有谁能简单地解释一下node.js的微信支付异步回调接口和回调函数

深入理解Node.js 事件循环和回调函数
作者:A_山水子农
字体:[ ] 类型:转载 时间:
这篇文章主要介绍了深入理解Node.js 事件循环和回调函数,详细的介绍Node.js 事件循环和Node.js回调函数,需要学习的可以参考一下。
本文详细的介绍了Node.js 事件循环和Node.js回调函数,废话不多说了,具体看下面把。
&一、Node.js 事件循环
Node.js 是单进程单线程应用程序,但是通过事件和回调支持并发,所以性能非常高。Node.js 的每一个 API 都是异步的,并作为一个独立线程运行,使用异步函数调用,并处理并发。Node.js 基本上所有的事件机制都是用设计模式中观察者模式实现。Node.js 单线程类似进入一个while(true)的事件循环,直到没有事件观察者退出,每个异步事件都生成一个事件观察者,如果有事件发生就调用该回调函数.
1、事件驱动程序
Node.js 使用事件驱动模型,当web server接收到请求,就把它关闭然后进行处理,然后去服务下一个web请求。当这个请求完成,它被放回处理队列,当到达队列开头,这个结果被返回给用户。这个模型非常高效可扩展性非常强,因为web server一直接受请求而不等待任何读写操作。(这也被称之为非阻塞式IO或者事件驱动IO)。在事件驱动模型中,会生成一个主循环来监听事件,当检测到事件时触发回调函数。
整个事件驱动的流程就是这么实现的,非常简洁。有点类似于观察者模式,事件相当于一个主题(Subject),而所有注册到这个事件上的处理函数相当于观察者(Observer)。Node.js 有多个内置的事件,我们可以通过引入 events 模块,并通过实例化 EventEmitter 类来绑定和监听事件,如下实例:
// 引入 events 模块
var events = require('events');
// 创建 eventEmitter 对象
var eventEmitter = new events.EventEmitter();
以下程序绑定事件处理程序:
// 绑定事件及事件的处理程序
eventEmitter.on('eventName', eventHandler);
我们可以通过程序触发事件:
// 触发事件
eventEmitter.emit('eventName');
创建 main.js 文件,代码如下所示:
// 引入 events 模块
var events = require('events');
// 创建 eventEmitter 对象
var eventEmitter = new events.EventEmitter();
// 创建事件处理程序
var connectHandler = function connected() {
console.log('连接成功。');
// 触发 data_received 事件
eventEmitter.emit('data_received');
// 绑定 connection 事件处理程序
eventEmitter.on('connection', connectHandler);
// 使用匿名函数绑定 data_received 事件
eventEmitter.on('data_received', function(){
console.log('数据接收成功。');
// 触发 connection 事件
eventEmitter.emit('connection');
console.log("程序执行完毕。");
二、Node.js 回调函数
Node.js 异步编程的直接体现就是回调。异步编程依托于回调来实现,但不能说使用了回调后程序就异步化了。回调函数在完成任务后就会被调用,Node 使用了大量的回调函数,Node 所有 API 都支持回调函数。例如,我们可以一边读取文件,一边执行其他命令,在文件读取完成后,我们将文件内容作为回调函数的参数返回。这样在执行代码时就没有阻塞或等待文件 I/O 操作。这就大大提高了 Node.js 的性能,可以处理大量的并发请求。
1、阻塞代码实例
创建一个文件 test.txt ,内容如下:
Hello World!
fs.readFileSync()
fs.readFile()
创建 test.js 文件, 代码如下:
console.log('-------程序开始执行--------');
// 引入fs模块
var fs = require("fs");
//同步读取文件
var data = fs.readFileSync('test.txt','utf-8');
console.log(data.toString());
console.log('-------程序执行结束--------');
以上代码执行结果如下:
2、非阻塞代码实例
创建 test.js 文件, 代码如下:
console.log('-------程序开始执行--------');
// 引入fs模块
var fs = require("fs");
//异步读取文件
fs.readFile('test.txt','utf-8',function (err, data) {
if (err) return console.error(err);
console.log(data.toString());
console.log('-------程序执行结束--------');
以上程序中 fs.readFile() 是异步函数用于读取文件。如果在读取文件过程中发生错误,错误 err 对象就会输出错误信息。如果没发生错误,readFile 跳过 err 对象的输出,文件内容就通过回调函数输出。
以上代码执行结果如下:
接下来我们删除 input.txt 文件,执行结果如下所示:
&以上两个实例我们了解了阻塞与非阻塞调用的不同。第一个实例在文件读取完后才执行完程序。第二个实例我们不需要等待文件读取完,这样就可以在读取文件时同时执行接下来的代码,大大提高了程序的性能。因此,阻塞按是按顺序执行的,而非阻塞是不需要按顺序的,所以如果需要处理回调函数的参数,我们就需要写在回调函数内。
三、fs.readFileSync和fs.readFile
1、s.readFileSync
语法:fs.readFileSync(filename, [encoding])&
接收参数:
& filename:文件路径
& options:option对象,包含 encoding,编码格式,该项是可选的。
&由于Node.js仅支持如下编码:utf8, ucs2, ascii, binary, base64, hex,并不支持中文GBK或GB2312之类的编码,因此如果要读写GBK或GB2312格式的文件的中文内容,必须要用额外的模块:iconv-lite。
2、fs.readFile
语法:fs.readFile(filename, [encoding], [callback(err,data)])
接收参数:
& filename:文件路径
& options :option对象,包含 encoding,编码格式,该项是可选的。
& callback :回调,传递2个参数 异常err 和 文件内容 data
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。
您可能感兴趣的文章:
大家感兴趣的内容
12345678910
最近更新的内容
常用在线小工具剖析Node.js异步编程中的回调与代码设计模式
NodeJS 最大的卖点――事件机制和异步 IO,对开发者并不是透明的。开发者需要按异步方式编写代码才用得上这个卖点,而这一点也遭到了一些 NodeJS 反对者的抨击。但不管怎样,异步编程确实是 NodeJS 最大的特点,没有掌握异步编程就不能说是真正学会了 NodeJS。本章将介绍与异步编程相关的各种知识。
在代码中,异步编程的直接体现就是回调。异步编程依托于回调来实现,但不能说使用了回调后程序就异步化了。我们首先可以看看以下代码。
function heavyCompute(n, callback) {
var count = 0,
for (i = i & 0; --i) {
for (j = j & 0; --j) {
count += 1;
callback(count);
heavyCompute(10000, function (count) {
console.log(count);
console.log('hello');
可以看到,以上代码中的回调函数仍然先于后续代码执行。JS 本身是单线程运行的,不可能在一段代码还未结束运行时去运行别的代码,因此也就不存在异步执行的概念。
但是,如果某个函数做的事情是创建一个别的线程或进程,并与JS主线程并行地做一些事情,并在事情做完后通知 JS 主线程,那情况又不一样了。我们接着看看以下代码。
setTimeout(function () {
console.log('world');
console.log('hello');
这次可以看到,回调函数后于后续代码执行了。如同上边所说,JS 本身是单线程的,无法异步执行,因此我们可以认为 setTimeout 这类 JS 规范之外的由运行环境提供的特殊函数做的事情是创建一个平行线程后立即返回,让 JS 主进程可以接着执行后续代码,并在收到平行进程的通知后再执行回调函数。除了 setTimeout、setInterval 这些常见的,这类函数还包括 NodeJS 提供的诸如 fs.readFile 之类的异步 API。
另外,我们仍然回到 JS 是单线程运行的这个事实上,这决定了 JS 在执行完一段代码之前无法执行包括回调函数在内的别的代码。也就是说,即使平行线程完成工作了,通知 JS 主线程执行回调函数了,回调函数也要等到 JS 主线程空闲时才能开始执行。以下就是这么一个例子。
function heavyCompute(n) {
var count = 0,
for (i = i & 0; --i) {
for (j = j & 0; --j) {
count += 1;
var t = new Date();
setTimeout(function () {
console.log(new Date() - t);
heavyCompute(50000);
可以看到,本来应该在1秒后被调用的回调函数因为 JS 主线程忙于运行其它代码,实际执行时间被大幅延迟。
代码设计模式
异步编程有很多特有的代码设计模式,为了实现同样的功能,使用同步方式和异步方式编写的代码会有很大差异。以下分别介绍一些常见的模式。
函数返回值
使用一个函数的输出作为另一个函数的输入是很常见的需求,在同步方式下一般按以下方式编写代码:
var output = fn1(fn2('input'));
// Do something.
而在异步方式下,由于函数执行结果不是通过返回值,而是通过回调函数传递,因此一般按以下方式编写代码:
fn2('input', function (output2) {
fn1(output2, function (output1) {
// Do something.
可以看到,这种方式就是一个回调函数套一个回调函多,套得太多了很容易写出&形状的代码。
在遍历数组时,使用某个函数依次对数据成员做一些处理也是常见的需求。如果函数是同步执行的,一般就会写出以下代码:
var len = arr.length,
for (; i & ++i) {
arr[i] = sync(arr[i]);
// All array items have processed.
如果函数是异步执行的,以上代码就无法保证循环结束后所有数组成员都处理完毕了。如果数组成员必须一个接一个串行处理,则一般按照以下方式编写异步代码:
(function next(i, len, callback) {
if (i & len) {
async(arr[i], function (value) {
next(i + 1, len, callback);
callback();
}(0, arr.length, function () {
// All array items have processed.
可以看到,以上代码在异步函数执行一次并返回执行结果后才传入下一个数组成员并开始下一轮执行,直到所有数组成员处理完毕后,通过回调的方式触发后续代码的执行。
如果数组成员可以并行处理,但后续代码仍然需要所有数组成员处理完毕后才能执行的话,则异步代码会调整成以下形式:
(function (i, len, count, callback) {
for (; i & ++i) {
(function (i) {
async(arr[i], function (value) {
if (++count === len) {
callback();
}(0, arr.length, 0, function () {
// All array items have processed.
可以看到,与异步串行遍历的版本相比,以上代码并行处理所有数组成员,并通过计数器变量来判断什么时候所有数组成员都处理完毕了。
JS 自身提供的异常捕获和处理机制――try..catch..,只能用于同步执行的代码。以下是一个例子。
function sync(fn) {
return fn();
sync(null);
// Do something.
} catch (err) {
console.log('Error: %s', err.message);
Error: object is not a function
可以看到,异常会沿着代码执行路径一直冒泡,直到遇到第一个 try 语句时被捕获住。但由于异步函数会打断代码执行路径,异步函数执行过程中以及执行之后产生的异常冒泡到执行路径被打断的位置时,如果一直没有遇到 try 语句,就作为一个全局异常抛出。以下是一个例子。
function async(fn, callback) {
// Code execution path breaks here.
setTimeout(function () {
callback(fn());
async(null, function (data) {
// Do something.
} catch (err) {
console.log('Error: %s', err.message);
/home/user/test.js:4
callback(fn());
TypeError: object is not a function
at null._onTimeout (/home/user/test.js:4:13)
at Timer.listOnTimeout [as ontimeout] (timers.js:110:15)
因为代码执行路径被打断了,我们就需要在异常冒泡到断点之前用 try 语句把异常捕获住,并通过回调函数传递被捕获的异常。于是我们可以像下边这样改造上边的例子。
function async(fn, callback) {
// Code execution path breaks here.
setTimeout(function () {
callback(null, fn());
} catch (err) {
callback(err);
async(null, function (err, data) {
if (err) {
console.log('Error: %s', err.message);
// Do something.
Error: object is not a function
可以看到,异常再次被捕获住了。在 NodeJS 中,几乎所有异步 API 都按照以上方式设计,回调函数中第一个参数都是 err。因此我们在编写自己的异步函数时,也可以按照这种方式来处理异常,与 NodeJS 的设计风格保持一致。
有了异常处理方式后,我们接着可以想一想一般我们是怎么写代码的。基本上,我们的代码都是做一些事情,然后调用一个函数,然后再做一些事情,然后再调用一个函数,如此循环。如果我们写的是同步代码,只需要在代码入口点写一个 try 语句就能捕获所有冒泡上来的异常,示例如下。
function main() {
// Do something.
// Do something.
// Do something.
} catch (err) {
// Deal with exception.
但是,如果我们写的是异步代码,就只有呵呵了。由于每次异步函数调用都会打断代码执行路径,只能通过回调函数来传递异常,于是我们就需要在每个回调函数里判断是否有异常发生,于是只用三次异步函数调用,就会产生下边这种代码。
function main(callback) {
// Do something.
asyncA(function (err, data) {
if (err) {
callback(err);
// Do something
asyncB(function (err, data) {
if (err) {
callback(err);
// Do something
asyncC(function (err, data) {
if (err) {
callback(err);
// Do something
callback(null);
main(function (err) {
if (err) {
// Deal with exception.
可以看到,回调函数已经让代码变得复杂了,而异步方式下对异常的处理更加剧了代码的复杂度。
顶一下(0) 踩一下(0)
热门标签:

我要回帖

更多关于 支付宝异步回调 的文章

 

随机推荐