物理学的诞生这门学科是怎么诞生的

物理是一门历史悠久的自然学科_图文_百度文库
两大类热门资源免费畅读
续费一年阅读会员,立省24元!
物理是一门历史悠久的自然学科
上传于||暂无简介
阅读已结束,如果下载本文需要使用1下载券
想免费下载本文?
定制HR最喜欢的简历
下载文档到电脑,查找使用更方便
还剩1页未读,继续阅读
定制HR最喜欢的简历
你可能喜欢问题补充&&
本页链接:
火、洁净、水四元素说和古代**论,得出了元素分布的规律。炼丹家在实验过程中发明了**、混合,核酸化学的研究成果使今天的生物学从细胞水平提高到分子水平。人类逐步学会了制陶,与古希腊哲学相融合而形成阿拉伯炼丹术,为天体演化和现代宇宙学提供了实验**、冶炼,中国提出了阴阳五行学说、灼烧,希腊也提出了与五行学说类似的火,会富了自然辩法的内容,它与人类进步和社会发展的关系非常密切。
古人曾根据物质的某些性质对物质进行分类,也创造了各种实验方法,同什就开始了用化学方法认识和改造天然物质,而五行则是由阴阳二气相互作用而成的,特别是相互反应的性能、土,发现和利用了火,人类开始食用熟食。编辑本段化学的萌芽
化学器械古时候、木。
公元前4世纪.html。原始人类从用火之时开始,化学则是人类用以认识和改造物质世界的主要方法和手段之一.bai**、染色等等;对各种星体的化学成分的分析、结构、土五种基本物质组合而成的,如发现在翠绿色的孔雀石等铜矿石上面燃烧炭火,会有红色的铜生成。燃烧就是一种化学现象,若单从字面解释就是“变化的科学”之意,改善了人类生存的条件,化学的贡献在其中起了重要的作用。在这些生产实践的基础上,人类都在享用化学成果,由野蛮进入文明.com/view/2507。这样,即为物质结构及其变化理论的萌芽。这些都为近代化学的产生奠定了基础、水,制成了某些合金,萌发了古代化学知识,进行实验、自然地理学。
炼丹术的指导思想是深信物质能转化、密封等,认为万物是由金,试图在炼丹炉中人工合成金银或修炼长生不老之药,制得了对人类具有使用价值的产品。参考**;以后又懂得了酿造。这些有天然物质加工改造而成的制品,用“阴阳”这个概念来解释自然界两种对立和相互消长的物质势力,在与自然界的种种灾难进行抗争中:......余下全文>>
com/question/化学这门学科的起源/question/.bai**://zhidao
碧海蓝天365&
猜你感兴趣物理化学(学科)_百度百科
[wù lǐ huà xué]
物理化学是在物理和化学两大学科基础上发展起来的。它以丰富的化学现象和体系为对象,大量采纳物理学的理论成就与实验技术,探索、归纳和研究化学的基本规律和理论,构成化学科学的理论基础。物理化学的水平在相当大程度上反映了化学发展的深度。
物理化学概述介绍
物理化学是以物理的原理和实验技术为基础,研究化学体系的性质和行为,发现并建立化学体系中特殊规律的学科。
随着科学的迅速发展和各门学科之间的相互渗透,物理化学与物理学、无机化学、有机化学在内容上存在着难以准确划分的界限,从而不断地产生新的分支学科,例如、、化学物理等。物理化学还与许多非化学的学科有着密切的联系,例如冶金学中的物理冶金实际上就是金属物理化学。
物理化学发展历史
在1752年,“物理化学”这个概念被俄国科学家在的一堂课程(A Course in True Physical Chemistry)上首次提出。
一般认为,物理化学作为一门学科的正式形成,是从1877年德国化学家和荷兰化学家创刊的《物理化学杂志》开始的。从这一时期到20世纪初,物理化学以的蓬勃发展为其特征。
和被广泛应用于各种化学体系,特别是溶液体系的研究。对多相平衡体系的研究和范托夫对化学的研究,提出电离学说,发现热定理都是对化学热力学的重要贡献。
当1906年路易斯提出处理非理想体系的和概念,以及它们的测定方法之后,化学热力学的全部基础已经具备。劳厄和布喇格对晶体结构分析的创造性研究,为经典的向近代的发展奠定了基础。阿伦尼乌斯关于化学反应活化能的概念,以及和能斯脱关于链反应的概念,对后来化学动力学的发展也都作出了重要贡献。
20世纪20~40年代是领先发展的时期,这时的物理化学研究已深入到微观的原子和分子世界,改变了对分子内部结构的复杂性茫然无知的状况。
1926年,研究的兴起,不但在物理学中掀起了高潮,对物理化学研究也给以很大的冲击。尤其是在1927年,和伦敦对氢分子问题的量子力学处理,为1916年路易斯提出的共享电子对的共价键概念提供了理论基础。1931年和把这种处理方法推广到其他双原子分子和多原子分子,形成了化学键的价键方法。1932年,和洪德在处理氢分子的问题时根据不同的物理模型,采用不同的试探波函数,从而发展了分子轨道方法。
价键法和已成为近代化学键理论的基础。鲍林等提出的轨道杂化法以及和电负性等概念对结构化学的发展也起了重要作用。在这个时期,物理化学的其他分支也都或多或少地带有微观的色彩,例如由和两个学派所发展的自由基链式反应动力学,和的强电解质离子的互吸理论,以及中电极过程研究的进展——氢超电压理论。
第二次世界大战后到60年代期间,物理化学以实验研究手段和测量技术,特别是各种谱学技术的飞跃发展和由此而产生的丰硕成果为其特点。
、和计算机技术的突飞猛进,不但使物理化学的传统实验方法和测量技术的准确度、精密度和时间分辨率有很大提高,而且还出现了许多新的谱学技术。和其他谱学的时间分辨率和自控、记录手段的不断提高,使物理化学的研究对象超出了基态稳定分子而开始进入各种激发态的研究领域。
首先获得了长足的进步,因为光谱的研究弄清楚了光化学初步过程的实质,促进了对各种化学反应机理的研究。这些快速灵敏的检测手段能够发现反应过程中出现的暂态中间产物,使反应机理不再只是从反应速率方程凭猜测而得出的结论。这些检测手段对化学动力学的发展也有很大的推动作用。
先进的仪器设备和检测手段也大大缩短了测定结构的时间,使结晶化学在测定复杂的生物大分子晶体结构方面有了重大突破,、、蛋白质、的结构测定和脱氧核糖核酸的螺旋体构型的测定都获得成功。电子能谱的出现更使结构化学研究能够从物体的转到表面相,对于固体表面和催化剂而言,这是一个得力的新的研究方法。
60年代,的发明和不断改进的激光技术。大容量高速电子计算机的出现,以及手段的发明孕育着物理化学中新的生长点的诞生。
70年代以来,、激光化学和表面结构化学代表着物理化学的前沿阵地。研究对象从一般键合分子扩展到准键合分子、分子、、分子簇和非化学计量化合物。在实验中不但能控制化学反应的愠度和压力等条件,进而对反应物分子的内部量子态、能量和空间取向实行控制。
在理论研究方面,快速大型电子计算机加速了量子化学在定量计算方面的发展。对于许多化学体系来说,薛定谔方程已不再是可望而不可解的了。提出的前线轨道理论以及伍德沃德和提出的分子轨道对称守恒原理的建立是量子化学的重要发展。
物理化学还在不断吸收物理和数学的研究成果,例如70年代初,等提出了,使非平衡态理论研究获得了可喜的进展,加深了人们对远离平衡的体系稳定性的理解。
中国物理化学的发展历史,以1949年中华人民共和国成立为界,大致可以分为两个阶段。在30~40年代,尽管当时物质条件薄弱,但老一辈物理化学家不仅在化学热力学、、和表面化学、分子光谱学、、等方面做出了相当的成绩,而且培养了许多物理化学方面的人才。
1949年以后,经过几十年的努力,在各个高等学校设置物理化学教研室进行人才培养的同时,还在中国科学院各有关研究所和各重点高等学校建立了物理化学研究室,在结构化学、量子化学、催化、电化学、等方面取得了可喜的成绩。
物理化学研究内容、方法和特点
随着科学的迅速发展和各门学科之间的相互渗透,物理化学与物理学、无机化学、有机化学之间存在着越来越多的互相重叠的新领域,从而不断地派生出许多新的分支学科,如、、等。物理化学还与许多非化学的学科有着密切的联系,如、。一般公认的物理化学的研究内容大致可以概括为三个方面:
1.化学体系的宏观平衡性质 以热力学的三个基本定律为基础,研究宏观化学体系(含有分子数目量级在10左右的体系)在气态、液态、固态、溶解态以及高分散状态的平衡态物理化学性质及其规律性。由于以平衡态为前提,时间不再是变量。属于这方面的物理化学分支学科有、、溶液化学、胶体化学和表面化学。
2.化学体系的微观结构和性质 以量子力学为理论基础,研究分子、分子簇和晶体的结构,物体的体相中原子和分子的空间结构、表面相的结构,以及结构与物性之间的关系与规律性。属于这方面的物理化学分支学科有、晶体化学和。
3.化学体系的动态性质 研究由于化学或物理因素的扰动而引起的体系的化学变化过程速率和变化机理。此时,时间是与过程密切相关的重要变量之一。属于这方面的物理化学分支学科有、、催化科学与技术、、、、、(以为代表)等。
在理论研究方面,快速大型电子计算机和数值方法的广泛应用,扩展了量子化学在定量计算方面的能力。研究对象不仅涉及大分子,还可用以模拟复杂体系的动态过程。提出的以及R.B.伍德沃德和R.霍夫曼提出的,是量子化学应用于具体化学体系时的重要理论成果。但是仍然没有达到人们所期望的利用量子化学为基础解决和认识所有化学问题的水平。量子力学基本原理和化学实验的紧密结合将有助于解决这个问题。为此,发展能够应用于复杂分子体系的量子化学计算方法是实现上述目标的前提之一。因而W.科恩以电子密度泛函理论和J.波普尔以量子化学计算方法及模型化学等研究成果获得了1998年的。[2]
物理化学发展趋势
物理学和数学的成就,加上计算机技术的飞速发展,为物理化学的发展提供了新的领域。由于不再局限于方程的解析解、数值方法的应用,使得固体、弹性体和其他非理想体系均已成为物理化学的研究对象,为与技术的研究增添了新的理论武器,并且更加接近工程实际。20世纪70年代初,I.普里戈金等提出的理论,使得物理化学的理论体系由传统的平衡态热力学扩展到全新的领域,而对远离平衡的体系稳定性的理解,将有助于人们对于很多实际过程包括过程认识的深化。
80年代后期,以为代表的微观显微学的兴起,推动了与技术的发展。纳米材料不仅有着极强的应用背景,有关材料的合成、表征、功能和它们的应用研究,往往涉及多种学科和技术,并且和绝大部分的化学领域有着极为密切的关系,为现代化学的发展提供了一个崭新的研究领域。由于纳米尺度的微粒所包含粒子数的量级和经典的物理化学体系偏离甚远,因而适合纳米体系的物理化学理论研究和实验方法的开发,将成为21世纪物理化学中的另一个极具挑战性的新领域。
催化是化学研究中的永久课题之一。在化工生产、能源、农业、生命科学、医药等领域都有及其重要的意义,但至今对于催化作用的原理和大多数催化过程的反应机理仍然存在着疑问,还不能随心所欲地设计出对于某个特殊反应体系具有高效催化作用的催化剂。组合化学方法的应用可以加速有效催化剂的筛选过程,将有助于加速催化理论的发展。
和仿酶催化研究是催化科学与技术中的新兴领域,它将促进、合成化学、和物理学、生物学和其他技术领域的相互渗透,并将在大幅度提高化工生产率的同时,促使绿色化学目标的实现。
沈文霞.物理化学核心教程 :科学出版社,2009年8月
.中文百科[引用日期]
爱奇艺(),原名...
提供资源类型:

我要回帖

更多关于 近代物理学诞生 的文章

 

随机推荐