windbg servicestack.texttext 每列什么意思

Windbg 命令列表 - flyingleo1981的专栏 - CSDN博客
Windbg 命令列表
18) Memory
Variants / Params
Description
d[a| u| b| w| W| d| c| q| f| D] [/c #] [Addr]
dy[b | d] ..
Display memory [#columns to display]
a = ascii chars
u = Unicode chars
b = byte + ascii
w = word (2b)
W = word (2b) + ascii
d = dword (4b)
c = dword (4b) + ascii
q = qword (8b)
f = floating point (single precision - 4b)
D = floating point (double precision - 8b)
b = binary + byte
d = binary + dword
e[ b | w | d | q | f | D ] Addr Value
e[ a | u | za | zu ] Addr &String&
Edit memory
w = word (2b)
d = dword (4b)
q = qword (8b)
f = floating point (single precision - 4b)
D = floating point (double precision - 8b)
a = ascii string
za = ascii string (NULL-terminated)
u = Unicode string
zu = Unicode string (NULL-terminated)
ds [/c #] [Addr]
dS [/c #] [Addr]
Dump string struct (struct! not null-delimited char sequence)
s = STRING or ANSI_STRING
S = UNICODE_STRING
dds [/c #] [Addr]
dqs [/c #] [Addr]
Display words and symbols (memory at Addr is assumed to be a series of addresses in the symbol table)
dds = dwords (4b)
dqs = qwords (8b)
dd*, dq*, dp*
Display referenced memory = display pointer at specified Addr, dereference it, and then display the memory at the resulting location in a variety of formats.
the 2nd char determines the pointer size used:
dd* -& 32-bit pointer used
dq* -& 64-bit pointer used
dp* -& standard size: 32-bit or 64-bit, depending on the CPU architecture
the 3rd char determines how the dereferenced memory is displayed:
d*a -& dereferenced mem as asci chars
d*u -& dereferenced mem as Unicode chars
d*p -& dereferenced mem as dword or qword, depending on the CPU architecture. If this value matches any known symbol, this symbol is displayed as well.
dl[b] Addr MaxCount Size
Display linked list (LIST_ENTRY or SINGLE_LIST_ENTRY)
b = dump in reverse order (follow BLinks instead of FLinks)
Addr = start address of the list
MaxCount = max # elements to dump
Size = Size of each element
Use !list to execute some command for each element in the list.
!address -?
!address Addr
!address -summary
!address -RegionUsageXXX
Display info about the memory used by the target process
Brief help
Dump info for region with Addr
Dump summary info for process
Dump specified regions (RegionUsageStack, RegionUsagePageHeap, ..)
!vprot Addr
Brief Help
Dump virtual memory protection info
!mapped_file
!mapped_file -?
!mapped_file Addr
Brief Help
Dump name of the file containing given Addr
display dwords at
display 1 dword at
display 3 dwords at
display Unicode chars at
display 5 Unicode chars at
dds esp == kd
display words and symbols on stack
!mapped_file
Dump name of file containing address
show all memory regions of our process
!address -RegionUsageStack
show all stack regions of our process
!address esp
show info for committed sub-region for our thread's stack.
Note: For stack overflows SubRegionSize (size of committed memory) will be large, i.e.:
AllocBase : SubRegionBase - SubRegionSize
---------------------------------------------
001e0000 : 002d6000 -
Determine stack usage for a thread
Stack Identifier
Memory Identifier ^
---------------------------------------------------------
--------------
&- _TEB.StackBase
SubRegionBase3 + SubRegionSize3
| MEM_COMMIT |
|------------|
&- _TEB.StackLimit
SubRegionBase3 ^, SubRegionBase2 + SubRegionSize2
| PAGE_GUARD |
|------------|
SubRegionBase2 ^, SubRegionBase1 + SubRegionSize1
|MEM_RESERVED|
|------------|
&- _TEB.DeallocationStack
AllocationBase or RegionBase, SubRegionBase1 ^
DeallocationStack: dt ntdll!_TEB TebAddr DeallocationStack
From MSDN CreateThread & dwStackSize & &Thread Stack Size&:
&Each new thread receives its own stack space, consisting of both committed and reserved memory. By default, each thread uses 1 Mb of reserved memory, and one page of committed memory. The system will commit one page block from the reserved stack memory as
19) Manipulating memory ranges
Variants / Params
Description
c Range DestAddr
Compare memory
m Range DestAddr
Move memory
f Range Pattern
Fill memory. Pattern = a series of bytes (numeric or ASCII chars)
s Range Pattern
s -[Flags]b Range Pattern
s -[Flags]w Range 'Pattern'
s -[Flags]d Range 'Pattern'
s -[Flags]q Range 'Pattern'
s -[Flags]a Range &Pattern&
s -[Flags]u Range &Pattern&
s -[Flags,l length]sa Range
s -[Flags,l length]su Range
s -[Flags]v Range Object
Search memory
b = byte (default value)
Pattern = a series of bytes (numeric or ASCII chars)
w = word (2b)
d = dword (4b)
q = qword (8b)
Pattern = enclosed in single quotation marks (for example, 'Tag7')
a = ascii string (must not be null-terminated)
u = Unicode string (must not be null-terminated)
Pattern = enclosed in double quotation marks (for example, &This string&)
Search for any memory containing printable ascii strings
Search for any memory containing printable Unicode strings
Length = minimum le the default is 3 chars
Search for objects of the same type.
Object = Addr of a pointer to the Object or of the Object itself
w = search only writable memory
1 = output only addresses of search matches (useful if you are using the .foreach)
Flags must be surrounded by a single set of brackets without spaces.
Example: s -[swl 10]Type Range Pattern
.holdmem -a Range
.holdmem -o
.holdmem -c Range
.holdmem -D
.holdmem -d { Range | Address }
Hold and compare memory. The comparison is made byte-for-byte
Memory range to safe
Display all saved memory ranges
Compares Range to all saved memory ranges
Delete all saved memory ranges
Delete specified memory ranges (any saved range containing Addr or overlapping with Range)
c Addr (Addr+100) DestAddr
compare 100 bytes at Addr with DestAddr
c Addr L100 DestAddr
m Addr L20 DestAddr
move 20 bytes from Addr to DestAddr
f Addr L20 'A' 'B' 'C'
fill specified memory location with the pattern &ABC&, repeated several times
f Addr L20 41 42 43
'H' 'e' 'l' 'l' 'o'
search memory locations 0012FF40 through 0012FF5F for the pattern &Hello&
48 65 6c 6c 6f
search only writable memory
20) Memory: Heap
Variants / Params
Description
!heap -h [HeapAddr | Idx | 0]
!heap -v [HeapAddr | Idx | 0]
!heap -s [HeapAddr | 0]
!heap -i [HeapAddr]
!heap -x [-v] Address
Brief help
List heaps with index and HeapAddr
List heaps with index and range (= startAddr(=HeapAddr), endAddr)
Detailed heap info [Idx = heap Idx, 0 = all heaps]
Validate heap [Idx = heap Idx, 0 = all heaps]
Summary info, i.e. reserved and committed memory [Idx = heap Idx, 0 = all heaps]
Detailed info for a block at given address
Search heap block containing the address (v = search the whole process virtual space)
Search for potentially leaked heap blocks
!heap -b, -B
!heap Heap -b [alloc | realloc | free] [Tag]
!heap Heap -B [alloc | realloc | free]
Set conditional breakpoint in the heap manager [Heap = HeapAddr | Idx | 0]
Remove a conditional breakpoint
!heap -flt
!heap -flt s Size
!heap -flt r SizeMin SizeMax
Dump info for allocations matching the specified size
Filter by range
!heap -stat
!heap -stat
!heap -stat -h [HeapHandle | 0]
Dump heap handle list
Dump usage statistic for every AllocSize [HeapHandle = given heap | 0 = all heaps].
The statistic includes AllocSize, #blocks, TotalMem for each AllocSize.
!heap -p -?
!heap -p -h HeapHandle
!heap -p -a UserAddr
!heap -p -all
Extended page heap help
Summary for NtGlobalFlag, HeapHandle + NormalHeap list **
Detailed info about a page heap with Handle
Details of heap allocation containing UserAddr. Prints backtraces when available.
Details of all allocations in all heaps in the process.
The output includes UserAddr and AllocSize for every HeapAlloc call.
It seems that the following applies for windows XP SP2:
a) Normal heap
CreateHeap -& creates a _HEAPAllocHeap -& creates a _HEAP_ENTRY
b) Page heap enabled (gflags.exe /i +hpa)
CreateHeap -& creates a _DPH_HEAP_ROOT (+ _HEAP + 2x _HEAP_ENTRY)**AllocHeap -& creates a _DPH_HEAP_BLOCK
** With page heap enabled there will still be a _HEAP with two constant _HEAP_ENTRY's for every CreateHeap call.
dt ntdll!_HEAP
dump _HEAP struct
dt ntdll!_DPH_HEAP_ROOT
dump _DPH_HEAP_ROOT struct.
Enable page heap. Then you can use &!heap -p -all& to get addresses of actual _DPH_HEAP_ROOT structs in your process.
dt ntdll!_DPH_HEAP_BLOCK
dump _DPH_HEAP_BLOCK struct.
Enable page heap. Then you can use &!heap -p -all& to get addresses of actual _DPH_HEAP_BLOCK structs in your process.
list all heaps with index and HeapAddr
list all heaps with range information (startAddr, endAddr)
!heap -h 1
detailed heap info for heap with index 1
!heap -s 0
Summary for all heaps (reserved and committed memory, ..)
!heap -flt s 20
Dump heap allocations of size 20 bytes
!heap -stat
Dump HeapHandle list. HeapHandle = value returned by HeapCreate or GetProcessHeap
!heap -stat -h
Dump usage statistic for HeapHandle =
!heap 2 -b alloc mtag
Breakpoint on HeapAlloc calls with TAG=mtag in heap with index 2
Dump heap handle list
!heap -p -a 014c6fb0
Details of heap allocation containing address 014c6fb0 + call-stack if available
!heap -p -all
Dump details of all allocations in all heaps in the process
21) Application Verifier
Application Verifier profiles and tracks Microsoft Win32 APIs (heap, handles, locks, threads, DLL load/unload, and more), Exceptions, Kernel objects, Registry, File system. With the !avrf extension we get access to this tracking information!
Variants / Params
Description
Displays Application Verifier options. If an Application Verifier Stop has occurred, reveal the nature of the stop and what caused it.
-vs -a ADDR
-hp -a ADDR
-cs -a ADDR
-trace INDEX
-brk [INDEX]
Brief help
Dump last N entries from vspace log (MapViewOfFile, UnmapViewOfFile, ..).
Searches ADDR in the vspace log.
HeapAlloc, HeapFree, new, and delete log
Searches ADDR in the heap log.
DeleteCriticalSection API log (last #Entries). ~CCriticalSection calls this implicitly.
Searches ADDR in the critical section delete log.
LoadLibrary/FreeLibrary log
exception log
global counters (WaitForSingleObject, HeapAllocation calls, ...)
thread information + start parameters for child threads
TerminateThread API log
dump stack trace with INDEX.
dump or set/reset break triggers.
22) Logging extension (logexts.dll)
You must enable the following options for you image in GFlags:
-& &Create user mode stack trace database&
-& &Stack Backtrace: (Megs)& -& 10
-& It seems that you sometimes also need to check and specify the &Debugger& field in GFlags
Variants / Params
Description
!logexts.help
displays all Logexts.dll extension commands
!loge [dir]
Enable logging + possibly initialize it if not yet done. Output directory optional.
Initialize (=inject Logger into the target application) but don't enable logging.
Disable logging
!logo [e|d] [d|t|v]
List output settings
Enable/disable [d - Debugger, t - Text file, v - Verbose log] output. Use logviewer.exe to examine Verbose logs.
!logc [e|d] *
!logc [e|d] # [#] [#]
List all categories
List APIs in category #
Enable/disable all categories
Enable/disable category #
Print buffer contents to debugger
Flush buffer to log files
!logm [i|x] [DLL] [DLL]
Display module inclusion/exclusion list
Specify module inclusion/exclusion list
Enable 19-ProcessesAndThreads and 22-StringManipulation logging:
Enable logging
Disable all categories
!logc p 19
Display APIs of category 19
logc e 19 22
Enable category 19 and 22
Disable verbose output
Disable text output
Enable debugger output
转载必须注明!
14) Tracing and stepping (F10, F11)
Each step executes either a single assembly instruction or a single source line, depending on whether the debugger is in assembly mode or source mode.
Use the l+t and l-t commands or the buttons on the WinDbg toolbar to switch between these modes.
Variants / Params
Description
Go up = execute until the current function is complete
gu ~= g @$ra
gu ~= bp /1 /c @$csp @$g
-& $csp = same as esp on x86
-& $ra = The return address currently on the stack
p [Count] &Command&
p =StartAddress [Count] [&Command&]
[~Thread] p [=StartAddress] [Count] [&Command&]
Single step - executes a single instruction or source line. Subroutines are treated as a single step.
Toggle display of registers and flags
Count = count of instructions or source lines to step through before stopping
Command = debugger command to be executed after the step is performed
StartAddress = Causes execution to begin at the specified address. Default is the current EIP.
~Thread = The specified thread is thawed and all others frozen
Single trace - executes a single instruction or source line. For subroutines each step is traced as well.
Step to next return - similar to the GU (go up), but staying in context of the current function
If EIP is already on a return instruction, the entire return is executed. After this return is returned, execution will continue until another
return is reached.
Trace to next return - similar to the GU (go up), but staying in context of the current function
If EIP is already on a return instruction, the debugger traces into the return and continues executing until another
return is reached.
Step to next call - executes the program until a call instruction is reached
If EIP is already on a call instruction, the entire call will be executed. After this call is returned execution will continue until another
call is reached.
Trace to next call - executes the program until a call instruction is reached
If EIP is already on a call instruction, the debugger will trace into the call and continue executing until another
call is reached.
pa StopAddr
pa StopAddr &Command&
pa =StartAddress StopAddr [&Command&]
Step to address; StopAddr = address at which execution will stop
Called functions are treated as a single unit
Toggle display of registers and flags
Command = debugger command to be executed after the step is performed
StartAddress = Causes execution to begin at the specified address. Default is the current EIP.
ta StopAddr
Trace to address; StopAddr = address at which execution will stop
Called functions are traced as well
wt [Options] [= StartAddr] [EndAddr]
wt -l Depth ..
wt -m Module [-m Module2] ..
wt -i Module [-i Module2] ..
Trace and watch data. Go to the beginning of a function and do a
wt. It will run through the entire function and display statistics.
StartAddr = EndAddr = address at which to end tracing (default = after RET of current function)
l = maximum depth of traced calls
m = restrict tracing to Module
i = ignore code from Module
oa = dump actual address of call sites
or = dump return register values (EAX value) of sub-functions
oR = dump return register values (EAX value) in the appropriate type
nc = no info for individual calls
ns = no summary info
ns = no warnings
.step_filter
.step_filter
.step_filter &FilerList&
.step_filter /c
Dump current filter list = functions that are skipped when tracing (t, ta, tc)
FilterList = Filter 1; Filter 2; ... symbols associated with functions to be stepped over (skipped)
clear the filter list
.step_filter is not very useful in assembly mode, as each function call is on a different line.
g `:123`; ? poi(counter); g
executes the current program to source line 123; print
resume execution
single step
toggle displaying of registers
5x steps, execute &kb& thereafter
step to next CALL instruction
pa 7c801b0b
step until 7c801b0b is reached
trace and watch sub-functions
wt -l 4 -oR
trace sub-functions to depth 4, display their return values
15) Call stack
Variants / Params
Description
k [n] [f] [L] [#Frames]
n = with frame #; f = distance bet L = number of stack frames to display
first 3 params
all params: param type + name + value
all params formatted (new line)
FPO info, calling convention
kd [WordCnt]
display raw stack data + possible symbol info == dds esp
DML variant with links to .frame #;dv
Set stack length. The default is 20 (0x14).
.frame /r [#]
show current frame
specify frame #
show register values
The .frame command specifies which local context (scope) will be used to interpret local variables, or displays the current local context.
When executing a near call, the processor pushes the value of the EIP register (which contains the offset of the instruction following the CALL instruction) onto the stack (for use later as a return-instruction pointer). This is the first step in building a
frame. Each time a function call is made, another frame is created so that the called function can access arguments, create local variables, and provide a mechanism to return to calling function. The composition of the frame is dependant on the function calling
convention.
!uniqstack
!uniqstack
!uniqstack [b|v|p] [n]
!uniqstack -?
show stacks for all threads
[b = first 3 params, v = FPO + calling convention, p = all params: param type + name + value], [n = with frame #]
brief help
!findstack
!findstack Symbol
!findstack Symbol [0|1|2]
!findstack -?
locate all stacks that contain Symbol or module
[0 = show only TID, 1 = TID + frames, 2 = entire thread stack]
brief help
display call stack
call stack with frame numbers
display call stack with first 3 params
display first 5 frames only
To get more than 3 Function Arguments from the stack
dd ChildEBP+8 (Parameters start at ChildEBP+8)
dd ChildEBP+8 (frame X) == dd ESP (frame X-1)
!uniqstack
get all stacks of our process (one for each thread)
!findstack kernel32 2
display all stacks that contain &kernel32&
show current frame
set frame 2 for the local context
.frame /r 0d
display registers in frame 0
16) Registers
Variants / Params
Description
r Reg1, Reg2
r Reg=Value
r Reg:Type
r Reg:[Num]Type
~Thread r [Reg:[Num]Type]
Dump all registers
Dump only specified registers (i.e.: r eax, edx)
Value to assign to the register (i.e.: r eax=5, edx=6)
Type = data format in which to display the register (i.e.: r eax:uw)
ib = Signed byte
ub = Unsigned byte
iw = Signed word (2b)
uw = Unsigned word (2b)
id = Signed dword (4b)
ud = Unsigned dword (4b)
iq = Signed qword (8b)
uq = Unsigned qword (8b)
f = 32-bit floating-point
d = 64-bit floating-point
Num = number of elements to display (i.e.: r eax:1uw)
Default is full register length, thus r eax:uw would display two values as EAX is a 32-bit register.
Thread = thread from which the registers are to be read (i.e.: ~1 r eax)
rM Mask Reg1, Reg2
rM Mask Reg=Value
Dump register types specified by Mask
Dump only specified registers from current mask
Value to assign to the register
Flags for Mask
0x1 = basic integer registers
0x4 = floating-point registers == rF
0x8 = segment registers
0x10 = MMX registers
0x20 = Debug registers
0x40 = SSE XMM registers == rX
rF Reg1, Reg2
rF Reg=Value
Dump all floating-point registers == rM 0x4
Dump only specified floating-point registers
Value to assign to the register
rX Reg1, Reg2
rX Reg=Value
Dump all SSE XMM registers == rM 0x40
Dump only specified SSE XMM registers
Value to assign to the register
Dump default register mask. This mask controls how registers are displayed by the &r&.
Dump a list of possible Mask bits
Specify the mask to use when displaying the registers.
show possible bit mask
enable integer registers only
dump all integer registers
r eax, edx
dump only eax and edx
r eax=5, edx=6
assign new values to eax and edx
dump only the first byte from eax
enable debug register mask
dump debug registers
dump all floating point register
dump all floating point register
dump all floating point registers
17) Information about variables
Variants / Params
Description
dt [mod!]Name
dt [mod!]Name Field [Field]
dt [mod!]Name [Field] Addr
dt [mod!]Name*
dt [-n|y] [mod!]Name [-n|y] [Field] [Addr]
dt [-n|y] [mod!]Name [-n|y] [Field] [Addr] -abcehioprsv
Brief help
Dump variable info
Dump only 'field-name(s)' (struct or unions)
Addr of struct to be dumped
list symbols (wildcard)
-n Name = param is a name (use if name can be mistaken as an address)
-y Name = partially match instead of default exact match
-a = Shows array elements in new line with its index
-b = Dump only contiguous block of struct
-c = Compact output (all fields in one line)
-i = Does not indent the subtypes
-l ListField = Field which is pointer to the next element in list
-o = Omit the offset value (fields of struct)
-p = Dump from physical address
-r[l] = Recursively dump subtypes/fields (up to l levels)
-s [size] = For enumeration only, enumerate types only of given size.
-v = Verbose output.
dv Pattern
dv [/i /t /V] [Pattern]
dv [/i /t /V /a /n /z] [Pattern]
display local variables and parameters
vars matching Pattern
i = type (local, global, parameter), t = data type, V = memory address or register location
a = sort by Addr, n = sort by name, z = sort by size
dt ntdll!_PEB*
list all variables that contain the word _PEB
dt ntdll!_PEB* -v
list with verbose output (address and size included)
dt ntdll!_PEB* -v -s 9
list only symbols whose size is 9 bytes
dt ntdll!_PEB
dump _PEB info
dt ntdll!_PEB @$peb
dump _PEB for our process
dt ntdll!_PEB 7efde000
dump _PEB at Addr 7efde000
You can get our process's PEB address with &r @$peb& or with &!peb&.
dt ntdll!_PEB Ldr SessionId
dump only PEB's Ldr and SessionId fields
dt ntdll!_PEB Ldr -y OS*
dump Ldr field + all fields that start with OS*
dt mod!var m_cs.
dump m_cs and expand its subfields
dt mod!var m_cs..
expand its subfields for 2 levels
dt ntdll!_PEB -r2
dump recursively (2 levels)
dv /t /i /V
dump local variables with type information (/t), addresses and EBP offsets (/V), classify them into categories (/i)
Note: dv will also display the value of a THIS pointer for methods called with the &this calling-convention&.
BUG: You must first execute a few commands before dv displays the correct value.
Right at a function's entry point the THIS pointer is present in ECX, so you can easily get it from there.
11) Process related information
Variants / Params
Description
(DML) displays current processes and allows drilling into processes for more information
Print status of all processes being debugged
lists all processes running on the system
display formatted view of the process's environment block (PEB)
12) Thread related information
Variants / Params
Description
~* [Command]
~. [Command]
~# [Command]
~Number [Command]
~~[TID] [Command]
list threads
all threads
current thread
thread that caused the current event or exception
thread whose ordinal is Number
thread whose thread ID is TID (the brackets are required)
switch to thread N (new current thread)
[Command]: works for a few regular commands such as k, r
~* e CommandString
~. e CommandString
~# e CommandString
~Number e CommandString
Execute thread-specific commands (CommandString = one or more commands to be executed) for:
all threads
current thread
thread which caused the current event
thread with ordinal
Freeze thread (see ~ for Thread syntax)
Unfreeze thread (see ~ for Thread syntax)
Suspend thread = increment thread's suspend count
Resume thread = decrement thread's suspend count
display formatted view of the thread's environment block (TEB)
!tls SlotIdx
!tls [-1 | SlotIdx] TebAddr
-1 = dump all slots for current thread
SlotIdx = dump only specified slot
TebAddr = if omitted, the current thread is used
display thread times (user + kernel mode)
[Flags: 0 | 1 | 2]
display information about time consumed by each thread (0-user time, 1-kernel time, 2-time elapsed since thread creation). quick way to find out which threads are spinning out of control or consuming too much CPU time
Dump last error for current thread
Dump last error for all threads
Point of interest:
SetLastError( dwErrCode ) checks the value of kernel32!g_dwLastErrorToBreakOn and possibly executes a DbgBreakPoint.
if ((g_dwLastErrorToBreakOn != 0 ) && (dwErrCode == g_dwLastErrorToBreakOn))
DbgBreakPoint();
The downside is that SetLastError is only called from within KERNEL32.DLL.
Other calls to SetLastError are redirected to a function located in NTDLL.DLL, RtlSetLastWin32Error.
!error ErrValue
!error ErrValue 1
Decode and display information about an error value
Treat ErrValue value as an NTSTATUS code
call stack for all threads ~ !uniqstack
Freeze Thread TID=2
Freeze the thread causing the current exception
Unfreeze Thread TID=3
== ~2r; ~2k; ~2kd
will repeat every the extension command !gle for every single thread being debugged
Dump all TLS slots for current thread
!runaway 7
1 (user time) + 2 (kernel time) + 4 (time elapsed since thread start)
Dump formatted view of our threads TEB (only some information)
dt ntdll!_TEB @$teb
Dump TEB of current thread
13) Breakpoints
Variants / Params
Description
List breakpoints
bc # [#] [#]
Clear all breakpoints
Clear breakpoint #
be # [#] [#]
Enable all bps
Enable bp #
bd # [#] [#]
Disable all bps
Disable bp #
bp [Addr] [&CmdString&]
[~Thrd] bp[#] [Options] [Addr] [Passes] [&CmdString&]
Set breakpoint at address
CmdString = Cmd1; Cmd2; .. Executed every time the BP is hit.
~Thrd == thread that the bp applies too.
# = Breakpoint ID
Passes = Activate breakpoint after #Passes (it is ignored before)
Set unresolved breakpoint. bp is set when the module gets loaded
bm SymPattern
bm SymPattern [&CmdString&]
[~Thrd] bm [Options] SymPattern [#Passes] [&CmdString&]
Set symbol breakpoint. SymPattern can contain wildcards
CmdString = Cmd1; Cmd2; .. Executed every time the BP is hit.
~Thrd == thread that the bp applies too.
Passes = Activate breakpoint after #Passes (it is ignored before)
The syntax bm SymPattern is equivalent to using x SymPattern and then using bu on each of the results.
ba [r|w|e] [Size] Addr
[~Thrd] ba[#] [r|w|e] [Size] [Options] [Addr] [Passes] [&CmdString&]
Break on Access: [r=read/write, w=write, e=execute], Size=[1|2|4 bytes]
[~Thrd] == thread that the bp applies too.
# = Breakpoint ID
Passes = Activate breakpoint after #Passes (it is ignored before)
br OldID NewID [OldID2 NewID2 ...]
renumbers one or more breakpoints
With bp, the breakpoint location is always converted to an address. In contrast, a bu or a bm breakpoint is always associated with the symbolic value.
Simple Examples
bp `mod!source.c:12`
set breakpoint at specified source code
bm myprogram!mem*
SymbolPattern is equivalent to using x SymbolPattern
bu myModule!func
bp set as soon as myModule is loaded
ba w4 77a456a8
break on write access
bp @@( MyClass::MyMethod )
break on methods (useful if the same method is overloaded and thus present on several addresses)
Breakpoitns with options
bp mod!addr /1
bp mod!addr k
Breakpoints with commands: The command will be executed when the breakpoint is hit.
ba w4 81a578a8 &k;g&
bu myModule!func &.dump c:\dump. g&
bu MYDLL!DllMain &j (dwo(@esp+8) == 1) '.echo MYDLL!DllMain -& DLL_PROCESS_ATTACH; kn' ; 'g' &
bu kernel32!LoadLibraryExW &.echo LoadLibraryExW for -&; du dwo(@esp+4); g&
bu kernel32!LoadLibraryExW &;as /mu ${/v:MyAlias} poi(@esp+4); .if ( $spat( \&${MyAlias}\&, \&*MYDLL*\& ) != 0 ) { } .else { g }&
The first parameter to LoadLibrary (at address ESP + 4) is a string pointer to the DLL name in question.The MASM $spat operator will compare this pointer to a predefined string-wildcard, this is
*MYDLL* in our example.Unfortunately $spat can accept aliases or constants, but no memory pointers. This is why we store our string in question to an alias (MyAlias) first.Our kernel32!LoadLibraryExW breakpoint will hit only if the pattern compared by
$spat matches. Otherwise the application will continue executing.
bu sioctl!DriverEntry &r eip = poi(@esp); r esp = @esp + 0xC; .echo sioctl!DriverE g&
Right at a function’s entry point the value found on the top of the stack contains the return address
r eip = poi(@esp) -& Set EIP (instruction pointer) to the value found at offset 0x0
&DriverEntry has 2x4 byte parameters = 8 bytes + 4 bytes for the return address = 0xC
r esp = @esp + 0xC -& Add 0xC to Esp (the stack pointer), effectively unwinding the stack pointer
bu MyApp!WinMain &r eip = poi(@esp); r esp = @esp + 0x14; .echo WinSpy!WinM g&
WinMain has 4x4 byte parameters = 0x10 bytes + 4 bytes for the return address = 0x14
Howto set a brekpoint in your code programatically?
kernel32!DebugBreakntdll!DbgBreakPoint__asm int 3 (x86 only)
转载必须注明!
6) Main extensions
Variants / Params
Display supported commands for ..
General extensions
!Exts.help
!Uext.help
User-Mode Extensions (non-OS specific)
!Ntsdexts.help
User-Mode Extensions (OS specific)
!logexts.help
Logger Extensions
!clr10\sos.help
Debugging managed code
!wow64exts.help
Wow64 debugger extensions
!Wdfkd.help
Kernel-Mode driver framework extensions
!Gdikdx.help
Graphics driver extensions
!NAME.help
!NAME.help FUNCTION
Display detailed help about an exported function
NAME = placeholder for extension DLL
FUNCTION = placeholder for exported function
Example: !Ntsdexts.help handle (show detailed help about !Ntsdexts.handle)
7) Symbols
Variants / Params
Description
ld ModuleName
Load symbols for Module
Load symbols for all modules
!sym noisy
!sym quiet
Get state of symbol loading
Set noisy symbol loading (debugger displays info about its search for symbols)
Set quiet symbol loading (=default)
x [Options] Module!Symbol
Examine symbols: displays symbols that match the specified pattern
with data type
verbose (symbol type and size)
sort by address
sort by name
sort by size (&size& of a function symbol is the size of the function in memory)
List nearest symbols = display the symbols at or near the given Addr. Useful to:
determine what a pointer is pointing towhen looking at a corrupted stack to determine which procedure made a call
.sympath+
Display or set symbol search path
Append directories to previous symbol path
.symopt+ Flags
.symopt- Flags
displays current symbol options
add option
remove option
.symfix+ DownstreamStore
Set symbol store path to automatically point to /download/symbols
+ = append it to the existing path
DownstreamStore = directory to be used as a downstream store. Default is WinDbgInstallationDir\Sym.
.reload [/f | /v]
.reload [/f | /v] Module
Reload symbol information for all modules**
f = force immediate symbol load (overrides lazy loading); v = verbose mode
Module = for Module only
**Note: The .reload command does not actually cause symbol information to be read. It just lets the debugger know that the symbol files may have changed, or that a new module should be added to the module list. To force actual symbol loading to occur use the
/f option, or the ld (Load Symbols) command.
list all modules
list all symbols of ntdll
x /t /v MyDll!*
list all symbol in MyDll with data type, symbol type and size
x kernel32!*LoadLib*
list all symbols in kernel32 that contain the word LoadLib
.sympath+ C:\MoreSymbols
add symbols from C:\MoreSymbols (folder location)
.reload /f @&ntdll.dll&
Immediately reload symbols for ntdll.dll.
.reload /f @&C:\WINNT\System32\verifier.dll&
Reload symbols for verifier. Use the given path.
8) Sources
Variants / Params
Description
.srcpath+ DIR
Display or set source search path
Append directory to the searched source path
Controls noisy source loading
[-e | -d | -t]
Toggle source line support: toggle
l (small letter L)
l+l, l-l
l+o, l-o
l+s, l-s
l+t, l-t
show line numbers
suppress all but [s]
source and line number
source mode vs. assembly mode
9) Exceptions, events, and crash analysis
Variants / Params
Description
Go exception handled
Go not handled
.lastevent
What happened? Shows most recent event or exception
!analyze -v
!analyze -hang
!analyze -f
Display information about the current ex verbose
User mode: Analyzes the thread stack to determine whether any threads are blocking other threads.
See an exception analysis even when the debugger does not detect an exception.
Show all event filters with break status and handling
break first-chance
break second-chance
don't break
ignore event
reset filter settings to default values
display most recent exception record
display exception record at Addr
displays exception context record (registers) associated with the current exception
Display content and type of C++ exception
display most recent exception
.exr 7c901230
display exception at address 7c901230
!cppexr 7c901230
display c++ exception at address 7c901230
10) Loaded modules and image information
Variants / Params
Description
lm[ v | l | k | u | f ] [m Pattern]
L verbose | with loaded symbols | k-kernel or u-user only symbol info | pattern that the module name must match
DML lmv command links included in output
!dlls -c ModuleAddr
all loaded modules with load count
by initialization order
by load order (default)
by memory order
with version info
only module at ModuleAddr
brief help
ImgBaseAddr
information about relocated images
detailed info about a module (including exact symbol info)
!dh ImgBaseAddr
!dh -f ImgBaseAddr
!dh -s ImgBaseAddr
Dump headers for ImgBaseAddr
f = file headers only
s = section headers only
h = brief help
The !lmi extension extracts the most important information from the image header and displays it in a concise summary format. It is often more useful than !dh.
display all loaded and unloaded modules
lmv m kernel32
display verbose (all possible) information for kernel32.dll
DML variant of lm
!dlls -v -c kernel32
display information for kernel32.dll, including load-count
!lmi kernel32
display detailed information about kernel32, including
symbol information
!dh kernel32
display headers for kernel32
转载必须注明!
3) Debugging sessions (attach, detach, ..)
Variants / Params
Description
attach to a process
ends the debugging session, but leaves any user-mode target application running
Quit = ends the debugging session and terminates the target application
Remote debugging: q= qq= terminates the debug server
Restart target application
4) Expressions and commands
Variants / Params
Description
Command separator (cm1; cm2; ..)
? Expression
?? Expression
Evaluate expression (use default evaluator)
Evaluate c++ expression
.expr /s c++
.expr /s masm
Choose default expression evaluator
Show current evaluator
Show available evaluators
Set c++ as the default expression evaluator
Set masm as the default expression evaluator
* [any text]
Comment Line Specifier
Terminated by: end of line
$$ [any text]
Comment Specifier
Terminated by: end of line OR semicolon
.echo String
.echo &String&
Echo Comment -& comment text + echo it
Terminated by: end of line OR semicolon
With the $$ token or the * token the debugger will ignore the inputted text without echoing it.
5) Debugger markup language (DML)
Starting with the 6.6.07 version of the debugger a new mechanism for enhancing output from the debugger and extensions was included: DML.
DML allows output to include directives and extra non-display information in the form of tags.
Debugger user interfaces parse out the extra information to provide new behaviors.
DML is primarily intended to address two issues:
Linking of related informationDiscoverability of debugger and extension functionality
Variants / Params
Description
.dml_start
Kick of to other DML commands
.prefer_dml
.prefer_dml [1 | 0]
Global setting: should DML-enhanced commands default to DML?
Note that many commands like k, lm, .. output DML content thereafter.
.help has a new DML mode where a top bar of links is given
.chain has a new DML mode where extensions are linked to a .extmatch
.extmatch /D
.extmatch has a new DML format where exported functions link to &!ExtName.help FuncName& commands
lm has a new DML mode where module names link to lmv commands
k has a new DML mode where frame numbers link to a .frame/dv
.dml_flow StartAddr TargetAddr
Allows for interactive exploration of code flow for a function.
Builds a code flow graph for the function starting at the given start address (similar to uf)Shows the basic block given the target address plus links to referring blocks and blocks referred to by the current block
Example: .dml_flow CreateRemoteThread CreateRemoteThread+30
转载必须注明!
1) 帮助命令,Built-in help commands
Variants / Params
Description
Display regular commands
Display regular commands as DML
.help /D a*
Display . commands
Display . commands in DML format (top bar of links is given)
Display . commands that start with a* (wildcard) as DML
Lists all loaded debugger extensions
Lists all loaded debugger extensions as DML (where extensions are linked to a .extmatch)
.extmatch /e ExtDLL FunctionFilter
.extmatch /D /e ExtDLL FunctionFilter
Show all exported functions of an extension DLL. FunctionFilter = wildcard string
Same in DML format (functions link to &!ExtName.help FuncName& commands)
Example: .extmatch /D /e uext * (show all exported functions of uext.dll)
Open WinDbg's help
Text = text to look up in the help file index
Example: .hh dt
2) 常用WinDbg命令,General WinDbg's commands (show version, clear screen, etc.)
Variants / Params
Description
Dump version info of debugger and loaded extension DLLs
vercommand
Dump command line that was used to start the debugger
Version of target computer
CTRL+ALT+V
Toggle verbose mode ON/OFF
In verbose mode some commands (such as register dumping) have more detailed output.
n [8 | 10 | 16]
Set number base
.formats Expression
Show number formats = evaluates a numerical expression or symbol and displays it in multiple numerical formats (hex, decimal, octal, binary, time, ..)
Example 1: .formats 5
Example 2: .formats poi(nLocal1) == .formats @@($!nLocal1)
Clear screen
.lastevent
Displays the most recent exception or event that occurred (why the debugger is waiting?)
.effmach .
.effmach #
.effmach x86 | amd64 | ia64 | ebc
Dump effective machine (x86, amd64, ..):
Use target computer's native processor mode
Use processor mode of the code that is executing for the most recent event
Use x86, amd64, ia64, or ebc processor mode
This setting influences many debugger features:
-& which processor's unwinder is used for stack tracing
-& which processor's register set is active
display time (system-up, process-up, kernel time, user time)
转载必须注明!
我的热门文章

我要回帖

更多关于 windbg 列出 api 的文章

 

随机推荐