nbs溴代反应机理理问题不懂这个为什么是FC反应

突然发现课件上人名反应太多了,但求大神指点 1.1
1.Finkelstein【芬克尔斯坦】 卤素交换反应(SN2,这也算)2.Williamson【威廉姆逊】合成法(卤代烃和醇合成醚)3.Diels-Alder【狄尔斯-阿尔德】反应(双烯体的HOMO,亲双烯体的LUMO,可逆,次级轨道,邻对位产物为主)4.Friedel-Crafts烷基化(亲电取代,多取代,可逆有歧化,重排,苯环上有强吸电子基团不反应)5.FC 【付克】酰基化(不可逆,仅一取代,☆催化剂用量,苯环上有强吸电子基团不反应,注意氨基)☆★6.Birch【伯奇】还原(机理,苯环,吸电子,给电子基团对产物结构的影响)&☆7.Gattermann-Koch【加特曼-科赫】芳基甲酰化(CO+HCl)8.Gattermann甲酰化反应(氰化物与酸,也用氰化锌+HCl)9.Hoesch【赫施】酰化反应(RCN代替Gattermann中的氰根)☆10.Reimer-Tiemann【瑞穆尔-悌曼】邻甲酰基酚合成反应(酚,氯仿强碱,二氯卡宾)11.Vilsmeier-Haack【维尔斯迈尔-哈克】反应(弱亲电试剂进攻,苯环最好连有给电子基团)(这些甲酰化有什么区别??)&12.Smiles重排(亲核取代,加成消除)()13.Oppenauer【欧芬脑尔】氧化(烷氧基铝催化仲醇氧化反应,温和,六元环过渡态,氢负转移)☆14.Meerwein-Ponndorf-Verley【梅尔魏因-庞多夫-维尔来、MPV】还原(上面那个反应的逆反应)★☆15.频哪醇【Pinacol】重排、半频哪醇重排(频哪醇制备方法,反式,构型翻转,迁移顺序,碳正离子)☆16.Tiffeneau-Demyanov【蒂弗诺-杰米扬诺夫】重排(可用扩环,重排基团和断裂的C-N反叠,氨基、亚硝酸)17.Ritter【里特】反应(烯烃,强酸,腈,N-烷基酰胺)☆18.Claisen【克莱森】芳醚重排([3,3]周环反应,邻位被占&&,)★19.Cope【科普】重排(除底物外同上)20.von Richter【冯李希特】重排(硝基,氰根,邻位,产物羧酸)(这怎不会考吧,那机理)21.Kolbe-Schmitt【科尔贝-施密特】水杨酸合成反应(酚钠+二氧化碳,高压)&★22.Beckmann【贝克曼】重排(酮肟,硫酸或五氯化磷,醛肟不易反应,脂肪酮选择性不好,基团对位迁移)☆23.卤仿反应(鉴别,制备,特定结构醇也会反应)☆24.Claisen-Schmidt【克莱森-施密特】反应(甲基酮,芳醛缩合,α,β不饱和酮)25.Perkin【珀金】反应(芳醛,含α-H的脂肪族酸酐在相应羧酸盐存在下反应,α,β不饱和酸)☆26.Mannich【曼尼希】反应(含α-H的醛酮,甲醛,氨(有N-H),酸性条件下,缩合)☆27.Wittig【维蒂希】反应(磷叶立德,未稳定,半稳定,稳定,不会1,4加成[硫叶立德会])★28.Arbuzov-Michaelis【阿尔布佐夫-迈克尔】重排(Arbuzov合成)& & & & & & & 28.5.Horner-Wadsworth-Emmous【霍纳尔-沃兹沃思-埃蒙斯】反应
分享这篇日志的人也喜欢
宝宝们我来晚了继续通宵
台灣新主播求守護?
今天村姑style丝带儿?
热门日志推荐
人人最热标签
北京千橡网景科技发展有限公司:
文网文[号··京公网安备号·甲测资字
文化部监督电子邮箱:wlwh@··
文明办网文明上网举报电话: 举报邮箱:&&&&&&&&&&&&
请输入手机号,完成注册
请输入验证码
密码必须由6-20个字符组成
下载人人客户端
品评校花校草,体验校园广场TCR+FC型SVC原理及应用-TCR+FC,SVC原理
我的图书馆
TCR+FC型SVC原理及应用-TCR+FC,SVC原理
TCR+FC型SVC原理及应用/10:04&&来源:安阳钢铁集团有限责任公司 &作者:朱金奇
&&&&1 引言
&&&&随着国民经济的发展和现代化技术的进步,电力网负荷急剧增大,对电网感性无功要求也与日惧增。特别是如可逆式大型轧钢机、炼钢电弧炉等冲击负荷、非线性负荷容量的不断增加,加上普遍应用的电力电子和微电技术,使得电力网发生电压波形畸变,电压波动闪变和三相不平衡等,产生电能质量降低,电网功率因数降低,网络损耗增加等不良影响。近年发展起来的静止型无功(staticvarcompensator,下简称svc)是一种快速调节无功功率的装置,已成功的应于冶金、采矿和电气化铁路等冲击性负荷的补偿上。而晶闸管控制型(称tcr型)svc用晶闸管控制线性电抗器实现较快、连续的无功功率调节,由于它具有反应时间快(5~20ms),运行可靠,无级补偿、分相调节,能平衡有功,适用范围广和价格便宜等优点。tcr装置还能实现分相控制,有较好的抑制不对称负荷的能力,因而其应用最广。尤其是在冶金行业中,使用例子也最多。
&&&&2 tcr+fc型svc系统的组成及控制原理
&&&&2.1系统组成
&&&&tcr+fc型svc系统的组成如图1所示,一般由tcr、滤波器(fc)及控制系统组成。通过控制与电抗器串联的两个反并联晶闸的导通角,既可以向系统输送感性无功电流,又可以向系统输送容性无功电流。该响应时间快(小于半周波),灵活性大,而且可以连续调节无功输出,缺点是产生谐波,但加上滤波装置则可以克服。&&&&
图1tcr+fc型svc系统的组成
&2.2可调控电抗器相(tcr)产生连续变化感性无功的基本原理
&&&&如图2(a)所示,u为交流电压。th1、th2为两个反并联晶闸管,控制这两个晶闸管在一定范围内导通,则可控制电抗器流过的电流i,i和u的基本波形如图2(b)所示。&&&&
&&&&图2可调控电抗器相(tcr)产生连续变化感性无功的基本原理α为th1和th2的触发角,则有i=(cosα-cosωt)i的基波电流有效值为:i=(2π-2α+sin2α)式中:v为相电压有效值;ωl为电抗器的基波电抗(ω)。
&&&&因此,可以通过控制电抗器l上串联的两只反并联晶闸管的触发角α来控制电抗器吸收的无功功率的值。
&&&&2.3恒无功控制、保证功率因数及电压波动
&&&&控制系统的基本组成如图3所示。svc连接到系统中,提供固定容性无功功率qc,通过具有完好线性特征的补偿电抗器的电流决定了从补偿电抗器输出的感性无功值qtcr,感性无功与容性无功相抵消,只要qn(系统)=qv(负载)-qc+qtcr=恒定值(或0),功率因数就能保持恒定,电压几乎不波动。
&&&&图3控制系统的基本组成最重要的是精确控制晶闸管触发,获得所需的电抗器的电流。根据采集的进线电流及母线电压经乘法器后得出要补偿的无功功率,计算机发出触发脉冲,光纤传输到脉冲放大单元,经放大后触发晶闸管,得到所补偿的无功功率。
2.4无源滤波器(fc)
&&&&无源滤波器(filtercompensatior,简称fc),是现阶段最常见、最实用、也是有效的抑制高次谐波的措施。由电容器、电抗器,有时还包括电阻等无源元件组成。其基本原理是利用电路谐振的特点,对某次谐波或以上谐波形成低阻抗通路,以达到抑制高次谐波和无功补偿的作用。分为单调谐波滤波器,双调谐波滤波器和高通滤波器(减幅滤波器)等几种。
&&&&高通滤波器(减幅滤波器)又可分为一阶、二阶、三阶和c型。如图4所示:无源滤波器(fc)在设计时应注意的问题:&
图4高通滤波器
&&&&(1)滤波器发出的无功应满足补偿功率因数,抑制电压波动及闪变的要求;
&&&&(2)选取的滤波电容器的额定电压应保证滤波器的安全可靠运行;
&&&&(3)滤波器的分组应满足滤除谐波电流的要求;
&&&&(4)滤波器设计时应进行充分的计算机仿真及数据库优选,经多个方案比较,选择最佳方案;
&&&&(5)对选定的滤波器应进行滤波器各种运行方式下的计算机仿真,避免与系统发生谐振;
&&&&(6)对滤波器的安全运行应进行仔细校验。
&&&&3 tcr+fc型svc的应用举例
&&&&2005年由辽宁荣信电力电子股份有限公司为安阳钢厂新上了一套tcr和fc补偿容量分别18mvar和17mvar的tcr+fc型svc。该工程负荷主要为两台粗轧机(2×4200kw同步)。经过晶闸管变流调速装置进行调速,过载倍数为2倍。这些设备挂接在6kv母线上,系统最小短路容量为238mva。上辊定子整流容量为3000kva,连接组别为d/d03台,下辊定子整流变压器容量为3000kva,连接组别为d/y113台。由于整流变压器采用了d,y接法,故可以消除3的整数倍次的高次谐波,从而使注入电网的谐波电流只有5、7、11……等谐波。经计算粗轧机最大无功冲击为15120kvar,6kv母线最小短路容量为238mva。电压波动国标允许值为2%。所以允许无功波动为:
&&&&△q=sdmin×△u%=238×2%=4.76mva
&&&&补偿容量为:
&&&&qmax-△q=15.12-4.76=10.36mvar。
&&&&为留有余量,取11mvar。
&&&&总计算负荷为19407kva,平均功率因数从0.75提高到0.95所需要补偿的无功为6.45mvar。
&&&&总上所述,按电压波动选择容量,tcr及fc的容量均为11mvar。经仿真计算,滤波器总容量:15mvar,基波补偿容量为11mvar,分为h3、h5、h7三个通道。h3次滤波器安装容量为4.2mvar,补偿容量为3.21h5次滤波器安装容量为6mvar,补偿容量为4.25h7次滤波器安装容量为5.4mvar,补偿容量为3.54主接线系统图如图5所示。&&&&&
图5主接线系统图
&&&&4 结束语
&&&&目前,tcr+fc型svc已在冶金行业得到了广泛的应用。也取得了显著的效果。已经形成了成熟的技术方案。另外,svc还有晶闸管投切电容器(tsc)型、饱和电抗器型(sr型)、晶闸管控制高阻抗变压器型(tct)等形式。对svc的发展研究主要集中在控制策略上,如模糊控制、人工神经网络和专家系统控制系统也被引入svc控制系统,使svc系统的性能更加提高。而且随着电力电子技术的飞速发展,出现了以大功率可关断晶闸管(gto)器件代替普通的晶闸管构成的静止无功发生器(staticvargenerator,简称svg)。由于其具有响应速度快,吸收无功连续、产生的高次谐波量小、调节范围广、损耗与噪声小等特点,使其成为未来无功补偿技术的发展方向。
TA的最新馆藏
喜欢该文的人也喜欢[转载]过渡态、反应路径的计算方法及相关问题&II
此文来自牛人Sobereva百度空间
,因网络原因不能转载,只好Ctrl&c
v.若有兴趣,请直接看考上述空间。特此感谢!
-----------------------------------------------------------------
3.过渡态相关问题
3.1 无过渡态的反应途径(barrierless reaction pathways)
并非所有反应途径都需要越过势垒,这类反应在很低的温度下就能发生,盲目找它们的过渡态是徒劳的。常见的包括自由基结合,比如甲基自由基结合为乙烷;自由基向烯烃加成,比如甲基自由基向乙烯加成成为丙基自由基;气相离子向中性分子加成,比如叔碳阳离子向丙烯加成。等等。
3.2 Hammond-Leffler假设
过渡态在结构上一般会偏向反应物或者产物结构一边。Hammond-Leffler假设对预测过渡态结构往哪个方向偏是很有用的,意思是反应过程中,如果两个结构的能量差异不大,则它们的构型差异也不大。由此可知对于放热反应,因为过渡态能量与反应物差异小,与产物差异大,故过渡态结构更偏向反应物,相反,吸热反应的过渡态结构更偏向产物。所以初猜过渡态结构应考虑这一问题。
3.2 对称性问题
如果已经明确地知道过渡态是什么对称性,而且对称性高于平衡态对称性,且可以确信在这个高对称性下过渡态是能量最低点,则可以强行限制到这个对称性之后进行几何优化,几何优化算法比寻找过渡态算法方法更可靠。比如F+CH3F--&FCH3+F这个SN2反应,过渡态就是伞形翻转的一刻,恰为高对称性的D3h点群,而反应路径上的其它结构对称性都比它低,所以在D3h点群条件下优化,得到的能量最低点就是过渡态。
如果过渡态对称性不确定,则找过渡态计算的时候不宜设任何对称性,否则若默认保持了平衡态下的对称性,得到的此对称下的过渡态并不是真正的过渡态,容易得到二阶或高阶鞍点。
3.3 溶剂效应
计算凝聚态条件下过渡态的性质,必须考虑溶剂效应,它明显改变了势能面。一般对过渡态的结构影响较小,但对能量影响很大。有时溶剂效应也会改变反应途径,或产生气相条件下没有的势垒。溶剂条件下,上述寻找过渡态的方法依然适用。应注意涉及到与溶剂产生氢键等强相互作用的情况,隐式溶剂模型是不适合的,需要用显式溶剂考察它对过渡态的影响,即在输入文件中明确表达出溶剂分子。
3.4 计算过渡态的建议流程
直接用高水平方法计算过渡态往往比较花时间,可以使用逐渐提高方法等级的方法加速这一过程,一般建议是:
1 执行低水平的计算找过渡态,如半经验。
2 将第1步得到的过渡态作为初猜,用高级别的方法找过渡态。
在相同水平下对上一步找到的过渡态做振动分析,检验是否仅有一个虚频,以及观看其振动模式的动画来考察振动方向是否连接反应物与产物结构。有必要时可以做IRC进一步检验。
4 为获得更精确的过渡态能量,可使用更高等级方法比如含电子相关的方法计算能量。
4.内禀反应坐标(intrinsic reaction coordinate,IRC)
MEP指的是势能面上,由一个点到达另一个点的能量最低的路径,满足最小作用原理。若质量权重坐标下的MEP连接的是反应物、过渡结构和产物,则称为IRC。所谓质权坐标在笛卡儿坐标下即r(i,x)=sqrt(m(i))*R(i,x),m(i)为i原子质量,R(i,x)为i原子原始x方向坐标,同样有r(i,y)、r(i,z)。IRC描述了原子核运动速度为无限小时,质权坐标下由过渡态沿着势能负梯度方向行进的路径(最陡下降路径),其中每一点的负梯度方向就是此处核的运动方向,在垂直于路径方向上是能量极小点。注意质量权重和非权重坐标下的路径是不一样的。
IRC可看作0K时的实际在化学反应中原子核所走的路径,温度较低时IRC也是一个很好的近似。但是当温度较高,即核动能较大时,实际反应路径将明显偏离IRC,而趋于沿最短路径变化,即便经历的是势能面上能量较高的的路径,这时就需要以动力学计算的平均轨迹来表征反应路径。
5.1 最陡下降法(Steepest descent)
最简单的获得IRC的方法就是固定步长的最陡下降法,由过渡态位置开始,每步沿着当前梯度方向行进一定距离直到反应物/产物位置,也称Euler法。由于最陡下降法及下文的IMK、GS等方法第一步需要梯度,而过渡态位置梯度为0,所以第一步移动的方向沿着虚频方向。最陡下降方法与IRC的本质相符,但是此法实际得到的路径是一条在真实IRC附近反复震荡的曲折路径,而非应有的平滑路径,对IRC描述不够精确。虽然可以通过更小的步长得以一定程度的解决,但是太花时间,对于复杂的反应机理,需要更多的点。也可以通过RK4(四阶Runga-Kutta)来走步,比上面的方法更稳定、准确,但每步要需要算四个梯度,比较费时。
5.2 IMK方法(Ishida-Morokuma-Kormornicki)
它是最陡下降法的改进,解决其震荡问题。首先计算起始点X(k)的梯度g(k),获得辅助点X'(k+1)=X(k)-g(k)*s,其中s为可调参数。然后计算此点梯度g'(k+1),在g(k)与-g'(k+1)方向的平分线上(红线所示)进行线搜索,所得能量最小点即为X(k+1),之后再将X(k+1)作为上述步骤的X(k)重复进行。整个过程类似先做最陡下降法,然后做校正。此方法仍然需要相对较小的步长,获得较精确IRC所需计算的点数较多。
<img src="/blog7style/images/common/sg_trans.gif" real_src ="http://ojz2fg./y1pDn53wEnmujMt0hnKXLvlru_GsTPl9gsAXHPga2SlcWwCy4iF0Dkw0WOX6CZupVrDvQvD_1gA18o0ig6siFT2vDC314RJMLl_/IMK.GIF" WIDTH="471" HEIGHT="372"
ALT="[转载]过渡态、反应路径的计算方法及相关问题&II"
TITLE="[转载]过渡态、反应路径的计算方法及相关问题&II" />
[图12]IMK方法示意图
Schmidt,Gordon,Dupuis改进了IMK的三个细节,使之更有效率、更稳定。(1)将X'(k+1)的确定方式改为了X(k)-g(k)/|g(k)|*s,即每一步在负梯度方向上行进固定的s距离,与梯度大小不再有关。(2)线搜索步只需在平分线上额外计算一个点的能量即可,这个点和X'(k+1)点的能量以及g'(k+1)在此平分线上的投影三个条件作联立方程即可解出曲线方程,减少了计算量。IMK原始方法则需要在平分线上额外计算两个点的能量与X'(k+1)的能量一起拟和曲线方程。(3)第一步在过渡态位置的移动距离Δq如此确定:ΔE=k*(Δq^2)/2,k为虚频对应的力常数,ΔE为降低能量的期望值(一般为0.0005
hartree),这样可避免在虚频很大的鞍点处第一步位移使能量降低过多。
5.3 M&ller-Brown方法
这是通过球形限制性优化找IRC的方法。首先将过渡态和能量极小点位置定义为P1和P2,由P1开始步进,当前步结构以Q(n)表示。每一步,在相距Q(n)为r距离的超球面上用simplex法优化获得能量极小点Q'(图中绿点),优化的起始点是Q(n-1)Q(n)与Q(n)P2方向的平分线b上距Q(n)为r距离的位置S(红点)。若Q(n)Q'与Q(n)P2的夹角较小,则Q'可当作是下一步位置Q(n+1)。如此反复,直到符合停止标准,比如下一步能量比当前更高(已走过头了)、与P2距离已很近(如小于1.2r)、或者与P2方向偏离太大(P1与P2点通过此法无法找到IRC)。最终所得到全部结构点依次相连即为近似的IRC,减小步长r值可使结果更贴近实际IRC。基于此方法也可以用于寻找过渡态,先将反应物和产物作为P1和P2,将二者距离的约2/3作为r,由其中一点在P1-P2连线上相距其r位置为初始位置进行球形优化得到O点,在O与P1、O与P2上也如此获得P1'与P2',根据P1、P1'、O、P2'、P2的能量及之间距离信息以一定规则确定其中哪两个点作为下一步的P1和P2,确定新的P1和P2后重复上述步骤,直至P1与P2十分接近,即是过渡态。此方法计算IRC可以步长可设得稍大,第一步不需要费时的Hessian矩阵确定移动方向,缺点是获得的路径曲率容易有问题,对于曲率较大的反应路径需要减小步长。
<img src="/blog7style/images/common/sg_trans.gif" real_src ="http://ojz2fg./y1psb84zPUvQv7GeuImyRQt7zWa-27YTrsqU_QVzOSfokuvAM5uY7Aad6wX0U39XCDywxHx5JdvLOEL31zZFbSAJd4-khrLQvA8/Muller-Brown-finding%20MEP.GIF" WIDTH="512" HEIGHT="297"
ALT="[转载]过渡态、反应路径的计算方法及相关问题&II"
TITLE="[转载]过渡态、反应路径的计算方法及相关问题&II" />
[图13]M&ller-Brown方法示意图
5.4 GS(Gonzalez-Schlegel)方法
这是目前很常用,也是Gaussian使用的方法,见图14。首先计算起始点X(k)的梯度,沿其负方向行进s/2距离得到X'(k+1)点作为辅助点。在距X'(k+1)点距离为s/2的超球面上做限制性能量最小化,找到下一个点X(k+1)。因为这个点的负梯度(黑色箭头)在弧方向上分量为0,故垂直于弧,即其梯度方向在X'(k+1)到X(k+1)的直线上。这必然可以得到一段用于描述IRC的圆弧(虚线),它通过X(k)与X(K+1)点,且在此二点处圆弧的切线等于它们的梯度方向,这与IRC的特点一致,这段圆弧可以较好地(实线)。之后再将X(k+1)作为上述步骤的X(k)重复进行。
GS方法对IRC描述得比较精确,在研究反应过程等问题中,由于对中间体结构精度有要求,GS是很好的选择,而且用大步长可以得到与小步长相近的结果,优于IMK、M&ller-Brown等方法。若只想得到与过渡态相连的反应物和产物结构,或者粗略验证预期的反应路径,对IRC精度要求不高,使用最陡下降法往往效率更高,尽管GS可以用更大步长,但每步更花时间。
<img src="/blog7style/images/common/sg_trans.gif" real_src ="http://ojz2fg./y1pYVrO972J8P4rX6zDHhqpu1nDxsh6L_LnfKd6qwJwQ6QToUrkYtHISgUFsWGugAr-7lR54vyxoJjzclnG3_f63r6a2-gWJRwP/GS.GIF" WIDTH="600" HEIGHT="414"
ALT="[转载]过渡态、反应路径的计算方法及相关问题&II"
TITLE="[转载]过渡态、反应路径的计算方法及相关问题&II" />
[图14]GS方法示意图
除上述外,IRC也可以通过已提及的EF、最缓上升法、球形优化等方法得到,它们的好处是不需要事先知道过渡态的结构。赝坐标法除了简单的反应以外,只能得到近似的IRC,由于结构的较小偏差会带来能量的较大变化,容易引入滞后效应,所以这样得到的势能曲线难以说明问题。
6. chain-of-states方法
这类方法主要好处是只需要提供反应物和产物结构就能得到准确的反应路径和过渡态。首先在二者结构之间以类似LST的方式线性、均匀地插入一批新的结构(使用内坐标更为适宜),一般为5~40个,每个结构就是势能面上的一个点(称为image),并将相邻的点以某种势函数相连,这样它们在势能面上就如同组成了一条链子。对这些点在某些限制条件下优化后,在势能面上的分布描述的就是MEP,能量最高的结构就是近似的过渡态位置。
6.1 Drag method方法
这个方法最简单,并不是严格的chain-of-states方法,因为每个结构点是独立的。插入的结构所代表的点均匀分布在图8所示的短虚线上,也可以在过渡态附近位置增加点的密度。每个点都在垂直于短虚线的超平面上优化,在图中就是指平行于长虚线方向优化。这种方法一般是奏效的,但也很容易失效,图8就是一例,优化后点的分布近似于从产物和反应物用最缓上升法得到的路径(黑色粗曲线),不仅反应路径错误,而且两段不连接,与黑色小点所示的真实MEP相距甚远(黑色点是用下文的NEB方法得到的)。目前基本不使用此方法。
6.2 PEB方法(plain elastic band)
这是下述Chain-of-state方法的基本形式。也是在反应物到产物之间插入一系列结构,共插入P-1个,反应物编号为0,产编号物为P。不同的是优化不是对每个点孤立地优化,而是优化一个函数,每一步所有点一起运动。下文用∑[i=1,P]X(i)符号代表由X(1)开始加和直到X(P)。PEB函数是这样的:S(R(1),R(2)...R(P-1))=∑[i=1,P-1]V(R(i))
+ ∑[i=1,P]( k/2*(R(i)-R(i-1))^2
)。其中R(i)代表第i个点的势能面上的坐标,V(R(i))是R(i)点的能量,k代表力常数。优化过程中反应物R(0)和产物R(P)结构保持不变,优化此函数相当于对一个N*(P-2)个原子的整体进行优化,N为体系原子数。
优化过程中,式中的第一项目的是让每个点尽量向着能量极小的位置移动。第二项相当于将相邻点之间用自然长度为0、力常数为k的弹簧势连了起来,目的是保持优化中相邻点之间距离均衡,避免过大。当只有第一项的时候,函数优化后结构点都会跑到作为能量极小点的反应物和产物位置上去而无法描述MEP,这时必然会有一对儿相邻结构点距离很大。当第二项出现后,由于此种情况下弹簧势能很高,在优化中不可能出现,从而避免了这个问题。drag
method法在图8中失败的例子中,也有一对儿相邻结构点距离太远,所以也不会在PEB方法中出现。简单来说,PEB方法就是保持相邻结构点的间距尽量小的情况下,优化每个结构点位置。可以近似比喻成在势能面的模型上,将一串以弹簧相连的珠子,一边挂在反应物位置,另一边挂在产物位置,拉直之后松手,这串珠子受重力作用在模型上滚动,停下来后其形状可当作MEP,最高的位置近似为过渡态。
但是PEB方法的结果并不能很好描述MEP。图15描述的是常见的A、B、C三原子反应的LEPS势能面,B可与A或C成键,黑色弧线为NEB方法得到的较真实的MEP。左图中,在过渡态附近PEB的结构点没有贴近MEP,得到的过渡态能量过高,称为corner-cutting问题。这是因为每点间的弹簧势使这串珠子僵硬、不易弯曲,由图15右图可见,R(i)朝R(i-1)与R(i+1)方向都会受到弹簧拉力,其合力牵引R(i),使R(i-1)、R(i)、R(i+1)的弧度有减小趋势。如果将弹簧力常数减小以减弱其效果,就会出现图15中间的情况,虽然结构点贴近了MEP,但相邻点间距没有得到保持,过渡态附近解析度很低,错过了真实过渡态,若以能量最高点作为过渡态则能量偏低,这称为sliding-down问题。可见弹簧力常数k的设定对PEB结果有很大影响,为权衡这两个问题只能取折中的k,但结果仍不准确。
<img src="/blog7style/images/common/sg_trans.gif" real_src ="http://ojz2fg./y1pb5DEY47rY07I17a-7uK3_WDtPvoFV7AcC56IB-xwYJxPhpHJV5RHRNkdn18YsTkhfuDAUha65LQTrPCr8g17_0lrmNbop9oP/LEPS.GIF" WIDTH="600" HEIGHT="241"
ALT="[转载]过渡态、反应路径的计算方法及相关问题&II"
TITLE="[转载]过渡态、反应路径的计算方法及相关问题&II" />
[图15]LEPS势能面上不同k值的PEB结果
6.3 Elber-Karplus方法
与PEB函数定义相似。第一项定义为1/L*∑[i=1,P-1]( V(R(i))*d(i,i-1)
),其中L为链子由0点到P-1点的总长,d(i,i+1)为R(i)与R(i+1)的距离,此项可视为所有插入点总能量除以点数,即插入点的平均能量。第二项为γ*∑[i=1,P](d(i,i-1)-&d&)^2,其中&d&代表相邻点的平均距离,是所有d(i,j)的RMS。此项相当于将弹簧自然长度设为了当前各个弹簧长度的平均值,由γ参数控制d(i,j)在平均值上下允许的波动的范围。此方法最初被用于研究蛋白质体系的构象变化。
6.4 SPW方法(Self-Penalty Walk)
在Elber-Karplus方法的基础上增加了第三项互斥项,∑[i=0,P-1]∑[i=j+1,P-1]U(ij),其中U(ij)=ρ*exp(-d(i,j)/(λ*&d&)),&d&定义同上。此项相当于全部点之间的“非键作用能U(ij)”之和,不再仅仅是相邻点之间才有限制势。任何点之间靠近都会造成能量升高,可以避免Elber-Karplus方法中出现的在能量极小点处结构点聚集、路径自身交错的问题,能够使路径充分地展开,确保过渡态区域有充足的采样点。式中ρ和λ都是可调参数来设定权重。此外相对与Elber-Karplus方法还考虑了笛卡儿坐标下投影掉整体运动的问题。
6.5 LUP方法(Locally Updated planes)
特点是优化过程中,只允许每个结构点R(i)在垂直于R(i-1)R(i+1)向量的超平面上运动。由于每步优化后R(i-1)与R(i+1)连线方向也会变化,故每隔一定步数重新计算这些向量,重新确定每个点允许移动的超平面。但是LUP缺点是结构点之间没有以上述弹簧势函数相连来保持间隔,容易造成结构点在路径上分布不均匀,甚至不连续,还可能逐渐收敛至两端的极小点。
6.6 NEB方法(Nudged Elastic Band)
NEB方法集合了LUP与PEB方法的优点,其函数形式基于PEB。从PEB方法的讨论可以看出,弹簧势是必须的,它平行于路径切线(R(i)-R(i-1)与R(i+1)-R(i)矢量和的方向)的分量保证结构点均匀分布在MEP上来描述它;但其垂直于路径的分量造成的弊端也很明显,它改变了这个方向的实际的势能面,优化后得到的MEP'就与真实的MEP发生了偏差,造成corner-cutting问题。解决这个问题很简单,在NEB中称为nudge过程,即每个点在平行于路径切线上的受力只等于弹簧力在这个方向分量,每个点在垂直于路径切线方向的受力只等于势能力在此方向上分量。这样弹簧力垂直于路径的分量就被投影掉了,而有用的平行于路径的分量完全保留;势能力在路径方向上的分量也不会再对结构点分布的均匀性产生影响,被保留的它在垂直于路径上的分量将会引导结构点地正确移动。这样优化收敛后结构点就能正确描述真实的MEP,矛盾得到解决。弹簧力常数的设定也比较随意,不会再对结果产生明显影响。但是当平行于路径方向能量变化较快,垂直方向回复力较小的情况,NEB得到的路径容易出现曲折,收敛也较慢,解决这一问题可以引入开关函数,即某点与两个相邻点之间形成的夹角越小,此点就引入更多的弹簧势垂直于路径的分量,使路径不易弯曲而变得光滑,但也会带来一定corner-cutting问题。也可以通过将路径切线定义为每个点指向能量更高的相邻点的方向来解决。
6.7 DNEB方法(Double Nudged Elastic Band)
弹簧势垂直于路径的分量坏处是造成corner-cutting问题,好处是避免路径卷曲。更具体来说,前者是由于它平行于势能梯度方向的那个分量造成的,若只将这个分量投影掉,就可避免corner-cutting问题,而其余分量的力F(DNEB)仍可以避免路径卷曲,这便是DNEB的主要思想。故DNEB与NEB的不同点就是DNEB保留了弹簧势垂直于路径的分量其中的垂直于势能梯度的分量。
DNEB的这个设定却导致结构点不能精确收敛到MEP上。正确的MEP上的点在垂直于路径方向上受势能力一定为0,但是当用了DNEB方法后,若其中某一点处路径是弯曲的,即弹簧力在垂直于路径方向上有分量F',而且此点势能梯度方向不垂直于此点处路径的切线,即F'不会被完全投影掉,F'力的分量F(DNEB)将继续带着这个点移动,也就是说结构点就不在正确的MEP上了。只有当结构点所处路径恰为直线,即F'为0则不会有此问题。为了解决此问题有人将开关函数加入到DNEB,称为swDNEB,当结果越接近收敛,即垂直于路径的势能力越小的时候,F(DNEB)也越小,以免它使结构点偏离正确MEP。一些研究表明DNEB和swDNEB相比NEB在收敛性(结构点受力最大值随步数降低速度)方面并没有明显提升,DNEB难以收敛到较高精度以内,容易一直震荡。
6.8 String方法
与NEB对力的投影定义一致,但点之间没有弹簧势连接,保持点的间距的方法是每步优化后使这些点在路径上平均分布。
6.9 Simplified String方法
String中计算每个点的切线并投影掉势能力平行于路径的分量的过程也去掉了,所有点之间用三次样条插值来表述路径,每一个点根据实际势能力运动后,在路径上重新均匀分布。优化方法最好结合RK4方法。NEB在点数较小的情况下比Simplified
String方法能在更短时间内收敛到更高精度,但点数较多情况下则Simplified String更占优势。
6.10 寻找过渡态的chain-of-state方法
除非势能面对称且结构点数目为奇数,否则不会有结构点恰好落在过渡态。以能量最高的点作为过渡态只是近似的,为了更好地描述过渡态,可以增加结构点数,或者增加局部弹簧力常数,使过渡态附近点更密。根据已得到的点的能量,通过插值方法估算能量最高点是另一个办法。近似的过渡态也可以作为QN法的初猜寻找准确的过渡态。
6.10.1 CI-NEB方法
NEB与String等方法都可以结合Climbing
Image方法,它专门考虑到了定位过渡态问题。CI-NEB与NEB的关键区别是能量最高的点受力的定义,在CI-NEB中这个点不会受到相邻点的弹簧力,避免位置被拉离过渡态,而且将此点平行于路径方向的势能力分量的符号反转,促使此点沿着路径往能量升高的方向上爬到过渡态。这个方法只需要很少的点,比如包含初、末态总共5个甚至3个点就能准确定位过渡态,是最有效率的寻找过渡态的方法之一。如果还需要精确描述MEP,可以在此过渡态上使用Stepwise
descent方法、最陡下降法、RK4等方法沿势能面下坡走出MEP,整个过程比直接使用很多点的NEB方法能在更短时间内得到更准确的MEP。
6.10.2 ANEBA方法(adaptive nudged elastic band approach)
这个方法也是基于NEB,专用来快速寻找过渡态。一般想得到高精度的过渡态区域,NEB的链子上必须包含很多点,耗费计算时间。而ANEBA方法中链子两端的位置不是固定的,而是不断地将它们移动到离过渡态更近的位置,仅用很少几个点的链子就可以达到同样的精度。具体来说,设链子两端的点分别叫A点和B点(对于第一步就是反应物和产物位置),先照常做NEB,收敛至一定精度后(不需要精度太高),改变A和B的位置为链子中能量最高点相邻的两个点,然后再优化并收敛至一定精度,再如此改变A和B的位置,反复经历这一步骤,最终链子上能量最高点就是精确的过渡态。ANEBA相当于不断增加原先NEB链子的过渡态附近的点数,但实际上点数没有变。有研究表明ANEBA比CI-NEB效率更高,如果结合ANEBA与CI(称CI-ANEBA),即先用ANEBA方法经上述步骤移动几次A、B点,使之聚焦到过渡态附近,再用CI-NEB方法,效率可以进一步提高。
<img src="/blog7style/images/common/sg_trans.gif" real_src ="http://ojz2fg./y1p5pjyreAg9b9PW_7vdmN5Abxmdoq3lIaYg1la-zmUkSiCFAE1E67gVOz-V5GzLbrmSkinCyr6NCaJuJ9yXfaMbPWQMgXC5APi/ANEBA.GIF" WIDTH="415" HEIGHT="506"
ALT="[转载]过渡态、反应路径的计算方法及相关问题&II"
TITLE="[转载]过渡态、反应路径的计算方法及相关问题&II" />
[图16]ANEBA方法示意图
6.11 chain-of-states方法的一些特点
NEB方法的设定只是决定了每一步结构点实际感受到的势能面是怎么构成的,并没有指定优化方法。NEB可以结合一些常见的优化方法,比如最陡下降法、共轭梯度法、quick-min、FIRE、L-BFGS法等(没有线搜索步的全局L-BFGS法效率一般最高),但只能像前述寻找IRC方法一样得到一条路径。实际上很多情况反应的路径不止一条,尤其是势能面复杂的大分子构象转变过程。当NEB结合构象搜索方法,比如分子动力学、蒙特卡罗等方法时,就可以用于寻找多条反应路径。例如有几条反应路径,彼此间都有一定高度的势垒分隔,如果初始给出的路径在第i条附近,优化后只能收敛到第i条路径,若对每个点使用分子动力学方法,设定一定温度,则这些点有机会凭借动能越过势垒到达另外一条路径k附近,随后逐渐降温减小动能,相当于对它们进行最陡下降法优化,就找到了第k条路径,若如此反复多次,有可能找到更多路径。
这类chain-of-states方法的优点还在于易于实现,算法简单,只有能量和其一阶导数是必须要算的,随着体系尺度增大计算量的增加远比基于Hessian矩阵的方法要小。对于大体系储存Hessian并求逆亦是困难的,在某些情况下Hessian矩阵受计算能力制约只能在低水平方法下得到或者无法获得,chain-of-states方法避免了这个问题,很适合用于分子力学研究生物大分子的结构变化路径以及平面波基组下的DFT方法研究固体表面化学反应。此方法也容易并行化,例如可以每个节点负责优化其中一个或几个点,只有计算弹簧力时才需要从另外节点传入相邻结构点坐标,数据通信量小,并行效率高。
6.12 高斯中opt关键字的path=M方法
与chain-of-states方法有一定类似之处,可以在一次计算中获得优化后的过渡态、产物、反应物以及用于描述IRC的中间点结构,总共M个点。此方法须结合QST2或QST3关键字。结合QST2时,除反应物和产物以外剩下的M-2个点在二者冗余内坐标下线性插值产生,结合QST3则是剩下的M-3个点在反应物与过渡态、过渡态与产物之间插值产生。之后迭代的每一步主要分为以下几个步骤:(1)初始输入的反应物、产物通过RFO法向最优构型优化。(2)能量最高的点q(k)(此点在第一步确定)通过EF法向过渡态优化,并设一段圆弧通过q(k-1)、q(k)、q(k+1),此圆弧在q(i)处的切线作为EF方法选择所跟踪的本征向量的引导,类似于STQN步。(3)其余的点执行微迭代步骤(迭代内的迭代),其中包含类似于GS法的球面优化步骤以及调整间距步骤。可参考图14,优化其中任意点q(i)前,首先获得经过q(i-1)、q(i)并与q(i-1)的梯度相切的圆弧或曲线,将其在q(i)处的切线定义为T(i),然后定义一个在q(i)处法线与T(i)平行、经过q(i-1)与q(i)的球面,使q(i)限制在此球面上优化。然后在这些点依次相连的路径上调整这些点的间距至平均,之后重复微迭代直至每一步力和位移都已收敛,或者有任何点位移超过了置信半径。(4)检查力和位移是否都已收敛至标准。这个方法比单独优化反应物、产物、过渡态并计算IRC省时间,而且对于难找的过渡态比STQN法更容易成功。
6.13 CPK方法(Conjugate Peak Refinement)
在某种意义上称为动态的chain-of-states方法。每条链子只含一个可动点,链子数由最初的一条开始不断增加,对MEP的描述也越来越精确。CPK中的第一步类似LST,在连接反应物和产物的直线中找到能量最高点(称为Peak),然后沿着共轭方向优化得到中间点,对中间点与反应物、中间点与产物分别再做上述步骤,先找到最大点再共轭优化,如此反复直到收敛。最后将反应物、产物以及执行CPK过程中所有优化后的点相连,就得到了近似的反应路径。CPK方法所得的反应路径可以经过很多过渡态,很适合寻找一些涉及到复杂结构重排、包含甚至上百个过渡态的构象变化路径,如蛋白质局部折叠/去折叠过程。CPK方法缺点是实现起来相对复杂,定位过渡态较为费时。
<img src="/blog7style/images/common/sg_trans.gif" real_src ="http://ojz2fg./y1pRXucZ2H41hH-zVAPH4h3HBz88vXq89LsJ1FnV52BxzsnRhYXRmS728KDWO0eHjzWbn1eabt4jTbbeGbw6F7LKE3IfoXKtv_r/CPK.GIF" WIDTH="548" HEIGHT="450"
ALT="[转载]过渡态、反应路径的计算方法及相关问题&II"
TITLE="[转载]过渡态、反应路径的计算方法及相关问题&II" />
以上网友发言只代表其个人观点,不代表新浪网的观点或立场。

我要回帖

更多关于 过敏反应的机理 的文章

 

随机推荐