为什么要将半导体的导电性变成导电性很差的本征半导体的导电性

本词条由华强电子网用户提供,如果涉嫌侵权,请与我们客服联系,我们核实后将及时处理。
半导体(semicONductor),是一种材料的的导电能力介于导体和绝缘体之间,并有负的电阻温度系数的材料。这种材料在某个温度范围内随温度升高而增加电荷载流子的浓度,电阻率下降。如硅、锗、硒等,半导体之所以得到广泛应用,是因为它的导电能力受掺杂、温度和光照的影响十分显着。
半导体的简介
导体和绝缘体之间的差异主要来自两者的能带(band)宽度不同。绝缘体的能带比半导体宽,意即绝缘体价带中的载子必须获得比在半导体中更高的能量才能跳过能带,进入传导带中。室温下的半导体导电性有如绝缘体,只有极少数的载子具有足够的能量进入传导带。因此,对於一个在相同电场下的本质半导体(intrinsic semiconductor)和绝缘体会有类似的电特性,不过半导体的能带宽度小於绝缘体也意味着半导体的导电性更容易受到控制而改变。纯质半导体的电气特性可以藉由植入杂质的过程而永久改变,这个过程通常称为「掺杂」(doping)。依照掺杂所使用的杂质不同,掺杂後的半导体原子周围可能会多出一个电子或一个电洞,而让的导电特性变得与原本不同。如果掺杂进入半导体的杂质浓度够高,半导体也可能会表现出如同金属导体般的电性。在掺杂了不同极性杂质的半导体接面处会有一个内建电场(built-in electric field),内建电场和许多半导体元件的操作原理息息相关。除了藉由掺杂的过程永久改变电性外,半导体亦可因为施加於其上的电场改变而动态地变化。半导体材料也因为这样的特性,很适合用来作为电路元件,例如电晶体。电晶体属於主动式的(有源)半导体元件(active semiconductor devices),当主动元件和被动式的(无源)半导体元件(passive semiconductor devices)如电阻器(resistor)或是电容器(capacitor)组合起来时,可以用来设计各式各样的集成电路产品,例如微处理器。当电子从传导带掉回价带时,减少的能量可能会以光的形式释放出来。这种过程是制造发光二极体(light-emitting diode, LED)以及半导体激光(semiconductor laser)的基础,在商业应用上都有举足轻重的地位。而相反地,半导体也可以吸收光子,透过光电效应而激发出在价带的电子,产生电讯号。这即是光探测器(photodetector)的来源,在光纤通讯(fiber-optic communications)或是太阳能电池(solar cell)的领域是最重要的元件。半导体有可能是单一元素组成,例如矽。也可以是两种或是多种元素的化合物(compound),常见的化合物半导体有砷化镓(gallium arsenide, GaAs)或是磷化铝铟镓(aluminium gallium indium phosphide, AlGaInP)等。合金(alloy)也是半导体材料的来源之一,如矽锗(silicon-germanium, SiGe)或是砷化镓铝(aluminium gallium arsenide, AlGaAs)等。
半导体的相关术语
在形成晶体结构的半导体中,人为地掺入特定的杂质元素,导电性能具有可控性。在光照和热辐射条件下,其导电性有明显的变化。晶格 :晶体中的原子在空间形成排列整齐的点阵,称为晶格。共价键结构:相邻的两个原子的一对最外层电子(即价电子)不但各自围绕自身所属的原子核运动,而且出现在相邻原子所属的轨道上,成为共用电子,构成共价键。自由电子的形成:在常温下,少数的价电子由于热运动获得足够的能量,挣脱共价键的束缚变成为自由电子 。空穴 :价电子挣脱共价键的束缚变成为自由电子而留下一个空位置称空穴。电子电流:在外加电场的作用下,自由电子产生定向移动,形成电子电流。空穴电流:价电子按一定的方向依次填补空穴(即空穴也产生定向移动),形成空穴电流。本征半导体的电流:电子电流+空穴电流。自由电子和空穴所带电荷极性不同,它们运动方向相反。载流子 :运载电荷的粒子称为载流子。导体电的特点:导体导电只有一种载流子,即自由电子导电。本征半导体电的特点:本征半导体有两种载流子,即自由电子和空穴均参与导电。本征激发 :半导体在热激发下产生自由电子和空穴的现象称为本征激发。复合 :自由电子在运动的过程中如果与空穴相遇就会填补空穴,使两者同时消失,这种现象称为复合。动态平衡 :在一定的温度下,本征激发所产生的自由电子与空穴对,与复合的自由电子与空穴对数目相等,达到动态平衡。载流子的浓度与温度的关系:温度一定,本征半导体中载流子的浓度是一定的,并且自由电子与空穴的浓度相等。当温度升高时,热运动加剧,挣脱共价键束缚的自由电子增多,空穴也随之增多(即载流子的浓度升高),导电性能增强;当温度降低,则载流子的浓度降低,导电性能变差。结论:本征半导体的导电性能与温度有关。半导体材料性能对温度的敏感性,可制作热敏和光敏器件,又造成半导体器件 温度稳定性差的原因。杂质半导体 :通过扩散工艺,在本征半导体中掺入少量合适的杂质元素,可得到杂质半导体。N型半导体 :在纯净的硅晶体中掺入五价元素(如磷),使之取代晶格中硅原子的位置,就形成了N型半导体。多数载流子 :N型半导体中,自由电子的浓度大于空穴的浓度,称为多数载流子,简称多子。少数载流子:N型半导体中,空穴为少数载流子,简称少子。施子原子:杂质原子可以提供电子,称施子原子。N型半导体的导电特性:它是靠自由电子导电,掺入的杂质越多,多子(自由电子)的浓度就越高,导电性能也就越强。P型半导体:在纯净的硅晶体中掺入三价元素(如硼),使之取代晶格中硅原子的位置,形成P型半导体。多子 :P型半导体中,多子为空穴。少子 :P型半导体中,少子为电子。受主 原子:杂质原子中的空位吸收电子,称受主原子。
半导体的能带结构
半导体中的电子所具有的能量被限制在基态(ground state)与自由电子(free electron)之间的几个「能带」(energy band)里,也就是电子所具备的能量必定为不连续的能阶。当电子在基态时,相当於此电子被束缚在原子核附近;而相反地,如果电子具备了自由电子所需要的能量,那麽就能完全离开此材料。每个能带都有数个相对应的量子态(quantum state),而这些量子态中,能量较低的都已经被电子所填满。这些已经被电子填满的量子态中,能量最高的就被称为价带(valence band)。半导体和绝缘体在正常情况下,几乎所有电子都在价带或是其下的量子态里,因此没有自由电子可供导电。半导体和绝缘体之间的差异在於两者之间能隙(energy bandgap)宽度不同,亦即电子欲从价带跳入传导带(conduction band)时所必须获得的最低能量不一样。通常能隙宽度小於3电子伏特(eV)者为半导体,以上为绝缘体。在绝对零度时,固体材料中的所有电子都在价带中,而传导带为完全空置。当温度开始上升,高於绝对零度时,有些电子可能会获得能量而进入传导带中。传导带是所有能够让电子在获得外加电场的能量後,移动穿过晶体、形成电流的最低能带,所以传导带的位置就紧邻价带之上,而传导带和价带之间的差距即是能隙。通常对半导体而言,能隙的大小约为1电子伏特上下。在传导带中,和电流行成相关的电子通常称为自由电子。又根据包利不相容原理(Pauli exclusion principle),同一个量子态内不能有两个电子,已经被填满的能带无法导电,因为该能带内的所有量子态都已经被电子占据,所以半导体材料的传导带不会被电子占满,让电子可以在其中的量子态间移动。在价带内的电子获得能量後便可跃升到传导带,而这便会在价带内留下一个空缺,也就是所谓的「电洞」(electron holes)。传导带中的电子和价带中的电洞都对电流传递有贡献,电洞本身不会移动,但是其它电子可以移动到这个电洞上面,等效於电洞本身往反方向移动。相对於带负电的电子,电洞的电性为正电。由化学键结的观点来看,获得足够能量、进入传导带的电子也等於有足够能量可以打破电子与固体原子间的共价键(covalent bonds),而变成自由电子,进而对电流传导做出贡献。半导体和导体之间有个显着的不同是半导体的电流传导同时来自电流与电洞的贡献,而导体的费米能阶(Fermi level)则已经在传导带内,因此电子不需要很大的能量即可找到空缺的量子态供其跳跃、造成电流传导。固体材料内的电子能量分布遵循费米-狄拉克分布(Fermi-Dirac Distribution)。在绝对零度时,材料内电子的最高能量即为费米能阶,当温度高於绝对零度时,费米能阶为所有能阶中,被电子占据机率等於0.5的能阶。半导体材料内电子能量分布为温度的函数也使其导电特性受到温度很大的影响,当温度很低时,可以跳到传导带的电子较少,因此导电性也会变得较差。
半导体材料的特性与参数
半导体材料的导电性对某些微量杂质极敏感。纯度很高的半导体材料称为本征半导体,常温下其电阻率很高,是电的不良导体。在高纯半导体材料中掺入适当杂质后,由于杂质原子提供导电载流子,使材料的电阻率大为降低。这种掺杂半导体常称为杂质半导体。杂质半导体靠导带电子导电的称N型半导体,靠价带空穴导电的称P型半导体。不同类型半导体间接触(构成PN结)或半导体与金属接触时,因电子(或空穴)浓度差而产生扩散,在接触处形成位垒,因而这类接触具有单向导电性。利用PN结的单向导电性,可以制成具有不同功能的半导体器件,如二极管、三极管、晶闸管等。此外,半导体材料的导电性对外界条件(如热、光、电、磁等因素)的变化非常敏感,据此可以制造各种敏感元件,用于信息转换。半导体材料的特性参数有禁带宽度、电阻率、载流子迁移率、非平衡载流子寿命和位错密度。禁带宽度由半导体的电子态、原子组态决定,反映组成这种材料的原子中价电子从束缚状态激发到自由状态所需的能量。电阻率、载流子迁移率反映材料的导电能力。非平衡载流子寿命反映半导体材料在外界作用(如光或电场)下内部载流子由非平衡状态向平衡状态过渡的弛豫特性。位错是晶体中最常见的一类缺陷。位错密度用来衡量半导体单晶材料晶格完整性的程度,对于非晶态半导体材料,则没有这一参数。半导体材料的特性参数不仅能反映半导体材料与其他非半导体材料之间的差别 ,更重要的是能反映各种半导体材料之间甚至同一种材料在不同情况下,其特性的量值差别。
半导体的分类
常用的半导体材料分为元素半导体和化合物半导体。元素半导体是由单一元素制成的半导体材料。主要有硅、锗、硒等,以硅、锗应用最广。化合物半导体分为二元系、三元系、多元系和有机化合物半导体。二元系化合物半导体有Ⅲ-Ⅴ族(如砷化镓、磷化镓、磷化铟等)、Ⅱ-Ⅵ族(如硫化镉、硒化镉、碲化锌、硫化锌等)、 Ⅳ-Ⅵ族(如硫化铅、硒化铅等) 、Ⅳ-Ⅳ族(如碳化硅)化合物。三元系和多元系化合物半导体主要为三元和多元固溶体,如镓铝砷固溶体、镓锗砷磷固溶体等。有机化合物半导体有萘、蒽、聚丙烯腈等,还处于研究阶段。此外,还有非晶态和液态半导体材料,这类半导体与晶态半导体的最大区别是不具有严格周期性排列的晶体结构。
半导体在照明中的地位
半导体照明的巨大诱惑已经让不少国家对未来照明领域充满乐观,世界各国政府纷纷付诸实践。 美国能源部门预测,到2010年,美国将有55%的白炽灯和荧光灯被半导体照明替代,到时每年可节电350亿美元。美国已经启动了国家半导体照明计划,欧盟启动了彩虹计划,日本启动了21世纪光计划。日本政府明确提出,2006年就要用半导体照明大规模替代传统白炽灯。 中国是世界上最大的照明灯具制造国,拥有巨大的照明工业和照明市场。同时,中国又攻克了大功率发光芯片的技术难关,半导体照明的产业意义与价值不可估量。由科技部和十几个地方政府共同实施的国家半导体照明工程项目也已启动。2003年6月,我国成立“国家半导体照明工程领导小组”,以中科院半导体所和物理所、北京大学、清华大学等科研院所为代表,积极介入第三代半导体材料领域的研发,将技术成果进行转化。 自20世纪60年代末由中科院长春物理所研制成功LED(半导体发光二极管)始,至2004年,我国已有LED各类企业约3500余家,从业人员50余万人,年产相关器件达400亿只以上,市场规模已超过人民币300亿元。目前已经初步形成从外延片生产、芯片制备、器件封装集成应用等比较完整的产业链,全国从事半导体发光二极管器件及照明系统生产规模以上的企业有400多家。中国在显示屏、交通信号等领域已有大量的中低档LED产品在市场销售,并形成一定的应用开发技术和自主知识产权。 在政策上,今年5月召开的中国绿色照明国际会议暨第六届国际高效照明会议明确提出,“十一五”期间,国家发展和改革委员会将重点在公用设施、宾馆、商厦、写字楼、体育场馆、居民住宅中推广高效节电照明系统。国家还将严格照明产品市场准入,达不到强制性能效标准的产品不得生产销售,达不到建筑照明节能标准的建筑不得开工建设。国家将建立激励机制,加快高效照明产品推广应用,研究提出鼓励高效照明产品生产、使用的财政税收政策。科学家们预测,尽管半导体照明取代节能灯,走进中国千家万户可能还需要几年甚至更长时间,大到景观照明、户外大屏幕,小到玩具、手电筒、圣诞灯,人们有理由相信,LED将会照亮每个人的居室,从而改变我们的生活。
半导体材料的制备
不同的半导体器件对半导体材料有不同的形态要求,包括单晶的切片、磨片、抛光片、薄膜等。半导体材料的不同形态要求对应不同的加工工艺。常用的半导体材料制备工艺有提纯、单晶的制备和薄膜外延生长。所有的半导体材料都需要对原料进行提纯,要求的纯度在6个“9”以上 ,最高达11个“9”以上。提纯的方法分两大类,一类是不改变材料的化学组成进行提纯,称为物理提纯;另一类是把元素先变成化合物进行提纯,再将提纯后的化合物还原成元素,称为化学提纯。物理提纯的方法有真空蒸发、区域精制、拉晶提纯等,使用最多的是区域精制。化学提纯的主要方法有电解、络合、萃取、精馏等,使用最多的是精馏。由于每一种方法都有一定的局限性,因此常使用几种提纯方法相结合的工艺流程以获得合格的材料。绝大多数半导体器件是在单晶片或以单晶片为衬底的外延片上作出的。成批量的半导体单晶都是用熔体生长法制成的。直拉法应用最广,80%的硅单晶、大部分锗单晶和锑化铟单晶是用此法生产的,其中硅单晶的最大直径已达300 毫米。在熔体中通入的直拉法称为磁控拉晶法,用此法已生产出高均匀性硅单晶。在坩埚熔体表面加入液体覆盖剂称液封直拉法,用此法拉制砷化镓、磷化镓、磷化铟等分解压较大的单晶。悬浮区熔法的熔体不与容器接触,用此法生长高纯硅单晶。水平区熔法用以生产锗单晶。水平定向结晶法主要用于制备砷化镓单晶,而垂直定向结晶法用于制备碲化镉、砷化镓。用各种方法生产的体单晶再经过晶体定向、滚磨、作参考面、切片、磨片、倒角、抛光、腐蚀、清洗、检测、封装等全部或部分工序以提供相应的晶片。在单晶衬底上生长单晶薄膜称为外延。外延的方法有气相、液相、固相、分子束外延等。工业生产使用的主要是化学气相外延,其次是液相外延。金属有机化合物气相外延和分子束外延则用于制备量子阱及超晶格等微结构。非晶、微晶、多晶薄膜多在玻璃、陶瓷、金属等衬底上用不同类型的化学气相沉积、磁控溅射等方法制成。
浏览次数:6063次
东莞市立林电子有限公司
深圳创恩电子有限公司
深圳市明芯电子商行
深圳市明芯电子商行求指导:本征半导体中是否掺入杂质越多导电性越好?为什么?_百度知道
求指导:本征半导体中是否掺入杂质越多导电性越好?为什么?
我有更好的答案
不一定,参入越多之后,电子的散射也会越严重,所以,一般都是适量
为您推荐:
其他类似问题
本征半导体的相关知识
换一换
回答问题,赢新手礼包
个人、企业类
违法有害信息,请在下方选择后提交
色情、暴力
我们会通过消息、邮箱等方式尽快将举报结果通知您。中职电子技术教案_百度文库
两大类热门资源免费畅读
续费一年阅读会员,立省24元!
中职电子技术教案
阅读已结束,下载本文需要
想免费下载本文?
定制HR最喜欢的简历
下载文档到电脑,同时保存到云知识,更方便管理
还剩26页未读,继续阅读
定制HR最喜欢的简历
你可能喜欢豆丁微信公众号
君,已阅读到文档的结尾了呢~~
化学气相聚合制备导电聚合物复合纳米材料,聚合物合成与制备,导电聚合物有哪些,锂聚合物电池,聚合物水泥基防水涂料,聚合物,聚合物锂离子电池,聚合物电池,聚合物移动电源,聚合物水泥防水涂料
扫扫二维码,随身浏览文档
手机或平板扫扫即可继续访问
化学气相聚合制备导电聚合物复合纳米材料
举报该文档为侵权文档。
举报该文档含有违规或不良信息。
反馈该文档无法正常浏览。
举报该文档为重复文档。
推荐理由:
将文档分享至:
分享完整地址
文档地址:
粘贴到BBS或博客
flash地址:
支持嵌入FLASH地址的网站使用
html代码:
&embed src='http://www.docin.com/DocinViewer--144.swf' width='100%' height='600' type=application/x-shockwave-flash ALLOWFULLSCREEN='true' ALLOWSCRIPTACCESS='always'&&/embed&
450px*300px480px*400px650px*490px
支持嵌入HTML代码的网站使用
您的内容已经提交成功
您所提交的内容需要审核后才能发布,请您等待!
3秒自动关闭窗口半导体的基本知识
吴鉴鹰单片机开发板地址
店铺:【吴鉴鹰的小铺】
地址:【】
这节我们主要了解半导体的导电特性。理解PN结及其单向导电性。熟悉半导体二极管的伏安特性及主要参数。熟悉稳压管工作原理、伏安特性及主要参数。深刻理解晶体管的电流放大原理,熟悉输入和输出特性及主要参数。了解场效应管的工作原理、转移特性、输出特性及主要参数。
1、半导体要求达到“识记”层次。
2、PN结,要求达到“领会”层次。
3、二极管,要求达到“领会”层次。
4、稳压管,要求达到“领会”层次。
5、晶体管,要求达到“领会”层次。
6、场效应管,要求达到“领会”层次。
重点:二极管、稳压管和晶体三极管。
难点:场效应管
1. 本征半导体
根据物体导电能力(电阻率)的不同划分为导体、绝缘体和半导体。典型的半导体有硅Si和锗Ge以及砷化镓GaAs等。
本征半导体是—种化学成分纯净、结构完整的半导体。制造半导体器件的半导体材料的纯度要达到99.9999999%,常称为"九个9"。它在物理结构上呈单晶体形态。
(1) 本征半导体的热敏性、光敏性和掺杂性
① 热敏性、光敏性—本质半导体在温度升高或光照情况下,导电率明显提高。
② 掺杂性—在本征半导体中掺入某种特定的杂质,成为杂质半导体后,其导电率会明显的发生改变。
(2) 电子空穴对
在绝对温度0K时,半导体中没有自由电子。当温度升高或受到光的照射时,将有少数电子能挣脱原子核的束缚而成为自由电子,流下的空位称为空穴,这一现象称为本征激发(也称热激发)。在本征半导体中自由电子和空穴是同时成对出现的,称为电子空穴对。游离的部分自由电子也可能回到空穴中去,称为复合。本征激发和复合在一定温度下会达到动态平衡。自由电子和空穴在半导体中都是导电粒子,称它们为载流子。
2. N型半导体和P型半导体
(1) N型半导体
在本征半导体中掺入五价杂质元素,例如磷,可形成N型半导体,也称电子型半导体。因五价杂质原子中只有四个价电子能与周围四个半导体原子中的价电子形成共价键,而多余的一个价电子因无共价键束缚而很容易形成自由电子。在N型半导体中自由电子是多数载流子(多子),它主要由杂质原子提供;空穴是少数载流子(少子), 由热激发形成。
(2)P型半导体
在本征半导体中掺入三价杂质元素,如硼、镓、铟等形成了P型半导体,也称为空穴型半导体。因三价杂质原子在与硅原子形成共价键时,缺少一个价电子而在共价键中留下一空穴。P型半导体中空穴是多数载流子,主要由掺杂形成;电子是少数载流子,由热激发形成。
根据物体导电能力(电阻率)的不同,来划分导体、绝缘体和半导体。
半导体的电阻率为10-3~10-9 ??cm。
典型的半导体有硅Si和锗Ge以及砷化镓GaAs等。
4.1.1 本征半导体及其导电性
本征半导体——化学成分纯净的半导体。
制造半导体器件的半导体材料的纯度要达到99.9999999%,常称为“九个9”。它在物理结构上呈单晶体形态。
(1) 本征半导体的共价键结构
硅和锗是四价元素,在原子最外层轨道上的四个电子称为价电子。它们分别与周围的四个原子的价电子形成共价键。共价键中的价电子为这些原子所共有,并为它们所束缚,在空间形成排列有序的晶体。这种结构的立体和平面示意图见图01.01。
(a) 硅晶体的空间排列 (b) 共价键结构平面示意图
图01.01 硅原子空间排列及共价键结构平面示意图
(2) 电子空穴对
当导体处于热力学温度0 K时,导体中没有自由电子。当温度升高或受到光的照射时,价电子能量增高,有的价电子可以挣脱原子核的束缚,而参与导电,成为自由电子。这一现象称为本征激发(也称热激发)。
自由电子产生的同时,在其原来的共价键中就出现了一个空位,原子的电中性被破坏,呈现出正电性,其正电量与电子的负电量相等,人们常称呈现正电性的这个空位为空穴。可见因热激发而出现的自由电子和空穴是同时成对出现的,称为电子空穴对。游离的部分自由电子也可能回到空穴中去,称为复合,如图01.02所示。本征激发和复合在一定温度下会达到动态平衡。
图01.02 本征激发和复合的过程
(3) 空穴的移动
自由电子的定向运动形成了电子电流,空穴的定向运动也可形成空穴电流,它们的方向相反。只不过空穴的运动是靠相邻共价键中的价电子依次充填空穴来实现的。
图01.03 空穴在晶格中的移动(动画1-2)
4.1.2 杂质半导体
在本征半导体中掺入某些微量元素作为杂质,可使半导体的导电性发生显著变化。掺入的杂质主要是三价或五价元素。掺入杂质的本征半导体称为杂质半导体。
(1) N型半导体
在本征半导体中掺入五价杂质元素,例如磷,可形成N型半导体,也称电子型半导体。
因五价杂质原子中只有四个价电子能与周围四个半导体原子中的价电子形成共价键,而多余的一个价电子因无共价键束缚而很容易形成自由电子。在N型半导体中自由电子是多数载流子,它主要由杂质原子提供;空穴是少数载流子, 由热激发形成。
提供自由电子的五价杂质原子因带正电荷而成为正离子,因此五价杂质原子也称为施主杂质。N型半导体的结构示意图如图01.04所示。
图01.04 N型半导体的结构示意图
(2) P型半导体
在本征半导体中掺入三价杂质元素,如硼、镓、铟等形成了P型半导体,也称为空穴型半导体。
因三价杂质原子在与硅原子形成共价键时,缺少一个价电子而在共价键中留下一空穴。P型半导体中空穴是多数载流子,主要由掺杂形成;电子是少数载流子,由热激发形成。
空穴很容易俘获电子,使杂质原子成为负离子。三价杂质因而也称为受主杂质。P型半导体的结构示意图如图01.05所示。
图01.05 P型半导体的结构示意图
4.1.3 杂质对半导体导电性的影响
掺入杂质对本征半导体的导电性有很大的影响,一些典型的数据如下:
T=300K 室温下,本征硅的电子和空穴浓度为:
n = p =1.4×1010/cm3
本征硅的原子浓度: 4.96×1022 /cm3
掺杂后,N 型半导体中的自由电子浓度为: n=5×1016 /cm3
喜欢本文的亲们,欢迎点赞
技术源于积累,成功来自执着——单片机精讲吴鉴鹰
责任编辑:
声明:本文由入驻搜狐号的作者撰写,除搜狐官方账号外,观点仅代表作者本人,不代表搜狐立场。
今日搜狐热点

我要回帖

更多关于 为什么醋酸导电性差 的文章

 

随机推荐