6男4女排成一排,男生选女友顺序甲,乙,丙顺序一定,有多少种

当前位置: >>
排列与组合全集(精讲)
目录[隐藏]
概述
原理及应用
  
[编辑本段]
概述
  亲爱的朋友:
  进入高二,相信你已接触排列与组合了,作为高中的重点,一直也是个难点!
  近几年来,高考一直未涉及这方面的题,尤其09高考山东一个没考
,但几乎所有的老师都预测10年高考一定考,而百科中又很少啊!下面我就细讲一下,希望觉得好就顶一下啊!嘻嘻!
  1.排列及计算公式
  从n个不同元素中,任取m(m≤n)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号 p(n,m)表示.
  p(n,m)=n(n-1)(n-2)……(n-m+1)= n!/(n-m)!(规定0!=1).
  2.组合及计算公式
  从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号
  c(n,m) 表示.
  c(n,m)=p(n,m)/m!=n!/((n-m)!*m!);c(n,m)=c(n,n-m);
  3.其他排列与组合公式
  从n个元素中取出r个元素的循环排列数=p(n,r)/r=n!/r(n-r)!.
  n个元素被分成k类,每类的个数分别是n1,n2,...nk这n个元素的全排列数为
  n!/(n1!*n2!*...*nk!).
  k类元素,每类的个数无限,从中取出m个元素的组合数为c(m+k-1,m).
[编辑本段]
原理及应用
  两个基本计数原理及应用
  (1)加法原理和分类计数法
  1.加法原理
  2.加法原理的集合形式
  3.分类的要求
  每一类中的每一种方法都可以独立地完成此任务;两类不同办法中的具体方法,互不相同(即分类不重);完成此任务的任何一种方法,都属于某一类(即分类不漏)
  (2)乘法原理和分步计数法
  1.乘法原理
  2.合理分步的要求
  任何一步的一种方法都不能完成此任务,必须且只须连续完成这n步才能完成此任务;各步计数相互独立;只要有一步中所采取的方法不同,则对应的完成此事的方法也不同
  如果你还有点疑惑!我就讲点例题(很经典的)
  [例题分析]排列组合思维方法选讲
  1.首先明确任务的意义
  例1. 从1、2、3、……、20这二十个数中任取三个不同的数组成等差数列,这样的不同等差数列有________个。
  分析:首先要把复杂的生活背景或其它数学背景转化为一个明确的排列组合问题。
  设a,b,c成等差,∴ 2b=a+c, 可知b由a,c决定,
  又∵ 2b是偶数,∴ a,c同奇或同偶,即:从1,3,5,……,19或2,4,6,8,……,20这十个数中选出两个数进行排列,由此就可确定等差数列,因而本题为2=180。
  例2. 某城市有4条东西街道和6条南北的街道,街道之间的间距相同,如图。若规定只能向东或向北两个方向沿图中路线前进,则从M到N有多少种不同的走法?
  分析:对实际背景的分析可以逐层深入
  (一)从M到N必须向上走三步,向右走五步,共走八步。
  (二)每一步是向上还是向右,决定了不同的走法。
  (三)事实上,当把向上的步骤决定后,剩下的步骤只能向右。
  从而,任务可叙述为:从八个步骤中选出哪三步是向上走,就可以确定走法数,
  ∴ 本题答案为:=56。
  2.注意加法原理与乘法原理的特点,分析是分类还是分步,是排列还是组合
  例3.在一块并排的10垄田地中,选择二垄分别种植A,B两种作物,每种种植一垄,为有利于作物生长,要求A,B两种作物的间隔不少于6垄,不同的选法共有______种。
  分析:条件中“要求A、B两种作物的间隔不少于6垄”这个条件不容易用一个包含排列数,组合数的式子表示,因而采取分类的方法。
  第一类:A在第一垄,B有3种选择;
  第二类:A在第二垄,B有2种选择;
  第三类:A在第三垄,B有一种选择,
  同理A、B位置互换 ,共12种。
  例4.从6双不同颜色的手套中任取4只,其中恰好有一双同色的取法有________。
  (A)240 (B)180 (C)120 (D)60
  分析:显然本题应分步解决。
  (一)从6双中选出一双同色的手套,有种方法;
  (二)从剩下的十只手套中任选一只,有种方法。
  (三)从除前所涉及的两双手套之外的八只手套中任选一只,有种方法;
  (四)由于选取与顺序无关,因而(二)(三)中的选法重复一次,因而共240种。
  例5.身高互不相同的6个人排成2横行3纵列,在第一行的每一个人都比他同列的身后的人个子矮,则所有不同的排法种数为_______。
  分析:每一纵列中的两人只要选定,则他们只有一种站位方法,因而每一纵列的排队方法只与人的选法有关系,共有三纵列,从而有=90种。
  例6.在11名工人中,有5人只能当钳工,4人只能当车工,另外2人能当钳工也能当车工。现从11人中选出4人当钳工,4人当车工,问共有多少种不同的选法?
  分析:采用加法原理首先要做到分类不重不漏,如何做到这一点?分类的标准必须前后统一。
  以两个全能的工人为分类的对象,考虑以他们当中有几个去当钳工为分类标准。
  第一类:这两个人都去当钳工,有种;
  第二类:这两人有一个去当钳工,有种;
  第三类:这两人都不去当钳工,有种。
  因而共有185种。
  例7.现有印着0,l,3,5,7,9的六张卡片,如果允许9可以作6用,那么从中任意抽出三张可以组成多少个不同的三位数?
  分析:有同学认为只要把0,l,3,5,7,9的排法数乘以2即为所求,但实际上抽出的三个数中有9的话才可能用6替换,因而必须分类。
  抽出的三数含0,含9,有种方法;
  抽出的三数含0不含9,有种方法;
  抽出的三数含9不含0,有种方法;
  抽出的三数不含9也不含0,有种方法。
  又因为数字9可以当6用,因此共有2×(+)++=144种方法。
  例8.停车场划一排12个停车位置,今有8辆车需要停放,要求空车位连在一起,不同的停车方法是________种。
  分析:把空车位看成一个元素,和8辆车共九个元素排列,因而共有种停车方法。
  3.特殊元素,优先处理;特殊位置,优先考虑
  例9.六人站成一排,求
  (1)甲不在排头,乙不在排尾的排列数
  (2)甲不在排头,乙不在排尾,且甲乙不相邻的排法数
  分析:(1)先考虑排头,排尾,但这两个要求相互有影响,因而考虑分类。
  第一类:乙在排头,有种站法。
  第二类:乙不在排头,当然他也不能在排尾,有种站法,
  共+种站法。
  (2)第一类:甲在排尾,乙在排头,有种方法。
  第二类:甲在排尾,乙不在排头,有种方法。
  第三类:乙在排头,甲不在排头,有种方法。
  第四类:甲不在排尾,乙不在排头,有种方法。
  共+2+=312种。
  例10.对某件产品的6件不同正品和4件不同次品进行一一测试,至区分出所有次品为止。若所有次品恰好在第五次测试时被全部发现,则这样的测试方法有多少种可能?
  分析:本题意指第五次测试的产品一定是次品,并且是最后一个次品,因而第五次测试应算是特殊位置了,分步完成。
  第一步:第五次测试的有种可能;
  第二步:前四次有一件正品有中可能。
  第三步:前四次有种可能。
  ∴ 共有种可能。
  以下内容为很渴望的朋友准备,别闲烦啊!
  捆绑与插空
  例11. 8人排成一队
  (1)甲乙必须相邻 (2)甲乙不相邻
  (3)甲乙必须相邻且与丙不相邻 (4)甲乙必须相邻,丙丁必须相邻
  (5)甲乙不相邻,丙丁不相邻
  分析:(1)有种方法。
  (2)有种方法。
  (3)有种方法。
  (4)有种方法。
  (5)本题不能用插空法,不能连续进行插空。
  用间接解法:全排列-甲乙相邻-丙丁相邻+甲乙相邻且丙丁相邻,共--+=23040种方法。
  例12. 某人射击8枪,命中4枪,恰好有三枪连续命中,有多少种不同的情况?
  分析:∵ 连续命中的三枪与单独命中的一枪不能相邻,因而这是一个插空问题。另外没有命中的之间没有区别,不必计数。即在四发空枪之间形成的5个空中选出2个的排列,即。
  例13. 马路上有编号为l,2,3,……,10 十个路灯,为节约用电又看清路面,可以把其中的三只灯关掉,但不能同时关掉相邻的两只或三只,在两端的灯也不能关掉的情况下,求满足条件的关灯方法共有多少种?
  分析:即关掉的灯不能相邻,也不能在两端。又因为灯与灯之间没有区别,因而问题为在7盏亮着的灯形成的不包含两端的6个空中选出3个空放置熄灭的灯。
  ∴ 共=20种方法。
  4.间接计数法.(1)排除法
  例14. 三行三列共九个点,以这些点为顶点可组成多少个三角形?
  分析:有些问题正面求解有一定困难,可以采用间接法。
  所求问题的方法数=任意三个点的组合数-共线三点的方法数,
  ∴ 共种。
  例15.正方体8个顶点中取出4个,可组成多少个四面体?
  分析:所求问题的方法数=任意选四点的组合数-共面四点的方法数,
  ∴ 共-12=70-12=58个。
  例16. l,2,3,……,9中取出两个分别作为对数的底数和真数,可组成多少个不同数值的对数?
  分析:由于底数不能为1。
  (1)当1选上时,1必为真数,∴ 有一种情况。
  (2)当不选1时,从2--9中任取两个分别作为底数,真数,共,其中log24=log39,log42=log93, log23=log49, log32=log94.
  因而一共有53个。
  (3)补上一个阶段,转化为熟悉的问题
  例17. 六人排成一排,要求甲在乙的前面,(不一定相邻),共有多少种不同的方法? 如果要求甲乙丙按从左到右依次排列呢?
  分析:(一)实际上,甲在乙的前面和甲在乙的后面两种情况对称,具有相同的排法数。因而有=360种。
  (二)先考虑六人全排列;其次甲乙丙三人实际上只能按照一种顺序站位,因而前面的排法数重复了种, ∴ 共=120种。
  例18.5男4女排成一排,要求男生必须按从高到矮的顺序,共有多少种不同的方法?
  分析:首先不考虑男生的站位要求,共种;男生从左至右按从高到矮的顺序,只有一种站法,因而上述站法重复了次。因而有=9×8×7×6=3024种。
  若男生从右至左按从高到矮的顺序,只有一种站法, 同理也有3024种,综上,有6048种。
  例19. 三个相同的红球和两个不同的白球排成一行,共有多少种不同的方法?
  分析:先认为三个红球互不相同,共种方法。而由于三个红球所占位置相同的情况下,共有变化,因而共=20种。
  5.挡板的使用
  例20.10个名额分配到八个班,每班至少一个名额,问有多少种不同的分配方法?
  分析:把10个名额看成十个元素,在这十个元素之间形成的九个空中,选出七个位置放置档板,则每一种放置方式就相当于一种分配方式。因而共36种。
  6.注意排列组合的区别与联系:所有的排列都可以看作是先取组合,再做全排列;同样,组合如补充一个阶段(排序)可转化为排列问题。
  例21. 从0,l,2,……,9中取出2个偶数数字,3个奇数数字,可组成多少个无重复数字的五位数?
  分析:先选后排。另外还要考虑特殊元素0的选取。
  (一)两个选出的偶数含0,则有种。
  (二)两个选出的偶数字不含0,则有种。
  例22. 电梯有7位乘客,在10层楼房的每一层停留,如果三位乘客从同一层出去,另外两位在同一层出去,最后两人各从不同的楼层出去,有多少种不同的下楼方法?
  分析:(一)先把7位乘客分成3人,2人,一人,一人四组,有种。
  (二)选择10层中的四层下楼有种。
  ∴ 共有种。
  例23. 用数字0,1,2,3,4,5组成没有重复数字的四位数,
  (1)可组成多少个不同的四位数?
  (2)可组成多少个不同的四位偶数?
  (3)可组成多少个能被3整除的四位数?
  (4)将(1)中的四位数按从小到大的顺序排成一数列,问第85项是什么?
  分析:(1)有个。
  (2)分为两类:0在末位,则有种:0不在末位,则有种。
  ∴ 共+种。
  (3)先把四个相加能被3整除的四个数从小到大列举出来,即先选
  0,1,2,3
  0,1,3,5
  0,2,3,4
  0,3,4,5
  1,2,4,5
  它们排列出来的数一定可以被3整除,再排列,有:4×()+=96种。
  (4)首位为1的有=60个。
  前两位为20的有=12个。
  前两位为21的有=12个。
  因而第85项是前两位为23的最小数,即为2301。
  7.分组问题
  例24. 6本不同的书
  (1) 分给甲乙丙三人,每人两本,有多少种不同的分法?
  (2) 分成三堆,每堆两本,有多少种不同的分法?
  (3) 分成三堆,一堆一本,一堆两本,一堆三本,有多少种不同的分法?
  (4) 甲一本,乙两本,丙三本,有多少种不同的分法?
  (5) 分给甲乙丙三人,其中一人一本,一人两本,第三人三本,有多少种不同的分法?
  分析:(1)有中。
  (2)即在(1)的基础上除去顺序,有种。
  (3)有种。由于这是不平均分组,因而不包含顺序。
  (4)有种。同(3),原因是甲,乙,丙持有量确定。
  (5)有种。
  例25. 6人分乘两辆不同的车,每车最多乘4人,则不同的乘车方法为_______。
  分析:(一)考虑先把6人分成2人和4人,3人和3人各两组。
  第一类:平均分成3人一组,有种方法。
  第二类:分成2人,4人各一组,有种方法。
  (二)再考虑分别上两辆不同的车。
  综合(一)(二),有种。
  例26. 5名学生分配到4个不同的科技小组参加活动,每个科技小组至少有一名学生参加,则分配方法共有________种.
  分析:(一)先把5个学生分成二人,一人,一人,一人各一组。
  其中涉及到平均分成四组,有=种分组方法。
  (二)再考虑分配到四个不同的科技小组,有种,
  由(一)(二)可知,共=240种。
  有点小多,但希望大家能长补短!
  依自己的情况而选做研究
排列、组合的概念具有广泛的实际意义,解决排列、组合问题,关键要搞清楚是否与元素的顺序有关。复杂的排列、组合问题往往是对元素或位置进行限制,因此掌握一些基本的排列、组合问题的类型与解法对学好这部分知识很重要。
一. 特殊元素(位置)用优先法
把有限制条件的元素(位置)称为特殊元素(位置),对于这类问题一般采取特殊元素(位置)优先安排的方法。
例1. 6人站成一横排,其中甲不站左端也不站右端,有多少种不同站法?
分析:解有限制条件的元素(位置)这类问题常采取特殊元素(位置)优先安排的方法。
解法1:(元素分析法)因为甲不能站左右两端,故第一步先让甲排在左右两端之间的任一位置上,有种站法;第二步再让其余的5人站在其他5个位置上,有种站法,故站法共有:=480(种)
解法2:(位置分析法)因为左右两端不站甲,故第一步先从甲以外的5个人中任选两人站在左右两端,有种;第二步再让剩余的4个人(含甲)站在中间4个位置,有种,故站法共有:(种)
二. 相邻问题用捆绑法
对于要求某几个元素必须排在一起的问题,可用“捆绑法”:即将这几个元素看作一个整体,视为一个元素,与其他元素进行排列,然后相邻元素内部再进行排列。
例2. 5个男生和3个女生排成一排,3个女生必须排在一起,有多少种不同排法?
解:把3个女生视为一个元素,与5个男生进行排列,共有种,然后女生内部再进行排列,有种,所以排法共有:(种)。
三. 相离问题用插空法
元素相离(即不相邻)问题,可以先将其他元素排好,然后再将不相邻的元素插入已排好的元素位置之间和两端的空中。
例3. 7人排成一排,甲、乙、丙3人互不相邻有多少种排法?
解:先将其余4人排成一排,有种,再往4人之间及两端的5个空位中让甲、乙、丙插入,有种,所以排法共有:(种)
四. 定序问题用除法
对于在排列中,当某些元素次序一定时,可用此法。解题方法是:先将n个元素进行全排列有种,个元素的全排列有种,由于要求m个元素次序一定,因此只能取其中的某一种排法,可以利用除法起到调序的作用,即若n个元素排成一列,其中m个元素次序一定,则有种排列方法。
例4. 由数字0、1、2、3、4、5组成没有重复数字的六位数,其中个位数字小于十位数字的六位数有多少个?
解:不考虑限制条件,组成的六位数有种,其中个位与十位上的数字一定,所以所求的六位数有:
五. 分排问题用直排法
对于把几个元素分成若干排的排列问题,若没有其他特殊要求,可采取统一成一排的方法求解。
例5. 9个人坐成三排,第一排2人,第二排3人,第三排4人,则不同的坐法共有多少种?
解:9个人可以在三排中随意就坐,无其他限制条件,所以三排可以看作一排来处理,不同的坐标共有种。
六. 复杂问题用排除法
对于某些比较复杂的或抽象的排列问题,可以采用转化思想,从问题的反面去考虑,先求出无限制条件的方法种数,然后去掉不符合条件的方法种数。在应用此法时要注意做到不重不漏。
例6. 四面体的顶点和各棱中点共有10个点,取其中4个不共面的点,则不同的取法共有( )
A. 150种 B. 147种 C. 144种 D. 141种
解:从10个点中任取4个点有种取法,其中4点共面的情况有三类。第一类,取出的4个点位于四面体的同一个面内,有种;第二类,取任一条棱上的3个点及该棱对棱的中点,这4点共面,有6种;第三类,由中位线构成的平行四边形(其两组对边分别平行于四面体相对的两条棱),它的4个点共面,有3种。以上三类情况不合要求应减掉,所以不同的取法共有:(种)。
七. 多元问题用分类法
按题目条件,把符合条件的排列、组合问题分成互不重复的若干类,分别计算,最后计算总数。
例7. 已知直线中的a,b,c是取自集合{-3,-2,-1,0,1,2,3}中的3个不同的元素,并且该直线的倾斜角为锐角,求符合这些条件的直线的条数。
解:设倾斜角为,由为锐角,得,即a,b异号。
(1)若c=0,a,b各有3种取法,排除2个重复(,,),故有:3×3-2=7(条)。
(2)若,a有3种取法,b有3种取法,而同时c还有4种取法,且其中任意两条直线均不相同,故这样的直线有:3×3×4=36(条)。
从而符合要求的直线共有:7+36=43(条)
八. 排列、组合综合问题用先选后排的策略
处理排列、组合综合性问题一般是先选元素,后排列。
例8. 将4名教师分派到3所中学任教,每所中学至少1名教师,则不同的分派方案共有多少种?
解:可分两步进行:第一步先将4名教师分为三组(1,1,2),(2,1,1),(1,2,1),共有:(种),第二步将这三组教师分派到3种中学任教有种方法。由分步计数原理得不同的分派方案共有:(种)。因此共有36种方案。
九. 隔板模型法
常用于解决整数分解型排列、组合的问题。
例9. 有10个三好学生名额,分配到6个班,每班至少1个名额,共有多少种不同的分配方案?
解:6个班,可用5个隔板,将10个名额并排成一排,名额之间有9个空,将5个隔板插入9个空,每一种插法,对应一种分配方案,故方案有:(种)
排列组合问题的解题策略
关键词: 排列组合,解题策略
一、相临问题――捆绑法
例1.7名学生站成一排,甲、乙必须站在一起有多少不同排法?
解:两个元素排在一起的问题可用“捆绑”法解决,先将甲乙二人看作一个元素与其他五人进行排列,并考虑甲乙二人的顺序,所以共有 种。
评注:一般地: 个人站成一排,其中某 个人相邻,可用“捆绑”法解决,共有 种排法。
二、不相临问题――选空插入法
例2. 7名学生站成一排,甲乙互不相邻有多少不同排法?
解:甲、乙二人不相邻的排法一般应用“插空”法,所以甲、乙二人不相邻的排法总数应为:
评注:若 个人站成一排,其中 个人不相邻,可用“插空”法解决,共有 种排法。
三、复杂问题――总体排除法
在直接法考虑比较难,或分类不清或多种时,可考虑用“排除法”,解决几何问题必须注意几何图形本身对其构成元素的限制。
例3.(1996年全国高考题)正六边形的中心和顶点共7个点,以其中3个点为顶点的三角形共有多少个.
解:从7个点中取3个点的取法有 种,但其中正六边形的对角线所含的中心和顶点三点共线不能组成三角形,有3条,所以满足条件的三角形共有 -3=32个.
四、特殊元素――优先考虑法
对于含有限定条件的排列组合应用题,可以考虑优先安排特殊位置,然后再考虑其他位置的安排。
例4. (1995年上海高考题) 1名老师和4名获奖学生排成一排照像留念,若老师不排在两端,则共有不同的排法
解:先考虑特殊元素(老师)的排法,因老师不排在两端,故可在中间三个位置上任选一个位置,有 种,而其余学生的排法有 种,所以共有
=72种不同的排法.
例5.(2000年全国高考题)乒乓球队的10名队员中有3名主力队员,派5名队员参加比赛,3名主力队员要安排在第一、三、五位置,其余7名队员选2名安排在第二、四位置,那么不同的出场安排共有
解:由于第一、三、五位置特殊,只能安排主力队员,有 种排法,而其余7名队员选出2名安排在第二、四位置,有 种排法,所以不同的出场安排共有
五、多元问题――分类讨论法
对于元素多,选取情况多,可按要求进行分类讨论,最后总计。
例6.(2003年北京春招)某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个节目插入原节目单中,那么不同插法的种数为(A
解:增加的两个新节目,可分为相临与不相临两种情况:1.不相临:共有A62种;2.相临:共有A22A61种。故不同插法的种数为:A62 +A22A61=42 ,故选A。
例7.(2003年全国高考试题)如图, 一个地区分为5个行政区域,现给地图着色,要求相邻地区不得使用同一颜色,现有4种颜色可供选择,则不同的着色方法共有多少种?(以数字作答)
解:区域1与其他四个区域相邻,而其他每个区域都与三个区域相邻,因此,可以涂三种或四种颜色. 用三种颜色着色有 =24种方法, 用四种颜色着色有 =48种方法,从而共有24+48=72种方法,应填72.
六、混合问题――先选后排法
对于排列组合的混合应用题,可采取先选取元素,后进行排列的策略.
例8.(2002年北京高考)12名同学分别到三个不同的路口进行车流量的调查,若每个路口4人,则不同的分配方案共有(
解:本试题属于均分组问题。 则12名同学均分成3组共有 种方法,分配到三个不同的路口的不同的分配方案共有: 种,故选A。
例9.(2003年北京高考试题)从黄瓜、白菜、油菜、扁豆4种蔬菜品种中选出3种,分别种在不同土质的三块土地上,其中黄瓜必须种植,不同的种植方法共有( )
解:先选后排,分步实施. 由题意,不同的选法有: C32种,不同的排法有: A31?A22,故不同的种植方法共有A31?C32?A22=12,故应选C.
七.相同元素分配――档板分隔法
例10.把10本相同的书发给编号为1、2、3的三个学生阅览室,每个阅览室分得的书的本数不小于其编号数,试求不同分法的种数。请用尽可能多的方法求解,并思考这些方法是否适合更一般的情况?
本题考查组合问题。
解:先让2、3号阅览室依次分得1本书、2本书;再对余下的7本书进行分配,保证每个阅览室至少得一本书,这相当于在7本相同书之间的6个“空档”内插入两个相同“I”(一般可视为“隔板”)共有 种插法,即有15种分法。
总之,排列、组合应用题的解题思路可总结为:排组分清,加乘明确;有序排列,无序组合;分类为加,分步为乘。
具体说,解排列组合的应用题,通常有以下途径:
(1)以元素为主体,即先满足特殊元素的要求,再考虑其他元素。
(2)以位置为主体,即先满足特殊位置的要求,再考虑其他位置。
(3)先不考虑附加条件,计算出排列或组合数,再减去不合要求的排列组合数。
排列组合问题的解题方略
湖北省安陆市第二高级中学 张征洪
排列组合知识,广泛应用于实际,掌握好排列组合知识,能帮助我们在生产生活中,解决许多实际应用问题。同时排列组合问题历来就是一个老大难的问题。因此有必要对排列组合问题的解题规律和解题方法作一点归纳和总结,以期充分掌握排列组合知识。
首先,谈谈排列组合综合问题的一般解题规律:
1)使用“分类计数原理”还是“分步计数原理”要根据我们完成某件事时采取的方式而定,可以分类来完成这件事时用“分类计数原理”,需要分步来完成这件事时就用“分步计数原理”;那么,怎样确定是分类,还是分步骤?“分类”表现为其中任何一类均可独立完成所给的事件,而“分步”必须把各步骤均完成才能完成所给事件,所以准确理解两个原理强调完成一件事情的几类办法互不干扰,相互独立,彼此间交集为空集,并集为全集,不论哪类办法都能将事情单独完成,分步计数原理强调各步骤缺一不可,需要依次完成所有步骤才能完成这件事,步与步之间互不影响,即前步用什么方法不影响后面的步骤采用的方法。
2)排列与组合定义相近,它们的区别在于是否与顺序有关。
3)复杂的排列问题常常通过试验、画 “树图 ”、“框图”等手段使问题直观化,从而寻求解题途径,由于结果的正确性难于检验,因此常常需要用不同的方法求解来获得检验。
4)按元素的性质进行分类,按事件发生的连续性进行分步是处理排列组合问题的基本思想方法,要注意“至少、至多”等限制词的意义。
5)处理排列、组合综合问题,一般思想是先选元素(组合),后排列,按元素的性质进行“分类”和按事件的过程“分步”,始终是处理排列、组合问题的基本原理和方法,通过解题训练要注意积累和掌握分类和分步的基本技能,保证每步独立,达到分类标准明确,分步层次清楚,不重不漏。
6)在解决排列组合综合问题时,必须深刻理解排列组合的概念,能熟练地对问题进行分类,牢记排列数与组合数公式与组合数性质,容易产生的错误是重复和遗漏计数。
总之,解决排列组合问题的基本规律,即:分类相加,分步相乘,排组分清,加乘明确;有序排列,无序组合;正难则反,间接排除等。
其次,我们在抓住问题的本质特征和规律,灵活运用基本原理和公式进行分析解答的同时,还要注意讲究一些解题策略和方法技巧,使一些看似复杂的问题迎刃而解。下面介绍几种常用的解题方法和策略。
一.特殊元素(位置)的“优先安排法”:对于特殊元素(位置)的排列组合问题,一般先考虑特殊,再考虑其他。
例1、 用0,2,3,4,5,五个数字,组成没有重复数字的三位数,其中偶数共有( )。
[分析]由于该三位数为偶数,故末尾数字必为偶数,又因为0不能排首位,故0就是其中的“特殊”元素,应该优先安排,按0排在末尾和0不排在末尾分两类:1)0排末尾时,有A42个,2)0不排在末尾时,则有C21 A31A31个,由分数计数原理,共有偶数A42 + C21 A31A31=30个,选B。
二.总体淘汰法:对于含否定的问题,还可以从总体中把不合要求的除去。如例1中,也可用此法解答:五个数字组成三位数的全排列有A53个,排好后发现0不能排首位,而且数字3,5也不能排末位,这两种排法要排除,故有A53--3A42+ C21A31=30个偶数。
三.合理分类与准确分步含有约束条件的排列组合问题,按元素的性质进行分类,按事情发生的连续过程分步,做到分类标准明确,分步层次清楚,不重不漏。
四.相邻问题用捆绑法:在解决对于某几个元素要求相邻的问题时,先整体考虑,将相邻的元素“捆绑”起来,看作一“大”元素与其余元素排列,然后再考虑大元素内部各元素间顺序的解题策略就是捆绑法.
例2、有8本不同的书;其中数学书3本,外语书2本,其它学科书3本.若将这些书排成一列放在书架上,让数学书排在一起,外语书也恰好排在一起的排法共有(
)种.(结果用数值表示)
解:把3本数学书“捆绑”在一起看成一本大书,2本外语书也“捆绑”在一起看成一本大书,与其它3本书一起看作5个元素,共有A55种排法;又3本数学书有A33种排法,2本外语书有A22种排法;根据分步计数原理共有排法A55 A33 A22=1440(种).
注:运用捆绑法解决排列组合问题时,一定要注意“捆绑”起来的大元素内部的顺序问题.
五.不相邻问题用“插空法”:不相邻问题是指要求某些元素不能相邻,由其它元素将它们隔开.解决此类问题可以先将其它元素排好,再将所指定的不相邻的元素插入到它们的间隙及两端位置,故称插空法.
例3、用1、2、3、4、5、6、7、8组成没有重复数字的八位数,要求1与2相邻,2与4相邻,5与6相邻,而7与8不相邻。这样的八位数共有(
)个.(用数字作答)
解:由于要求1与2相邻,2与4相邻,可将1、2、4这三个数字捆绑在一起形成一个大元素,这个大元素的内部中间只能排2,两边排1和4,因此大元素内部共有A22种排法,再把5与6也捆绑成一个大元素,其内部也有A22种排法,与数字3共计三个元素,先将这三个元素排好,共有A33种排法,再从前面排好的三个元素形成的间隙及两端共四个位置中任选两个,把要求不相邻的数字7和8插入即可,共有A42种插法,所以符合条件的八位数共有A22 A22 A33 A42=288(种).
注:运用“插空法”解决不相邻问题时,要注意欲插入的位置是否包含两端位置.
六.顺序固定用“除法”:对于某几个元素按一定的顺序排列问题,可先把这几个元素与其他元素一同进行全排列,然后用总的排列数除于这几个元素的全排列数。
例4、6个人排队,甲、乙、丙三人按“甲---乙---丙”顺序排的排队方法有多少种?
分析:不考虑附加条件,排队方法有A66种,而其中甲、乙、丙的A33种排法中只有一种符合条件。故符合条件的排法有A66 ÷A33 =120种。(或A63种)
例5、4个男生和3个女生,高矮不相等,现在将他们排成一行,要求从左到右女生从矮到高排列,有多少种排法。
解:先在7个位置中任取4个给男生,有A74 种排法,余下的3个位置给女生,只有一种排法,故有A74 种排法。(也可以是A77 ÷A33种)
七.分排问题用“直排法”:把几个元素排成若干排的问题,可采用统一排成一排的排法来处理。
例6、7个人坐两排座位,第一排3个人,第二排坐4个人,则不同的坐法有多少种?
分析:7个人可以在前两排随意就坐,再无其它条件,故两排可看作一排来处理,不同的坐法共有A77种。
八.逐个试验法:题中附加条件增多,直接解决困难时,用试验逐步寻找规律。
例7.将数字1,2,3,4填入标号为1,2,3,4的方格中,每方格填1个,方格标号与所填数字均不相同的填法种数有(
解:第一方格内可填2或3或4,如第一填2,则第二方格可填1或3或4,若第二方格内填1,则后两方格只有一种方法;若第二方格填3或4,后两方格也只有一种填法。一共有9种填法,故选B
九、构造模型 “隔板法”
对于较复杂的排列问题,可通过设计另一情景,构造一个隔板模型来解决问题。
例8、方程a+b+c+d=12有多少组正整数解?
分析:建立隔板模型:将12个完全相同的球排成一列,在它们之间形成的11个间隙中任意插入3块隔板,把球分成4堆,每一种分法所得4堆球的各堆球的数目,对应为a、b、c、d的一组正整解,故原方程的正整数解的组数共有C113 .
又如方程a+b+c+d=12非负整数解的个数,可用此法解。
十.正难则反――排除法
对于含“至多”或“至少”的排列组合问题,若直接解答多需进行复杂讨论,可以考虑“总体去杂”,即将总体中不符合条件的排列或组合删除掉,从而计算出符合条件的排列组合数的方法.
例9、从4台甲型和5台乙型电视机中任意取出3台,其中至少要甲型与乙型电视机各一台,则不同的取法共有(
解:在被取出的3台中,不含甲型或不合乙型的抽取方法均不合题意,因此符合题意的抽取方法有C93-C43-C53=70(种),故选C.
注:这种方法适用于反面的情况明确且易于计算的习题.
十一.逐步探索法:对于情况复杂,不易发现其规律的问题需要认真分析,探索出其规律
例10、从1到100的自然数中,每次取出不同的两个数,使它们的和大于100,则不同的取法种数有多少种。
解:两个数相加中以较小的数为被加数,1+100&100,1为被加数时有1种,2为被加数有2种,…,49为被加数的有49种,50为被加数的有50种,但51为被加数有49种,52为被加数有48种,…,99为被捕加数的只有1种,故不同的取法有(1+2+3+…+50)+(49+48+…+1)=2500种
十二.一一对应法:
例11.在100名选手之间进行单循环淘汰赛(即一场失败要退出比赛)最后产生一名冠军,要比赛几场?
解:要产生一名冠军,要淘汰冠军以外的所有选手,即要淘汰99名选手,要淘汰一名就要进行一场,故比赛99场。
应该指出的是,以上介绍的各种方法是解决一般排列组合问题常用方法,并非绝对的。数学是一门非常灵活的课程,同一问题有时会有多种解法,这时,要认真思考和分析,灵活选择最佳方法.还有像多元问题“分类法”、环排问题“线排法”、“等概率法”等在此不赘述了。
排列组合公式――熊雄 排列定义:从 n 个不同的元素中,取 r 个不重复的元素,按次序排列,称为从 n 个中取 r 个的无重排列。排列的全体组成的集合用 P(n,...排列组合三大重要模型_数学_高中教育_教育专区。排列与组合的三大模型?24 种解题技巧 一.知识点归纳 1.排列的概念:从 n 个不同元素中,任取 m ( m ? n )...排列组合 二项式定理 1,分类计数原理 完成一件事有几类方法,各类办法相互独立每类办 法又有多种不同的办法(每一种都可以独立的完成这个事情) 分步计数原理 种...排列组合归纳总结_数学_高中教育_教育专区。排列、组合及二项式定理 一、计数 分类加法计数原理和分步乘法计数原理 → 1.分类加法计数原理定义 完成一件事,可以有 ...排列组合基本概念 两个基本原理 1.加法原理:做一件事,完成它可以有 n 类办法,在第一类办法中 加法原理: 类办法, 加法原理 做一件事, 种不同的方法, 种不...排列组合概念举例_数学_高中教育_教育专区。Q1: 有从1到9共计9个号码球,请问,可以组成多少个三位数? A1: 123和213是两个不同的排列数。即对排列顺序有要求...排列组合计算公式_数学_自然科学_专业资料。1.排列及计算公式 从 n 个不同元素中,任取 m(m≤n)个元素按照一定的顺序排成一列,叫做从 n 个 不同元素中取出...排列组合高中数学 江苏 高中三年级 60 排列、排列数与排列数公式 排列数公式的应用 组合、组合数、组合数公式 组合数公式的应用 理解排列组合的原理;掌握排列组合...“简单的排列组合”教学实录及教学反思 教学内容:苏教国标版小学数学四年级下册第八单元找规律第 2 课时 教学目标: 1.通过观察、猜测、实验等活动,使学生找出最...有关排列组合的常用解题技巧 1.相邻问题并组法 题目中规定相邻的几个元素并为一个组(当作一个元素)参与排列. 【例 1】A、B、C、D、E 五人并排站成一排,...
All rights reserved Powered by
copyright &copyright 。文档资料库内容来自网络,如有侵犯请联系客服。

我要回帖

更多关于 男生选女友顺序 的文章

 

随机推荐