收敛正项级数收敛的判别方法an大于0,能推出(-1)n次方 an 收敛吗?

我的图书馆
(重定向自)[]级数在中,一个有穷或无穷的的元素的称为级数。序列中的项称作级数的通项。级数的通项可以是、或等常量,也可以是关于其他变量的,不一定是一个。如果级数的通项是常量,则称之为常数项级数,如果级数的通项是函数,则称之为函数项级数。常见的简单有穷数列的级数包括和的级数。有穷数列的级数一般通过的方法就可以求得。如果序列是无穷序列,其和则称为无穷级数,有时也简称为级数。无穷级数有发散和收敛的区别,称为无穷级数的敛散性。判断无穷级数的敛散性是无穷级数研究中的主要工作。无穷级数在收敛时才会有一个和;在一般意义上没有和,但可以用一些别的方式来定义。无穷级数的研究更多的需要的方法来解决。无穷级数一般写作、或者,级数收敛时,其和通常被表示为。目录&&[]&设是一个无穷序列 :,其前n项的和称为的部分和:部分和依次构成另一个无穷序列:这两个序列合称为一个级数,记作或者,其中符号为。对于级数,如果当趋于正无穷大时,sn趋向一个有限的:,那么这个无穷级数就叫做是收敛的,叫做级数的和。如果极限不存在,这个无穷级数就是发散的。收敛的无穷级数存在唯一的一个和s。这时可以定义级数的余项和:。若一个无穷级数收敛,其和为s,则如果每一项乘以一个常数a,得到的级数也收敛,且和等于as。收敛的无穷级数可以逐项相加或相减,如有两个无穷级数:和&,则.级数前面加上有限项或减去有限项不影响其敛散性,如:和&这两个级数的敛散性是一样的。当n趋向无限大时,任何一个收敛级数的通项都趋于0:在一个中,也可以运用的准则来判断级数是否收敛:一个无穷级数收敛的充要条件是,对任意&,总存在,使得任意的,。将一个展开成无穷级数的概念最早来自14世纪的。他首先发展了的概念,对、、无穷级数的有理逼近以及无穷做了研究。他发现了、、等的,还用幂级数计算了&&的值。他的学生继承和发展了他关于级数的工作。17世纪,也开始研究无穷级数,并发表了若干函数的式。1715年,提出了构造一般解析函数的泰勒级数的方法。18世纪时又发展了和的理论。[]14世纪时,已经开始讨论判别无穷级数敛散性的方法。他提出了一些审敛的准则,后来他的学生将其推广。然而在,审查无穷级数是否收敛的研究一般被认为是从19世纪由开始的。他于1812年发表了关于的超几何级数的论文,提出了一些简单的收敛准则,并对余项和以及收敛半径进行了讨论。提出了严格的审敛法的重要性,他证明了两个收敛级数的不一定是收敛的,同时开始研究严格的审敛准则。和各自给出了各种审敛法则。柯西更研究了的幂级数展开。1826年,在他的关于的论文中更正了的若干个结论,并给出了的严格的求和方法,指出了在收敛问题中的重要性。提出的审敛法并不是普遍适用的,只能用于判别某些特定函数的敛散性。同时代的其他数学家,比如(Joseph Ludwig Raabe)的,的(被 DuBois-Reymond和证明对某些函数失效) ,以及、、等人的审敛法也是如此。对普遍的审敛法则的研究由开始,之后的、、等都曾致力于这一领域。普林斯海姆于1889年发表的论文阐述了完整的普适审敛理论。[]1821年,柯西首先开始对的研究,但其中有不少错误和局限。这些错误最早被指出,但首先得出正确结论的是()和。1853年,柯西在注意到阿贝尔的批评后重新开展研究,并得到了与斯托克斯一样的结论。然而,一致连续性的重要性在很长一段时间里没有受到重视。[]几何级数(或等比级数)是指通项为的级数,比如:一般来说,几何级数收敛当且仅当 |z| & 1。[]主条目:调和级数是指通项为&&的级数:它是发散的。[]p-级数是指通项为的级数:对于实数值的p,当p&& 1 时收敛,当p&≤ 1 时发散。这可以由积分比较审敛法得出。函数是在实轴大于1的部分的限制,关于黎曼ζ函数有著名的。[]收敛当且仅当数列bn收敛到某个极限L,并且这时级数的和是b1&-&L。[]主条目:泰勒级数是关于一个函数&在一点&附近取值的级数。泰勒函数由函数在点&的各阶导数值构成,具体形式为:这是一个。如果它在&附近收敛,那么就称函数&在点&上是解析的。[]具有以下形式的级数其中所有的&an&,被称作。交错级数的收敛通常要借助。[]形同的函数项无穷级数称为的幂级数。它的收敛与否和系数有关。[]主条目:任何都可以用和构成的无穷级数来表示,称为傅里叶级数。傅里叶级数是函数项无穷级数,也就是说每项都是一个函数。傅里叶级数在、、信号处理、、、、、等领域都有着广泛的应用。例如,周期为的周期函数可以表示为:其中,,,特别的,[]若通项为实数的无穷级数每一项都大于等于零,则称是一正项级数。如果无穷级数&&是正项级数,则部分和Sn是一个递增数列。由数列极限的判别准则:单调数列必有极限。因此,要么部分和数列Sn有界,这时收敛,,要么部分和数列趋于正无穷,这时级数发散。[]设&&和&&是正项级数。如果存在正实数&M,使得从若干项开始,(也就是说),则当&收敛时,可推出&&也收敛。当&发散时,可推出&&也发散。如果,则当&收敛时,可推出&&也收敛。当&发散时,可推出&&也发散。如果,则&和&同时收敛或发散。比如,我们已知级数:收敛,则级数:也收敛,因为对任意的&n&,。比较判别法的特点是要已知若干级数的敛散性。一般来说,我们可以选择比较简单的级数:作为“标准级数”,依此判断其他函数的敛散性。需要知道的是当&时,&发散,当时,&收敛。[]主条目:在比较判别法中,如果取几何级数为比较的标准级数,可得:设&&是通项大于零的正项级数。并且,则当&时,级数&&收敛。当&时,级数&&发散。当&时,级数&&可能收敛也可能发散。这个判别法也称为比值判别法或比值审敛法。[]主条目:设&&是正项级数。并且,则当&时,级数&&收敛。当&时,级数&&发散。当&时,级数&&可能收敛也可能发散。这个判别法也称为根值判别法或根值审敛法'。[]主条目:具有以下形式的级数其中所有的&an&,被称作。[]主条目:在上述的级数中,如果当 n 趋于无穷时,&&an&的极限存在且等于 0,并且每个&an&小于&an-1&(即, 数列&an&是),那么级数收敛。[]对于通项为任意实数的无穷级数&,将级数&&称为它的绝对值级数。可以证明,如果收敛,那么&&也收敛,这时称&&。如果&&收敛,但是&&发散,则称&&。比如说,级数&&绝对收敛,因为前面已经证明&&收敛。而级数&&是条件收敛的。它自身收敛到&&,但是它的绝对值级数&&是发散的。说明,如果一个无穷级数&&条件收敛,那么对于任意的实数&x&,存在一个正到正整数的&&,使得级数&&收敛到&x&。对于正负无穷大,上述双射也存在。设&为定义在区间 I 上的函数列,则表达式:称为函数项级数,简记为。对函数项级数的主要研究是:确定对哪些 x ,收敛。收敛的话,其和是什么,有什么性质?[]对区间 I 上的每个&,级数&是常数项级数。若&收敛,则称&&是的一个收敛点,&全体收敛点的集合称为它的收敛域。若&发散,则称&&是的一个发散点,&全体发散点的集合称为它的发散域。在其收敛域的每一点上都有定义,因此定义了一个函数,称为的和函数,记为。按照定义,,其中&为函数项级数在&点上的部分和。[]主条目:函数项级数的取值可以在它的收敛域上用和函数定义,但和函数的性质可能会和级数的每一项不同。比如说,当函数项级数&中的每一项&在收敛域上都是时,和函数未必会是连续函数。以下是一个例子:设,也就是说,等等,它们显然都是连续函数(甚至是函数)。这时函数项级数在&点上的部分和。在区间的每一点上,部分和都有极限:当时,当时,于是在区间上,级数&收敛,其和函数为:当时,;。这不是一个连续函数。然而,如果函数项级数能够满足某些更严格的条件的话,可以证明级数的和函数的规则性将会等于每一项函数的规则性,这就是所谓的性质。和的一致收敛性质一样,函数项级数在某个区间内(关于某个)一致收敛的定义是它的部分和函数&在区间上一致收敛到和函数,或者写成可以证明:如果级数&在区间&内一致收敛,并且每个&都是连续函数,那么和函数&在区间&上也是连续函数。进一步的,如果导函数级数的每一项都是&函数(p阶连续可微函数),并且各阶导函数级数在区间&内都一致收敛,那么级数和函数也是&函数,并且:&,。[]函数项级数也有绝对收敛的概念。对于某个给定的区间&和范数,函数项级数&在区间&内绝对收敛,当且仅当常数级数&收敛。绝对收敛的(连续?)函数在每一点都收敛,并且在区间&内一致收敛。[]主条目:形同的函数项无穷级数称为的幂级数。一般只需讨论形同的幂级数。[]根据,它的收敛域是一个关于零对称的,即为(可开可闭)的形式。这个正数 R (可以是无穷大)叫做幂级数的收敛半径。并有定理:设幂级数满足,则:是正实数时,。时,。时,。[]求解幂级数的和函数有时需要利用先对各项积分(或求导)以得到一个方便利用已有公式进行求和的形式,在求和后在对各项求导(或积分)。主条目:渐进级数是用来对某些函数的附近的情况进行逼近的级数。渐进级数一般是发散的,它的部分和趋于无穷大,因此可以很好地逼近一个趋于无穷大的函数。但要注意的是,渐进级数提供的逼近是相对的,即只是比值趋于一致,与函数值之间的误差并不像收敛的级数一样趋于无穷小。一般来说,渐进级数在若干项后便达到最小的,之后的绝对误差一般会增大甚至趋于无穷。主条目:发散级数的部分和没有极限,但是在应用中可以使用比较弱的级数和定义,比如、以及。级数的概念可以在任何的中定义,常用的是在一个(比如实数或复数空间)中。级数理论是的一个分支;它与另一个分支一起作为基础知识和工具出现在其余各分支中。二者共同以极限为基本工具,分别从与连续两个方面,结合起来研究分析学的对象,即变量之间的依赖关系──。外文名series本&&&&质分析学的一个分支作&&&&用研究函数的一个重要工具应&&&&用进行近似计算目录1234567&&89级数:series将数列un的项 u1,u2,…,un,…依次用加号连接起来的。的简称。如:u1+u2+…+un+…,简写为∑un,un称为级数的通项,记Sn=∑un称之为级数的部分和。如果当n→∞时 ,Sn有S,则说级数收敛,并以S为其和,记为∑un=S;否则就说级数发散。级数是研究函数的一个重要,在理论上和实际应用中都处于重要地位,这是因为:一方面能借助级数表示许多常用的非,的解就常用级数表示;另一方面又可将函数表为级数,从而借助级数去研究函数,例如用研究非初等函数,以及进行近似计算等。柯西准则级数的问题是级数理论的基本问题。从级数的概念可知,级数的敛散性是借助于其部分和数列Sm的敛散性来的。因此可从数列收敛的准则得出级数收敛的柯西准则 :∑un收敛&=&任意给定正数ε,必有自然数N,当n&N,对一切自然数 p,有|u[n+1]+u[n+2]+…+u[n+p]|&ε,即充分靠后的任意一段和的可任意小。详细解析如果每一un≥0(或un≤0),则称∑un为正(或负)项级数,与负项级数统称为同号级数。正项级数收敛的充要条件是其部分和序列Sm 有,例如∑1/n!收敛,因为Sm=1+1/2!+1/3!+···+1/m!&1+1+1/2+1/22+···+1/2^(m-1)&3(2^3表示2的3次方)。有无穷多项为正,无穷多项为负的级数称为变号级数,其中最简单的是形如∑[(-1)^(n-1)]*un(un&0)的级数,称之为交错级数。判别这类级数收敛的基本方法是判别法 :若un ≥un+1 ,对每一n∈N成立,并且当n→∞时lim un=0,则收敛。例如∑[(-1)^(n-1)]*(1/n)收敛。对于一般的变号级数如果有∑|un|收敛,则称变号级数。如果只有 ∑un收敛,但是∑|un|发散,则称变号级数。例如∑[(-1)^(n-1)]*(1/n^2)绝对收敛,而∑[(-1)^(n-1)]*(1/n)只是条件收敛。如果级数的每一项依赖于变量x,x 在某I内变化,即un=un(x),x∈I,则∑un(x)称为函数项级数,简称函数级数。若x=x0使数项级数∑un(x0)收敛,就称x0为收敛点,由点组成的集合称为收敛域,若对每一x∈I,级数∑un(x)都收敛,就称I为收敛区间。显然,函数级数在其收敛域内定义了一个函数,称之为和函数S(x),即S(x)=∑un(x)如果满足更强的条件,Sm(x)在收敛域内于S(x)。一类重要的函数级数是形如∑an(x-x0)^n的级数,称之为。它的结构简单 ,收敛域是一个以为中心的区间(不一定包括),并且在一定范围内具有类似的性质,在收敛区间进行逐项和逐项积分等运算。例如幂级数∑(2x)^n/x的收敛区间是[-1/2,1/2],幂级数∑[(x-21)^n]/(n^2)的收敛区间是[1,3],而幂级数∑(x^n)/(n!)在上收敛。还有一类非常常用的级数是。级数理论在中基本变量是一般的连续&x(代表具体的变量如时间t、路程s,质量m等等),取值于这个或那个区间,极限过程也是多种多样的;在级数理论中基本变量就是离散变量n,其值为全体自然数:n=1,2,3,…。这里极限过程只有唯一的一个,即n无限增长,趋向无限:n→∞。这里任一函数u(n)的值u(n)=un自然形成一个序列u1,u2,u3,…,un,…;而这个序列{un}也就完全表达了函数u(n)。一个级数(无穷级数)是由一个序列{un}经过“逐一加下去”的无限过程而产生的和数序列:简记为u1+u2+…+un+…。通常称un为这级数的一般项,sm为其部分和,并常用缩写记号在m无限增长的过程中,如果部分和sm趋向于一个极限s,那么就称s为级数的“和”,并写成级数。这实际上就是如果部分和sm的极限s作为一个有限数而存在,就说级数是收敛的并以s为其和数。否则,就说这级数是发散的,没有和数。所以,按照习惯了的极限观点,一个级数在且只在它收敛时才像一个有限和一样具有一个唯一确定的和数。级数的和数与中的和数的区别只在于被加项的个数是无限的。这是级数概念发展的基本出发点。最早出现在古代的级数是(等比级数)级数,它有部分和因而当且仅当|r|&1时收敛。一个一般的级数,其部分和不一定具有这样简单的结构,这时首先需要直接从级数的项判断级数的和是否存在,即级数是否收敛。然后就需要考虑这级数的和,作为无限项的和,继承了或保存着有限和的哪些性质,或者有限和的某个性质在什么条件下能够传递给级数的和。这两个问题,收敛问题与性质问题,便是级数理论的基本问题。级数收敛级数收敛的原意是它的部分和序列收敛;所以,如果不进一步涉及级数结构的特殊性质,则级数收敛的必要充分条件不外是关于其部分和序列sm的:于是级数的收敛问题,只在一般项是无限小量的前提下,才是值得考虑的问题。一般说来,单纯从数量上看,级数与序列是相互确定的:sm按(1)由un确定;un按恒等式级数由sm确定。但是,在概念上,级数不同于序列:它隐含着无限次加法,意味着施行于序列的一种运算级数这种运算在有效(即收敛)的情形,给出一个“可数无限”的和数,类似于的运算在有效(即可积)的情形给出一个“连续无限”的和数(即积分的值)。正是级数的这种运算特征使它不同于序列而类似于积分,而有这样类似的基本性质:这一切都是在“和数”存在──即级数收敛的前提下来考虑的。一般地,考虑级数理论的基本问题时,总是首先考虑收敛问题,然后考虑性质问题。单调收敛性的最简单形式。代表着收敛性最简单的情形。在这种情形,级数级数的部分和 sm=u1+u2+…+um随着m单调增长,等价于级数的一般项un≥0(因此,有时也称为非负项级数)。于是级数(∑un)收敛等价于部分和(sm)。项越小,部分和就越倾向于,因而正项级数有比较判别法:同样,每项比前项的比值较小,部分和也就增加较少而较倾向于有界,因此正项级数又有比值判别法:事实上,这都在于断定un的大小数量级:级数级数,其中B为有界变量,Л+δ&1。单调当正项级数的项 un单调递减趋于0时, 自然地容易扩充成一个单调的u(x) 使得un=u(n)→0。 这样便可直观地把同无穷积分进行比较而得到积分判别法:而且,一旦这样转到连续变量,就可以利用连续变量的变换于积分而进一步得到指数变换判别法(叶尔夫判别法):由此易见,p 阶级数以及调和级数级数都是在p&1时收敛,在p≤1时发散。运算正项级数在运算过程中很像有限和。它不仅具有一般的性质(5),而且它的项可以无限次交换,其中p(n)指自然数序列的任一排列,级数指对第一象限中坐标为自然数的点的任一排列(成一序列)进行求和(成一级数)。其中p(n)指自然数序列的任一排列,指对中坐标为自然数的点的任一排列(成一序列)进行求和(成一级数)。绝对收敛  收敛性的一种强化形式。交错级数正项级数之外,如果一个级数没有正项,或者只有有限个正项,或者只有有限个负项,则其收敛问题都可以归结到一个正项级数的收敛问题,所以只需考虑一个级数既有无限个正项又有无限个负项的情形。在这种级数中,结构最简单的是逐项相间的级数,叫做交错级数:对此有定理 若一交错级数的项的绝对值单调趋于零,则这级数收敛。显然,一个交错级数在形式上可以看成两个正项级数之差同样,每一个级数在形式上都可以看成两个正项级数(即这级数的“正部分”与“负部分”)之差:不过,这样分解只有当分解成的级数都收敛的前提下才是有意义的,这就导致人们来考虑一个级数逐项取绝对值后所得到的正项级数是否收敛的问题。一个收敛的级数,如果在逐项取绝对值之后仍然收敛,就说它是绝对收敛的;否则就说它是条件收敛的。简单的比较级数就表明,只要∑|un|收敛就足以保证级数收敛;因而分解式(不仅表明∑|un|的收敛隐含着原级数∑un的收敛,而且把原级数表成了两个收敛的正项级数之差。由此易见,绝对收敛级数同正项级数一样,很像有限和,可以任意改变项的顺序以求和,可以无限分配地相乘。但是条件收敛的级数,即收敛而不绝对收敛的级数,决不可以这样。这时式右边成为两个发散(到+∞)的、其项趋于零的、正项级数之差,对此有。一个条件收敛的级数,在其项经过适当的排列之后,可以收敛到一个事先任意指定的数;也可以发散到+∞或-∞;也可以没有任何的和。一致收敛  收敛性与函数连续性结合的最重要的形式。如果级数的每一项依赖于一个连续变量x,un=un(x),x在一个区间α≤x ≤b上变化,这个级数就成为一个函数项级数,简称函数级数,记为这里x的值自然被分成两类C和D,使得当x属于C时级数收敛,当x属于D时级数发散。几何级数∑rn事实上就是一个函数级数,它的收敛范围是一个区间(-1&r&1)。里的代表着一类函数级数,形如称为幂级数。这种级数,作为几何级数的一种推广,其收敛范围C仍然是一个区间(以x=x0为中心,带或不带端点,有限或无限,或退化成一点)。这种级数,当x换成复变量z之后,成为研究的一个基本工具(见)。积分学里的傅里叶级数代表着另一类函数级数,形如称为三角级数。这种级数是研究实变函数的一个重要工具,它们的收敛范围一般很复杂,对它们的研究促使了G.(F.P.)康托尔创建集合的基础理论(见实变函数论、)。一般说来,一个函数级数的和函数,作为一个无限项的和,不是在它的整个收敛集C上,而是只在C的某种带有限制的部分C1上,才像一个有限项的和。下面试从C的某一点x出发来看级数(15)的收敛性。这级数在这一点x处收敛,就是说,它的部分和sm(x)收敛到一个和数s(x),也就是说:对于任意一个级数都有只要m充分大。这个还可能对于C的其他一些点x也成立。如果这个在C的某一部分C1上处处成立,这就意味着sm(x)这个函数在集合C 1上一致地近似于s(x)这个函数,精确度(处处)在级数以内。而如果这在C1上对于每一个级数都成立只要m充分大,那就意味着这一序列函数sm(x),或者就说是函数级数∑un(x)本身,在C1上一致地无限逼近于函数s(x),或者简单地说, sn(x)一致地收敛到函数s(x)。这样,原来的收敛概念,在与函数概念结合之后,就发展成为适合于函数级数的一种收敛概念。一致收敛一个函数级数级数说是在一个集合C1上一致地收敛到它的和函数s(x),是指对于每一个正数级数都存在一个自然数N(不依赖于x),使得当m&N 时对于一切属于C1的x都成立。这时级数的和函数s(x),作为一个无限项的和,便可在整个集合C1上通过特征性质继承有限项和的一些分析性质。逐项积分定理 设函数级数级数在有限闭区间α≤x≤b上一致地收敛。于是,若级数的各项都连续,则级数的和也连续并且可以逐项积分关于逐项微分,没有直接类似的定理(因为一致小的函数rm(x)的可以任意大);但是通过微分与积分的互逆关系()能够把上述定理转变成逐项微分的形式。逐项微分定理设函数级数级数在区间α&x&b内收敛,各项都具有连续的导数。于是,若逐项取导数所得的级数在该区间内一致收敛,则原级数的和也具有连续的导数并且可以逐项微分:级数在逐项取绝对值之后就成为正项级数,显然可以依一致收敛性进行比较,特别是用一个级数进行比较,便有M判别法。 M判别法 设函数级数 级数在一集合C1上受常数级数级数控制:于是,若级数收敛,则级数在C1上一致收敛。函数的展开一个函数级数在其收敛范围内代表一个函数,即它的和:当和函数未给定时,级数是定义这函数的一种方式;当和函数已给定时,级数是揭示这于基本变量的规律的一种方式──函数的级数展开。在创建的初期通过形式处理得到了许多的级数展开,最重要的有但只是到了(约 200年之后)一致收敛概念明确的时候才证实,这种幂级数展开在收敛区间内可以逐项微分和积分并且收敛(区间的)半径r不变(在前三个中 r=1,后三个中r=∞,而第一个当α 为零或正整数时化为多项式因而也有r=∞)。这时人们才严密地证明了,幂级数在其收敛区间内能够完全代表它的和函数参加分析运算。于是可以逐项微分任意多次,所以这幂级数本身就是它的和函数在收敛区间中心处的,因而是唯一的。据此,一个泰勒级数的不一定要单纯通过累次微分级数而可以通过某些幂级数的分析运算来求得。这就使人们能够补充基本展开表(22)中所缺少的相当于tanx的展开,它不能像那样通过逐项积分得到(因为没有现成的幂级数展开作出发点),也不能象其他那样通过直接求累次微分得到(因为微分次数越多计算越复杂)。利用幂级数展开的唯一性便可严密地证明:式中B2n是,确定于展开式至于三角级数展开式的唯一性,则像它的收敛集一样复杂,成了三角级数理论研究的一个基本问题。函数的级数展开具有如下共同的形式:这个形式的级数,作为幂级数的推广,其收敛问题的分析仍旧可以利用N.H.阿贝尔在研究幂级数的收敛问题时所引进的部分求和法。部分求和法设级数,则有恒等式这个方法(类似于)立即给出:① 级数(25)在一个集合 C1上一致收敛的一组充分条件是,级数∑αn收敛而序列vn(x)在C1上一致有界并且处处单调。② 级数(25)在一个集合 C 1上一致收敛的一组充分条件是,级数∑αn有界而序列vn(x)在C1上一致收敛到0并且级数在C1上一致收敛。这两个结果都是莱布尼茨交错级数定理的推广。广义收敛收敛概念的近代发展。在所考虑的问题只需注意基本变量 x充分大的情形,相当于过程x→+∞,这里函数的级数展开就要依级数的幂来进行,而展开的意义在于每增加一项就要有一项的效果(α→0当x→+∞):m=1,2,3,…。这时,在xy坐标平面内,这一序列部分和sm(x)作为函数,其代表y=sm(x)都是原来函数y=?(x)的(直的或曲的),每一个比前一个更切近于曲线y=?(x)。因此,采用H.庞加莱的用语就是,级数级数是一个渐近级数,渐近地代表着函数?(x)。通常把这简记为这样的渐近级数虽然往往是发散的,但仍可以代替它所渐近表示的函数参加四则运算,只要作为除数的级数的不为0;也可以逐项微分,只要函数的导函数?′(x)确实具有渐近展开;还可以逐项积分,只要把形式关系理解为因此渐近级数可以(通过待定系数法)用于求解微分方程。当然,在原来意义下可用于近似计算,例如中的级数虽是发散的却是渐近的(式中的Bn就是式(24)中的伯努利数),只需取前几项就能够算得(准确到小数点后10位的)近似值:lg(1000!)=2567.…。最早的函数的级数展开 在x=-1时给出这个悖论式的等式在级数理论的发展过程中不时激起人们的思索。莱布尼茨认为这应从这个级数的部分和所可能取的值(1,0,1,0,…)的算术平均来理解。L.欧拉认为在涉及级数的分析研究中应坚持函数观点:一个有限的分析表达式的(幂)级数展开应在分析运算中当作该表达式的等价物,因而级数的和就是它所由之而来的分析表达式的值。这些看法启发了人们,对一个级数,甚至它是发散的,是否仍可以考虑它在广义意义下的和。一般说来,就函数的级数展开的特定形式(25)而论,只要它对于的x都成立而又当x→+∞时有且极限值?(+∞)作为函数的值是一有限数,那么就可以说系数级数 级数在依函数序列{vn(x)}的展开中可和到?(+∞),以?(+∞)为广义和,并把这种边值收敛关系简单地记为不过,如果要取定{vn(x)}作为一种广义和的参考系,就应当事前适当地选取函数 vn(x)使得所产生的这种求和法是正规的,即每一个收敛级数∑αn都可和到它原有的和A。这通过阿贝尔部分求和法(26)可以用级数的部分和An表示成这样,这个求和法为正规的一个必要充分条件是,对x一致地有而前提条件在这里变成可见广义收敛乃是级数的部分和按一种平均意义理解的收敛;所以只要极限(34)存在级数,都说级数级数在以wn(x) 为权的带权平均的收敛过程中(平均)可和到A。算术平均求和法(M),相当于m=【x】为x的整数部分;切萨罗求和法(C,k),相当于m=【x】为x的整数部分。波莱尔还把他的求和法 (B)转换成边值形式并取其简化形式如在转换中的误差项级数这一前提下,(B′)与(B)等价;一般情形,只能由(B)推到(B′)。这种求和法能够使很广泛的一类复项幂级数∑bnzn在其收敛圆外可和,并且可以逐项积分。为了可以逐项微分,波莱尔提出了绝对可和的附加条件,即这样一序列无穷积分都绝对收敛。这种求和法不是正规的;只是限于绝对收敛的级数而言才是正规的。但它使幂级数的分析运算(加、减、乘、逐项微分、逐项积分等)可以在收敛圆外如同在收敛圆内一样进行,因而很有效地扩大了幂级数的应用范围,特别是很适合于(通过)求解微分方程,如同渐近级数那样。对于两种求和法W与W1,我们说W1比W强,意思是每一个W可和的级数都一定W1可和到相同的和,但反过来不成立。例如(B′)比(B)强,(A)比(C,k)强。这种断定可和性强弱的称为阿贝尔型。一个阿贝尔型定理的不成立,无非是说不能无条件地反过来,因而也就是说在适当的补充条件之下能够反过来。说明这种补充条件的充分性定理称为型定理。如一个阿贝尔可和的级数级数,只要级数,就必定是收敛的。纯数量上,一个(无穷)级数永远等同于一个(无穷)积分【x】为x的整数部分。所以级数的理论中只有基本变量n的离散性在其中根本上起着简明性的作用的那些部分才能保持其特有的级数形式;否则迟早都会在普遍化的进程中过渡为积分的形式。例如A.普林斯关于正项级数的取级数形式,而N.维纳关于陶伯型的研究取积分形式。求和的理论是收敛级数研究的扩展,它扩大了分析学严密理论的适用范围,有效地揭示了函数的分析性质与数量关系,在傅里叶分析与函数构造论中有许多应用。历史上级数出现得很早。(公元前4世纪)就知道小于1(大于零)的级数具有和数,N.奥尔斯姆(14世纪)就通过见于现代教科书中的方法证明了调和级数级数发散到+∞。但是,首先结合着明确到一般级数的和这个概念,进一步脱离几何表示而达到级数和的纯算术概念,以及更进一步把级数运算视为一种独立的并正式使用收敛与发散两词,却是已接近于微积分发明的年代了(的格雷果里1647、J.1655、J.格雷果里1667)。事实上,从(阿基米德时代)以来,积分的朴素思想用于求积(面积、)问题时,就一直在数量计算上以级数的形式出现。收敛级数的结构,以其诸项的依次加下去的运算的无限进展展示着极限过程,而以其余项的无限变小揭示出无限小量的作用。级数收敛概念的逐渐明确有力地帮助了微积分基本概念的形成。微积分在创立的初期就为级数理论的开展提供了基本的素材。它通过自己的与级数运算的纯形式的结合,达到了一批的(幂)级数展开。从此以后级数便作为函数的分析等价物,用以计算函数的值,用以代表函数参加运算,并以所得结果阐释函数的性质。在运算过程中,级数被视为多项式的直接的代数推广,并且也就当作通常的多项式来对待。这些基本观点的运用一直持续到19世纪初年,导致了丰硕的成果(主要归功于欧拉、第一 ·伯努利、J.-L.拉格朗日、傅里叶)。同时,悖论性等式的不时出现(如1/2=1-1+1-1+…,-1=1+2+4+8+…之类)促使人们逐渐地自觉到级数的无限多项之和有别于有限多项之和这一基本事实,注意到函数的级数展开的有效性表现为级数的部分和无限趋近于这一收敛现象,提出了收敛定义的确切陈述,从而开始了分析学的严密化运动(B.波尔查诺1817、柯西1821、阿贝尔1826)。微积分基本运算与级数运算结合的需要,引导人们加强或缩小收敛性而提出一致收敛的概念[K.(T.W.)(1841)、G.G.斯托克斯(1847)、 P.L.von赛德尔(1848)]。然而(在、中,甚至在柯西本人的研究工作中)函数的级数展开,作为一整个函数的分析等价物,在收敛范围以外的不断的成功的使用,则又迫使人们推广或扩大收敛概念而提出渐近性与可和性(庞加莱,1886;切萨罗,1890;波莱尔,1895)。级数理论中的基本概念总是在其朴素意义获得有效的使用的过程中形成和发展的。
TA的推荐TA的最新馆藏
喜欢该文的人也喜欢

我要回帖

更多关于 级数an bn收敛性 的文章

 

随机推荐