓水回到膜生物反应器处理。具体工艺流程如图 1所示。&1.4 工艺特点 & & & &该组合工艺具有以下特点:(1)适合于高含盐有机废水的处理与回用。(2)系统运行效率高,盐分和有机物去除率高。(3)MBR采用外压式过滤,可及时进行在线或离线清洗。(4)RO 系统采用短流程大流量设计,能有效抵抗污染,延长清洗时间。(5)系统流程短占地面积小。(6)系统自动化程度高,操作简单、管理方便。1.5 主要设备组成和工艺参数& & & & &三效蒸发器:主要由一、二、三效蒸发器,一、二、三效分离器,水环式真空泵,一、二、三强制循环泵,出料泵,冷凝水泵等组成。 MBR系统:主要由膜组件、膜机架、膜出水泵和鼓风机、PLC 自控系统以及相应清洗加药系统组成。膜通量为10 L/(m2·h);膜机架为不锈钢材质。 RO系统:主要由RO膜元件、高压泵、加药系统、保安过滤器和PLC自控系统等组成。2、 工程运行结果与讨论2.1 三效蒸发器对COD和盐分的去除&& & & &针对高盐度有机废水的特点,三效低温减压蒸发结晶器采用列管式循环外加热工作原理,物理受热时间短、蒸发速度快、浓缩比大,节能效果显著,强制循环,提高溶液流速,对于黏度较大或容易结晶、结垢的物料,适应性较好。三效低温减压蒸发结晶器采用强制循环与真空负压(真空度0.08 MPa)蒸发方式,以确保物料在较低温度下(65~80 ℃)沸腾蒸发,该设备具有物料受热时间短、蒸发速度快、浓缩比大的特点,三效蒸发器采用三效同时蒸发,二次蒸汽得到反复使用,与普通单效蒸发器相比节约能耗约70%。三效蒸发器对COD、盐分去除效果如表 1所示。表 1 三效蒸发器对COD、盐分去除效果工况进水COD/(mg·L -1 )出水COD/(mg·L -1 )去除率/%进水电导率/(μS·/cm -1 )出水电导率/(μS·/cm -1 )去除率/%1623073488.22824186296.92798588888.92642658197.83693978288.72539769497.34706079588.72975149298.35699569490.12856178097.36766478590.02697850498.1由表 1可见,三效蒸发器在65~80 ℃蒸发浓缩,对大分子有机物有较高的去除效率,当原水COD为6 230~7 985 mg/L时,出水冷凝液COD为694~888 mg/L,对有机物的去除率达到88.2%~90.1%,这是因为大部分有机物均在浓缩液中,只有小部分低沸点的挥发性小分子有机物随冷凝液流出的缘故〔1〕。三效蒸发器对盐分也有较高的去除效率,当原水电导率在25 397~29 751 μS/cm时,出水电导率在492~862 μS/cm。2.2 MBR对COD的去除& & & &MBR为膜分离技术与生物处理技术有机结合的新型态废水处理系统。以膜组件取代传统生物处理技术末端二沉池,在生物反应器中保持高活性污泥浓度,提高生物处理有机负荷,从而减少污水处理设施占地面积,并通过保持低污泥负荷减少剩余污泥量。利用沉浸于好氧生物池内的膜组件截留槽内的活性污泥与大分子有机物。膜生物反应器系统内活性污泥(MLSS)浓度稳定在8 000~10 000 mg/L,有利于生化反应的进行。MBR能够高效截留污泥,实现污泥停留时间与水力停留时间的分离,保持较高的污泥浓度,丰富污泥中微生物种类,同时截留大分子污染物,延长生化作用时间,表现出优良的COD去除能力〔2,3〕。&MBR对有机物的去除效果如图 2所示。&由图 2可见,当进水COD为694~888 mg/L时,出水COD为32~47 mg/L,对有机物的去除率达到94.3%~95.6%,这是因为冷凝液中的小分子有机物大部分属于易生物降解的物质。2.3 RO系统对COD和盐分的去除& & & &RO采用反渗透抗污染膜,在上述三效蒸发器和MBR可将大部分污染物的浓度降低到可接受的范围,RO 可进一步提高出水水质,脱除大部分的盐分,以满足生产工艺用水水质要求〔4〕。RO系统对COD、电导率去除效果如表 2所示。表 2 RO系统对COD、电导率去除效果工况进水COD/(mg·L -1 )出水COD/(mg·L -1 )去除率/%进水电导率/(μS·/cm -1 )出水电导率/(μS·/cm -1 )去除率/%1348.375.6175224.898.62478.781.5164426.198.43427.382.6173219.298.94356.282.3153917.298.95325.881.9159814.999.16456.286.2164716.599由表 2可见,当进水COD为32~47 mg/L时,出水COD为5.8~8.7 mg/L,对有机物的去除率达到75.6%~86.2%,这是因为RO系统对不同分子质量的有机物去除程度是不同的,对于相对分子质量在200以上的有机物可以完全去除,而相对分子质量小于200的有机物可以去除一部分。 RO系统进水电导率在1 539~1 752 μS/cm时,出水电导率在14.9~26.1 μS/cm,表明RO系统对离子有很好的截留作用,脱盐效果明显。2.4 工程应用情况&& & & &该废水处理及回用设备自2011年3月正式投入实际应用以来,各处理工艺段运行情况如表 3所示。表 3 各处理工艺段水质情况项目COD/(mg·L -1 )SS/(mg·L -1 )电导率/(μS·/cm -1 )pH高浓度废水≤8000≤200≤3000010~13三效蒸发器出水≤1000≤40≤10007~9MBR出水≤50≤5≤20006~9RO系统出水≤10≤1≤306~9由表 3可见,出水水质完全可以达到该企业生产工艺用水水质要求,废水回用率达到100%,实现了废水零排放,该企业每天节省了130余t新鲜自来水,节能减排效果明显。3 结论&(1)三效蒸发器在真空度为0.08 MPa、温度 65~80 ℃条件下蒸发浓缩,对大分子有机物有较高的去除效率,当原水COD为6 230~7 985 mg/L时,出水冷凝液COD为694~888 mg/L,对有机物的去除率达到88.2%~90.1%。(2)MBR对有机物的去除效率较高,当进水COD为694~888 mg/L时,出水COD为32~47 mg/L,对有机物的去除率达到94.3%~95.6%。(3)RO系统对废水中的污染物具有很强的截留能力,当进水COD为32~47 mg/L时,出水COD为5.8~8.7 mg/L,对有机物的去除率达到75.6%~86.2%,进水电导率为1 539~1 752 μS/cm时,出水电导率为14.9~26.1 μS/cm。(4) 采用三效蒸发器、MBR与RO组合工艺,对高含盐有机废水进行深度处理,出水水质可满足企业生产工艺用水水质要求,并达到零排放的目的。来源|环保之家环保人必需关注的公众号品牌推广、商务合作:
推一荐:&&|&&
喜欢该文的人也喜欢我工作有二十年了,985大学毕业,工作几年后又在加拿大数一数二的大学读了研究生,在
倒班班组培训工作开展一年多,培训工作由班组长负责,多数流于形式,只是做培训台账,
查看: 2285|回复: 8
高盐废水经蒸发器蒸发结晶后的盐分能否通过焚烧炉焚烧处理?
阅读权限20
积分帖子主题
微信一键登录,与360万化工人共分享
才可以下载或查看,没有帐号?
现有高盐含少量COD的废水,经过蒸发器后,蒸发结晶后的含盐固废,请问可以通过什么类型的焚烧炉后处理吗?因为当地没有合格资质的固废处理站,想要自己公司直接固废处理,请问什么方式处理最好?谢谢大家!
阅读权限150
积分帖子主题
percy的管辖
含有有机物,有一定的热值,考虑掺入煤粉锅炉中焚烧。
阅读权限20
积分帖子主题
据我了解,这样处理能耗很高,估计一吨得300块以上,另外焚烧结晶盐的时候,厂区周边会弥漫一股很浓烈的有机物的气味,到时候会有很多居民来投诉。
阅读权限30
积分帖子主题
脱水后晾着,找机会拉给危废中心
阅读权限10
积分帖子主题
本帖最后由 songjianhua1970 于
11:42 编辑
不能当做危废处理,危废处理费用是每吨5000元,最佳的办法是煅烧,温度在1000度以上有机物直接焚烧,因为有机物的量并不大,后续处理较容易。煅烧后的盐可以作为工业盐出售,符合工业演的标准。我正在做这方面的工作,有需要可以联系songjianhua.com
阅读权限30
积分帖子主题
枣庄帝鑫化工科技专注废盐回收处置!
阅读权限10
积分帖子主题
可以用高温裂解处理里面的有机物,提纯后可以出售,省了处理费,有意向可以交流,QQ
阅读权限10
积分帖子主题
上干燥设备
阅读权限30
积分帖子主题
焚烧可能不行。会熔融结疤。
QQ客服:网站事务&&广告宣传&&
联系电话&6&0& 推广投放& &
&(工作日09:00--17:00,其它时间可在线QQ客服咨询)
三百六十万海川人欢迎您的参与 化工技术交流第一社区,共同学习 共同提高!
版权所有 海川网-海川化工论坛
Discuz!---
海川技术研究院(山东)&
&合作伙伴:&天化云&
本站法律顾问 : 辽宁好谋律师事务所 谢晨曦 主任律师
&&&&&&&&&&您现在的位置:&&>>&&>>&正文
高盐废水处理方法
发布时间: 15:20:16&&中国污水处理工程网
高含盐有机废水的处理是国内外研究的难点和热点之一。国内外对高盐废水的研究主要有生物法和物理化学方法。生物法在处理高盐废水时表现出较高的有机物去除率,但采用生物法处理高盐废水通常需要较长的驯化期,且废水中盐分越高驯化污泥所需的时间越长;另外,微生物对环境的改变敏感,盐度的突变通常会对处理系统产生严重的干扰。物理化学方法主要有蒸发法、电化学方法、离子交换法、吸附、膜分离技术等,在某些应用中能够脱除废水中的盐分和有机物,但一般都面临较高的成本,且易造成再生废水的二次污染。有效结合物理化学方法与生物法将是未来高盐废水处理的重要方向之一。
常规生化法是目前应用最为广泛的污水处理技术,但高盐废水中的盐分会极大地限制微生物的处理性能。降低高盐废水的盐分是采用常规生化法处理的保障措施。
笔者采用电渗析装置,并利用含盐量较低的汲取液,使高盐废水中的盐分在电位差和浓度差推动下向汲取液迁移,研究了脱盐过程废水中盐分和有机物的迁移规律,并采用生物法进一步降低电渗析脱盐后废水中的COD。
1 材料与方法&1.1 工艺流程&本研究中,高盐废水处理的工艺是由电渗析脱盐和活性污泥法生化处理两部分组成,其工艺流程如图 1所示。
&首先,将高盐废水通入电渗析器的脱盐通道,低盐分的汲取液通入汲取通道,废水和汲取液在电渗析器内逆向循环流动,并保持废水的盐分始终高于汲取液的盐分。加入直流电场后,中的离子在浓度差和电位差两方面推动力作用下向汲取液迁移,使废水中的盐分降低到适合活性污泥法处理的条件。之后对活性污泥进行接种、驯化培养,并利用驯化成功后的活性污泥反应器对电渗析脱盐后的废水进行生化处理以降低废水中的COD。
1.2 试剂与仪器&所用试剂包括氯化钠、氯化钾、氯化镁、碳酸氢钠、硝酸钠、葡萄糖,均为天津江天化工有限公司生产,分析纯。
所用活性污泥取自天津大学中水处理系统的MBR装置,该处理系统COD为300~500 mg/L,其污泥泥龄长,微生物活性高,混合液悬浮固体(MLSS)为6 000 mg/L左右。
主要试验设备:DDSJ-308A电导率仪,上海精密科学仪器有限公司;HITACHI180-80偏振拉曼原子吸收分光光度计,日立公司;DX-120离子色谱,戴安公司;ET3150B多功能消解器,ET1151M型COD测定仪,上海欧陆科仪有限公司。
电渗析器:立式组装,一级一段;聚乙烯异相阳离子交换膜LE-HeM-CM01,8张,聚乙烯异相阴离子交换膜LE-HeM-AM01,7张,单膜有效面积330 mm×120 mm;隔板为双层编织网,厚度0.9 mm。
电渗析器辅助设备:PVC水箱;MP耐酸碱磁力泵;LZB转子流量计;直流电源。
活性污泥反应器:曝气池(2 L),ACO-308电磁式空气压缩机,广东海利集团有限公司。
1.3 水质分析&自配模拟高盐废水,离子组成由氯化钠、氯化钾、氯化镁、碳酸氢钠试剂配比而成,COD由葡萄糖配制而成,模拟废水中Na+ 8 150 mg/L,K+ 80 mg/L,Mg2+ 8 mg/L,Cl- 12 650 mg/L,HCO3- 1 110 mg/L,COD 3 850 mg/L。
1.4 试验方法&1.4.1 电渗析脱盐实验&将模拟废水通入电渗析脱盐通道中,纯水通入汲取通道,极水为2 g/L的硝酸钠溶液,各5 L。保持废水和汲取液流量相同,为40 L/h,极水流量60 L/h,循环操作。试验在室温条件,15 V恒电压模式下进行,每隔5 min取少量废水和汲取液进行分析,当汲取液电导率接近废水电导率时,用纯水更换全部的增浓汲取液,再继续上述脱盐操作。
1.4.2 活性污泥法处理电渗析脱盐后废水&取100 mL接种活性污泥与900 mL废水于2 L的曝气反应池内驯化培养,控制溶液DO在2~4mg/L。驯化期废水的无机盐组成与电渗析脱盐后废水的无机盐组成相同,仅通过增加葡萄糖的投加量来逐步提高废水中的COD(由400 mg/L逐步提高至3 590 mg/L)。至驯化成熟后,采用电渗析脱盐后废水作为进水。在驯化和稳定处理期间,每次进水均投加营养物质及微量元素,以保证微生物的正常生长。反应采用每周期曝气22 h,静置沉降2 h的操作方式,取上清液分析其中的COD来表征活性污泥法的处理效果。
1.5 分析与计算方法&试验中采用DDSJ-308A电导率仪对水样的电导率进行分析,阳离子含量通过HITACHI180-80偏振拉曼原子吸收分光光度计分析,氯离子含量由DX-120离子色谱分析,碳酸氢根的测量采用滴定分析法,COD由ET3150B多功能消解器及ET1151M型COD测定仪测定。
废水中各离子的脱除率按式(1)进行计算。
&式中:Rt――废水中某离子在t时刻的脱除率,%;
Ci――废水中该离子的初始质量浓度,mg/L;
Ct――废水中该离子在t时刻的质量浓度,mg/L。
2 结果与分析&2.1 电渗析脱盐过程分析&试验过程中定期对废水和汲取液的电导率进行测定,结果如图 2所示。
&废水中的电解质在浓度差和电位差两方面推动下向汲取液迁移,使废水含盐量随脱盐过程而降低,电导率逐渐下降。经过160 min,废水的电导率由30 mS/cm降至2.77 mS/cm,下降了90.8%。
图 2中1~5代表更换汲取液的次数,整个脱盐过程共更换了5次汲取液。图 2中所示1~5汲取液的初始电导率都很低,并随时间逐渐增加,直至接近废水的电导率。这是因为脱盐过程开始时,将纯水通入电渗析器的汲取通道,随着废水中的盐分向汲取液迁移,使汲取液的电解质浓度升高,电导率逐渐增加。为避免离子从盐分低的一侧向盐分高的一侧迁移,当汲取液电导率接近废水电导率时,用纯水更换全部的增浓汲取液。
由图 2还可以看出,每批次实验中废水电导率的降低趋势与该批次汲取液电导率的增加趋势基本一致。这是由于废水中的离子向汲取液迁移,并且废水的体积与每批次汲取液的体积相同,故废水电解质浓度降低值与汲取液浓度增加值大致相同。此外,观察1~5汲取液电导率变化曲线,其斜率随时间而逐渐减小,说明汲取液电导率的增加速率有所减缓,废水中离子向汲取液迁移的速度减缓。这是因为在该采用汲取液的电渗析体系中,离子迁移的一部分推动力为浓度差推动力,而废水中的盐分随着脱盐过程逐渐降低,使浓度差推动力减小,从而脱盐速率下降。
2.2 无机离子脱除规律&对电渗析脱盐过程废水中各离子的浓度变化进行监测,并将各离子的脱除率对时间作图,如图 3所示。
随着脱盐过程的进行,废水中各种离子在浓度差和电位差推动下不断向汲取液迁移,使得各离子脱除率随时间的延长而不断增大。当脱盐过程结束时,除碳酸氢根离子脱除率接近70%外,其他离子的脱除率均达到90%以上,实验数据表明,废水的总含盐质量浓度由22 000 mg/L降至1 630 mg/L,脱盐率达92.6%。比较同一时刻下不同离子的脱除率,可知脱盐过程中阳离子的脱除速率大小为K+&Na+&Mg2+。阴离子中Cl-的脱除速率远远大于HCO3-。该结论与N. Kabay等在研究中得出的结论一致。
水中各种离子的迁移行为受很多因素影响,如膜的性能、电解质浓度、操作条件等。当不存在离子交换膜时,离子在电场中的迁移速率取决于该离子的电荷量和质量的比值(e/m)。而在电渗析过程中,离子交换膜的存在会对离子的迁移速率产生重要的影响。不同离子在聚乙烯异相阳膜中的淌度大小为K+&Na+&Mg2+,淌度越大,说明离子在膜中迁移阻力越小,迁移速率越快。其次,离子通过膜的难易程度取决于离子的水合半径大小和离子的电荷量。由于膜中供离子通过的孔隙大小一定,离子水合半径越大,越不易通过膜,比较离子的水合半径大小为Mg2+&Na+&K+,HCO3-&Cl-。而当离子电荷量增加时,导致离子的电量/半径比增加,也会影响离子穿过膜的速率。此外,碳酸氢根为弱酸根离子,本身电离程度较低,也是导致其较低的迁移速率的原因之一。
2.3 脱盐过程废水COD变化&电渗析脱盐过程共更换了5次汲取液,测量每次更换汲取液后废水的COD,以及整个脱盐过程结束时废水的COD,分别为3 850、3 740、3 680、3 640、 3 610、3 590 mg/L。结果表明,废水的COD随脱盐过程的进行而有所降低,但降低幅度较小,废水初始COD为3 850 mg/L,当脱盐过程结束时为3 590 mg/L。并且由COD的变化可知,第1次更换汲取液后废水COD变化最大,之后变化量越来越小。
这是因为废水中的COD仅由葡萄糖构成,葡萄糖为中性有机分子,并不会在电场作用下发生定向迁移,但由于本实验设置纯水为汲取液,故存在葡萄糖分子向汲取液迁移的浓度差推动力。而离子交换膜具有扩散性能,葡萄糖分子可在浓差扩散作用下透过离子交换膜进入汲取液,使废水的COD降低。但浓差扩散的速率很小,故葡萄糖迁移量不大,废水COD降低幅度较小。并且,该浓差扩散量在浓度差基本恒定的情况下,仅与操作时间有关,脱盐过程中第1次更换汲取液后操作时间长达70 min,之后更换汲取液后操作时间越来越短(见图 2),故第1次更换汲取液后废水COD变化最大,之后变化量越来越小。
2.4 活性污泥法处理电渗析脱盐后废水&本实验驯化期为14 d,驯化期内微生物活性高,菌胶团絮凝效果良好。本实验之所以驯化期较短,主要是由于电渗析脱盐后废水总盐质量分数低于0.2%,对微生物的生长不会产生抑制作用,且溶液内营养物质均衡,有利于微生物的生长。在14 d的驯化期内,曝气池进水COD由400 mg/L逐步提高至3 590 mg/L,COD去除率皆稳定在85%以上,说明驯化成功。
利用驯化成功的活性污泥反应器对电渗析脱盐后废水进行生化降解,反应停留时间为24 h。反应池出水COD及去除率如图 4所示。
&由图 4可以看出,在驯化成功后稳定运行的10 d内,曝气池进水均为电渗析脱盐后废水(COD为3 590 mg/L),出水COD基本维持在500 mg/L左右,COD去除率约为85%。实验结果表明,经过14 d的驯化期,活性污泥反应体系的驯化效果良好,对电渗析脱盐后废水的COD有稳定的去除能力。具体参见更多相关技术文档。
3 结论&利用采用汲取液的电渗析-活性污泥法组合工艺处理含盐废水,在降低污水含盐量后,采用活性污泥法能够大幅度降低污水COD。针对实验含盐废水,经过5次更换汲取液,160 min处理后废水总含盐质量浓度由22 000 mg/L降至1 630 mg/L,除碳酸氢根离子脱除率接近70%外,废水中其他离子的脱除率均在90%以上。对电渗析脱盐后废水采用活性污泥法处理,通过逐步提高废水中COD的方式对其进行驯化,经14 d驯化后COD降解效果明显,24 h去除率维持在85%左右。此电渗析-活性污泥法组合工艺为高盐废水的处理提供了一种新方法。

我要回帖

更多关于 一个废水的ph和他的盐分有关系吗 的文章

 

随机推荐