高数中高数傅里叶变换换中的jw是什么?怎么来的。求解

若x(n)的傅里叶变换为X(e^jw),那么[x(n)]^2的傅里叶变换是什么?
微加幸福127
平方的傅里叶变换是频域上的卷积,X(e^jw)自己和自己的卷积没有具体的公式来表示的如满意请采纳
如满意请采纳~谢谢~
为您推荐:
其他类似问题
扫描下载二维码牛!不看任何数学公式来讲解傅里叶变换
牛!不看任何数学公式来讲解傅里叶变换
前一段时间给大家发过一篇《世界上最伟大的十个公式》傅里叶变换排名第九,可见它的伟大!傅里叶变换在电子工程应用中,使用非常广泛,但是理解起来比较难懂,所以找来一篇文章分享给大家。 这篇文章的核心思想是:  要让读者在不看任何数学公式的情况下理解傅里叶分析。  傅里叶分析不仅仅是一个数学工具,更是一种可以彻底颠覆一个人以前世界观的思维模式。但不幸的是,傅里叶分析的公式看起来太复杂了,所以很多大一新生上来就懵圈并从此对它深恶痛绝。老实说,这么有意思的东西居然成了大学里的杀手课程,不得不归咎于编教材的人实在是太严肃了。(您把教材写得好玩一点会死吗?会死吗?)所以我一直想写一个有意思的文章来解释傅里叶分析,有可能的话高中生都能看懂的那种。所以,不管读到这里的您从事何种工作,我保证您都能看懂,并且一定将体会到通过傅里叶分析看到世界另一个样子时的快感。至于对于已经有一定基础的朋友,也希望不要看到会的地方就急忙往后翻,仔细读一定会有新的发现。  ————以上是定场诗————  下面进入正题:  抱歉,还是要啰嗦一句:其实学习本来就不是易事,我写这篇文章的初衷也是希望大家学习起来更加轻松,充满乐趣。但是千万!千万不要把这篇文章收藏起来,或是存下地址,心里想着:以后有时间再看。这样的例子太多了,也许几年后你都没有再打开这个页面。无论如何,耐下心,读下去。这篇文章要比读课本要轻松、开心得多……  p.s.本文无论是 cos 还是 sin,都统一用“正弦波”(Sine Wave)一词来代表简谐波。  一、什么是频域  从我们出生,我们看到的世界都以时间贯穿,股票的走势、人的身高、汽车的轨迹都会随着时间发生改变。这种以时间作为参照来观察动态世界的方法我们称其为时域分析。而我们也想当然的认为,世间万物都在随着时间不停的改变,并且永远不会静止下来。但如果我告诉你,用另一种方法来观察世界的话,你会发现世界是永恒不变的,你会不会觉得我疯了?我没有疯,这个静止的世界就叫做频域。  先举一个公式上并非很恰当,但意义上再贴切不过的例子:  在你的理解中,一段音乐是什么呢?  这是我们对音乐最普遍的理解,一个随着时间变化的震动。但我相信对于乐器小能手们来说,音乐更直观的理解是这样的:  好的!下课,同学们再见。  是的,其实这一段写到这里已经可以结束了。上图是音乐在时域的样子,而下图则是音乐在频域的样子。所以频域这一概念对大家都从不陌生,只是从来没意识到而已。  现在我们可以回过头来重新看看一开始那句痴人说梦般的话:世界是永恒的。  将以上两图简化:  时域:频域:  在时域,我们观察到钢琴的琴弦一会上一会下的摆动,就如同一支股票的走势;而在频域,只有那一个永恒的音符。  所以  你眼中看似落叶纷飞变化无常的世界,实际只是躺在上帝怀中一份早已谱好的乐章。  抱歉,这不是一句鸡汤文,而是黑板上确凿的公式:傅里叶同学告诉我们,任何周期函数,都可以看作是不同振幅,不同相位正弦波的叠加。在第一个例子里我们可以理解为,利用对不同琴键不同力度,不同时间点的敲击,可以组合出任何一首乐曲。  而贯穿时域与频域的方法之一,就是传中说的傅里叶分析。傅里叶分析可分为傅里叶级数(Fourier Serie)和傅里叶变换(Fourier Transformation),我们从简单的开始谈起。  二、傅里叶级数(Fourier Series)的频谱  还是举个栗子并且有图有真相才好理解。  如果我说我能用前面说的正弦曲线波叠加出一个带 90 度角的矩形波来,你会相信吗?你不会,就像当年的我一样。但是看看下图:  第一幅图是一个郁闷的正弦波 cos(x)  第二幅图是 2 个卖萌的正弦波的叠加 cos (x) +a.cos (3x)  第三幅图是 4 个发春的正弦波的叠加  第四幅图是 10 个便秘的正弦波的叠加  随着正弦波数量逐渐的增长,他们最终会叠加成一个标准的矩形,大家从中体会到了什么道理?  (只要努力,弯的都能掰直!)  随着叠加的递增,所有正弦波中上升的部分逐渐让原本缓慢增加的曲线不断变陡,而所有正弦波中下降的部分又抵消了上升到最高处时继续上升的部分使其变为水平线。一个矩形就这么叠加而成了。但是要多少个正弦波叠加起来才能形成一个标准 90 度角的矩形波呢?不幸的告诉大家,答案是无穷多个。(上帝:我能让你们猜着我?)  不仅仅是矩形,你能想到的任何波形都是可以如此方法用正弦波叠加起来的。这是没有接触过傅里叶分析的人在直觉上的第一个难点,但是一旦接受了这样的设定,游戏就开始有意思起来了。  还是上图的正弦波累加成矩形波,我们换一个角度来看看:  在这几幅图中,最前面黑色的线就是所有正弦波叠加而成的总和,也就是越来越接近矩形波的那个图形。而后面依不同颜色排列而成的正弦波就是组合为矩形波的各个分量。这些正弦波按照频率从低到高从前向后排列开来,而每一个波的振幅都是不同的。一定有细心的读者发现了,每两个正弦波之间都还有一条直线,那并不是分割线,而是振幅为 0 的正弦波!也就是说,为了组成特殊的曲线,有些正弦波成分是不需要的。  这里,不同频率的正弦波我们成为频率分量。  好了,关键的地方来了!!  如果我们把第一个频率最低的频率分量看作“1”,我们就有了构建频域的最基本单元。  对于我们最常见的有理数轴,数字“1”就是有理数轴的基本单元。  时域的基本单元就是“1 秒”,如果我们将一个角频率为的正弦波 cos(t)看作基础,那么频域的基本单元就是   有了“1”,还要有“0”才能构成世界,那么频域的“0”是什么呢?cos(0t)就是一个周期无限长的正弦波,也就是一条直线!所以在频域,0 频率也被称为直流分量,在傅里叶级数的叠加中,它仅仅影响全部波形相对于数轴整体向上或是向下而不改变波的形状。  接下来,让我们回到初中,回忆一下已经死去的八戒,啊不,已经死去的老师是怎么定义正弦波的吧。  正弦波就是一个圆周运动在一条直线上的投影。所以频域的基本单元也可以理解为一个始终在旋转的圆     介绍完了频域的基本组成单元,我们就可以看一看一个矩形波,在频域里的另一个模样了:  这是什么奇怪的东西?  这就是矩形波在频域的样子,是不是完全认不出来了?教科书一般就给到这里然后留给了读者无穷的遐想,以及无穷的吐槽,其实教科书只要补一张图就足够了:频域图像,也就是俗称的频谱,就是——  再清楚一点:  可以发现,在频谱中,偶数项的振幅都是0,也就对应了图中的彩色直线。振幅为 0 的正弦波。   老实说,在我学傅里叶变换时,维基的这个图还没有出现,那时我就想到了这种表达方法,而且,后面还会加入维基没有表示出来的另一个谱——相位谱。  但是在讲相位谱之前,我们先回顾一下刚刚的这个例子究竟意味着什么。记得前面说过的那句“世界是静止的”吗?估计好多人对这句话都已经吐槽半天了。想象一下,世界上每一个看似混乱的表象,实际都是一条时间轴上不规则的曲线,但实际这些曲线都是由这些无穷无尽的正弦波组成。我们看似不规律的事情反而是规律的正弦波在时域上的投影,而正弦波又是一个旋转的圆在直线上的投影。那么你的脑海中会产生一个什么画面呢?  我们眼中的世界就像皮影戏的大幕布,幕布的后面有无数的齿轮,大齿轮带动小齿轮,小齿轮再带动更小的。在最外面的小齿轮上有一个小人——那就是我们自己。我们只看到这个小人毫无规律的在幕布前表演,却无法预测他下一步会去哪。而幕布后面的齿轮却永远一直那样不停的旋转,永不停歇。这样说来有些宿命论的感觉。说实话,这种对人生的描绘是我一个朋友在我们都是高中生的时候感叹的,当时想想似懂非懂,直到有一天我学到了傅里叶级数……  三、傅里叶级数(Fourier Series)的相位谱  上一章的关键词是:从侧面看。这一章的关键词是:从下面看。  在这一章最开始,我想先回答很多人的一个问题:傅里叶分析究竟是干什么用的?这段相对比较枯燥,已经知道了的同学可以直接跳到下一个分割线。  先说一个最直接的用途。无论听广播还是看电视,我们一定对一个词不陌生——频道。频道频道,就是频率的通道,不同的频道就是将不同的频率作为一个通道来进行信息传输。下面大家尝试一件事:  先在纸上画一个 sin(x),不一定标准,意思差不多就行。不是很难吧。  好,接下去画一个 sin(3x)+sin(5x)的图形。  别说标准不标准了,曲线什么时候上升什么时候下降你都不一定画的对吧?  好,画不出来不要紧,我把 sin(3x)+sin(5x)的曲线给你,但是前提是你不知道这个曲线的方程式,现在需要你把 sin(5x)给我从图里拿出去,看看剩下的是什么。这基本是不可能做到的。  但是在频域呢?则简单的很,无非就是几条竖线而已。  所以很多在时域看似不可能做到的数学操作,在频域相反很容易。这就是需要傅里叶变换的地方。尤其是从某条曲线中去除一些特定的频率成分,这在工程上称为滤波,是信号处理最重要的概念之一,只有在频域才能轻松的做到。  再说一个更重要,但是稍微复杂一点的用途——求解微分方程。(这段有点难度,看不懂的可以直接跳过这段)微分方程的重要性不用我过多介绍了。各行各业都用的到。但是求解微分方程却是一件相当麻烦的事情。因为除了要计算加减乘除,还要计算微分积分。而傅里叶变换则可以让微分和积分在频域中变为乘法和除法,大学数学瞬间变小学算术有没有。  傅里叶分析当然还有其他更重要的用途,我们随着讲随着提。  ————————————————————————————————————  下面我们继续说相位谱:  通过时域到频域的变换,我们得到了一个从侧面看的频谱,但是这个频谱并没有包含时域中全部的信息。因为频谱只代表每一个对应的正弦波的振幅是多少,而没有提到相位。基础的正弦波A.sin (wt+θ)中,振幅,频率,相位缺一不可,不同相位决定了波的位置,所以对于频域分析,仅仅有频谱(振幅谱)是不够的,我们还需要一个相位谱。那么这个相位谱在哪呢?我们看下图,这次为了避免图片太混论,我们用 7 个波叠加的图。  鉴于正弦波是周期的,我们需要设定一个用来标记正弦波位置的东西。在图中就是那些小红点。小红点是距离频率轴最近的波峰,而这个波峰所处的位置离频率轴有多远呢?为了看的更清楚,我们将红色的点投影到下平面,投影点我们用粉色点来表示。当然,这些粉色的点只标注了波峰距离频率轴的距离,并不是相位。  这里需要纠正一个概念:时间差并不是相位差。如果将全部周期看作 2Pi 或者 360 度的话,相位差则是时间差在一个周期中所占的比例。我们将时间差除周期再乘 2Pi,就得到了相位差。  在完整的立体图中,我们将投影得到的时间差依次除以所在频率的周期,就得到了最下面的相位谱。所以,频谱是从侧面看,相位谱是从下面看。下次偷看女生裙底被发现的话,可以告诉她:“对不起,我只是想看看你的相位谱。”  注意到,相位谱中的相位除了0,就是 Pi。因为 cos(t+Pi)=-cos(t),所以实际上相位为 Pi 的波只是上下翻转了而已。对于周期方波的傅里叶级数,这样的相位谱已经是很简单的了。另外值得注意的是,由于 cos(t+2Pi)=cos(t),所以相位差是周期的,pi 和 3pi,5pi,7pi 都是相同的相位。人为定义相位谱的值域为(-pi,pi],所以图中的相位差均为 Pi。  最后来一张大集合:  四、傅里叶变换(Fourier Tranformation)  相信通过前面三章,大家对频域以及傅里叶级数都有了一个全新的认识。但是文章在一开始关于钢琴琴谱的例子我曾说过,这个栗子是一个公式错误,但是概念典型的例子。所谓的公式错误在哪里呢?  傅里叶级数的本质是将一个周期的信号分解成无限多分开的(离散的)正弦波,但是宇宙似乎并不是周期的。曾经在学数字信号处理的时候写过一首打油诗:  往昔连续非周期,  回忆周期不连续,  任你 ZT、DFT,  还原不回去。  (请无视我渣一样的文学水平……)  在这个世界上,有的事情一期一会,永不再来,并且时间始终不曾停息地将那些刻骨铭心的往昔连续的标记在时间点上。但是这些事情往往又成为了我们格外宝贵的回忆,在我们大脑里隔一段时间就会周期性的蹦出来一下,可惜这些回忆都是零散的片段,往往只有最幸福的回忆,而平淡的回忆则逐渐被我们忘却。因为,往昔是一个连续的非周期信号,而回忆是一个周期离散信号。  是否有一种数学工具将连续非周期信号变换为周期离散信号呢?抱歉,真没有。  比如傅里叶级数,在时域是一个周期且连续的函数,而在频域是一个非周期离散的函数。这句话比较绕嘴,实在看着费事可以干脆回忆第一章的图片。  而在我们接下去要讲的傅里叶变换,则是将一个时域非周期的连续信号,转换为一个在频域非周期的连续信号。  算了,还是上一张图方便大家理解吧:  或者我们也可以换一个角度理解:傅里叶变换实际上是对一个周期无限大的函数进行傅里叶变换。  所以说,钢琴谱其实并非一个连续的频谱,而是很多在时间上离散的频率,但是这样的一个贴切的比喻真的是很难找出第二个来了。  因此在傅里叶变换在频域上就从离散谱变成了连续谱。那么连续谱是什么样子呢?  你见过大海么?  为了方便大家对比,我们这次从另一个角度来看频谱,还是傅里叶级数中用到最多的那幅图,我们从频率较高的方向看。  以上是离散谱,那么连续谱是什么样子呢?  尽情的发挥你的想象,想象这些离散的正弦波离得越来越近,逐渐变得连续……  直到变得像波涛起伏的大海:  很抱歉,为了能让这些波浪更清晰的看到,我没有选用正确的计算参数,而是选择了一些让图片更美观的参数,不然这图看起来就像屎一样了。  不过通过这样两幅图去比较,大家应该可以理解如何从离散谱变成了连续谱的了吧?原来离散谱的叠加,变成了连续谱的累积。所以在计算上也从求和符号变成了积分符号。  不过,这个故事还没有讲完,接下去,我保证让你看到一幅比上图更美丽壮观的图片,但是这里需要介绍到一个数学工具才能然故事继续,这个工具就是——  五、宇宙耍帅第一公式:欧拉公式  虚数i这个概念大家在高中就接触过,但那时我们只知道它是-1 的平方根,可是它真正的意义是什么呢?这里有一条数轴,在数轴上有一个红色的线段,它的长度是1。当它乘以 3 的时候,它的长度发生了变化,变成了蓝色的线段,而当它乘以-1 的时候,就变成了绿色的线段,或者说线段在数轴上围绕原点旋转了 180 度。  我们知道乘-1 其实就是乘了两次 i 使线段旋转了 180 度,那么乘一次 i 呢——答案很简单——旋转了 90 度。  同时,我们获得了一个垂直的虚数轴。实数轴与虚数轴共同构成了一个复数的平面,也称复平面。这样我们就了解到,乘虚数i的一个功能——旋转。  现在,就有请宇宙第一耍帅公式欧拉公式隆重登场——这个公式在数学领域的意义要远大于傅里叶分析,但是乘它为宇宙第一耍帅公式是因为它的特殊形式——当x等于 Pi 的时候。经常有理工科的学生为了跟妹子表现自己的学术功底,用这个公式来给妹子解释数学之美:”石榴姐你看,这个公式里既有自然底数e,自然数 1 和0,虚数i还有圆周率 pi,它是这么简洁,这么美丽啊!“但是姑娘们心里往往只有一句话:”臭屌丝……“  这个公式关键的作用,是将正弦波统一成了简单的指数形式。我们来看看图像上的涵义:  欧拉公式所描绘的,是一个随着时间变化,在复平面上做圆周运动的点,随着时间的改变,在时间轴上就成了一条螺旋线。如果只看它的实数部分,也就是螺旋线在左侧的投影,就是一个最基础的余弦函数。而右侧的投影则是一个正弦函数。  关于复数更深的理解,大家可以参考:  复数的物理意义是什么?(关注 EETOP微信号后 回复关键词 数学 可见这篇文章)  这里不需要讲的太复杂,足够让大家理解后面的内容就可以了。  六、指数形式的傅里叶变换  有了欧拉公式的帮助,我们便知道:正弦波的叠加,也可以理解为螺旋线的叠加在实数空间的投影。而螺旋线的叠加如果用一个形象的栗子来理解是什么呢?  光波  高中时我们就学过,自然光是由不同颜色的光叠加而成的,而最著名的实验就是牛顿师傅的三棱镜实验:  所以其实我们在很早就接触到了光的频谱,只是并没有了解频谱更重要的意义。  但不同的是,傅里叶变换出来的频谱不仅仅是可见光这样频率范围有限的叠加,而是频率从 0 到无穷所有频率的组合。  这里,我们可以用两种方法来理解正弦波:  第一种前面已经讲过了,就是螺旋线在实轴的投影。  另一种需要借助欧拉公式的另一种形式去理解:  将以上两式相加再除2,得到:  这个式子可以怎么理解呢?  我们刚才讲过,e^(it)可以理解为一条逆时针旋转的螺旋线,那么e^(-it)则可以理解为一条顺时针旋转的螺旋线。而 cos (t)则是这两条旋转方向不同的螺旋线叠加的一半,因为这两条螺旋线的虚数部分相互抵消掉了!  举个例子的话,就是极化方向不同的两束光波,磁场抵消,电场加倍。  这里,逆时针旋转的我们称为正频率,而顺时针旋转的我们称为负频率(注意不是复频率)。  好了,刚才我们已经看到了大海——连续的傅里叶变换频谱,现在想一想,连续的螺旋线会是什么样子:  想象一下再往下翻:  是不是很漂亮?  你猜猜,这个图形在时域是什么样子?  哈哈,是不是觉得被狠狠扇了一个耳光。数学就是这么一个把简单的问题搞得很复杂的东西。  顺便说一句,那个像大海螺一样的图,为了方便观看,我仅仅展示了其中正频率的部分,负频率的部分没有显示出来。  如果你认真去看,海螺图上的每一条螺旋线都是可以清楚的看到的,每一条螺旋线都有着不同的振幅(旋转半径),频率(旋转周期)以及相位。而将所有螺旋线连成平面,就是这幅海螺图了。  好了,讲到这里,相信大家对傅里叶变换以及傅里叶级数都有了一个形象的理解了,我们最后用一张图来总结一下:  好了,傅里叶的故事终于讲完了,下面来讲讲我的故事:  这篇文章第一次被卸下来的地方你们绝对猜不到在哪,是在一张高数考试的卷子上。当时为了刷分,我重修了高数(上),但是后来时间紧压根没复习,所以我就抱着裸考的心态去了考场。但是到了考场我突然意识到,无论如何我都不会比上次考的更好了,所以干脆写一些自己对于数学的想法吧。于是用了一个小时左右的时间在试卷上洋洋洒洒写了本文的第一草稿。  你们猜我的了多少分?  6 分  没错,就是这个数字。而这 6 分的成绩是因为最后我实在无聊,把选择题全部填上了C,应该是中了两道,得到了这宝贵的 6 分。说真的,我很希望那张卷子还在,但是应该不太可能了。  那么你们猜猜我第一次信号与系统考了多少分呢?  45 分  没错,刚刚够参加补考的。但是我心一横没去考,决定重修。因为那个学期在忙其他事情,学习真的就抛在脑后了。但是我知道这是一门很重要的课,无论如何我要吃透它。说真的,信号与系统这门课几乎是大部分工科课程的基础,尤其是通信专业。  在重修的过程中,我仔细分析了每一个公式,试图给这个公式以一个直观的理解。虽然我知道对于研究数学的人来说,这样的学习方法完全没有前途可言,因为随着概念愈加抽象,维度越来越高,这种图像或者模型理解法将完全丧失作用。但是对于一个工科生来说,足够了。  后来来了德国,这边学校要求我重修信号与系统时,我彻底无语了。但是没办法,德国人有时对中国人就是有种藐视,觉得你的教育不靠谱。所以没办法,再来一遍吧。  这次,我考了满分,而及格率只有一半。  老实说,数学工具对于工科生和对于理科生来说,意义是完全不同的。工科生只要理解了,会用,会查,就足够了。但是很多高校却将这些重要的数学课程教给数学系的老师去教。这样就出现一个问题,数学老师讲得天花乱坠,又是推理又是证明,但是学生心里就只有一句话:学这货到底干嘛用的?  缺少了目标的教育是彻底的失败。  在开始学习一门数学工具的时候,学生完全不知道这个工具的作用,现实涵义。而教材上有只有晦涩难懂,定语就二十几个字的概念以及看了就眼晕的公式。能学出兴趣来就怪了!  好在我很幸运,遇到了大连海事大学的吴楠老师。他的课全程来看是两条线索,一条从上而下,一条从下而上。先将本门课程的意义,然后指出这门课程中会遇到哪样的问题,让学生知道自己学习的某种知识在现实中扮演的角色。然后再从基础讲起,梳理知识树,直到延伸到另一条线索中提出的问题,完美的衔接在一起!  这样的教学模式,我想才是大学里应该出现的。  最后,写给所有给我点赞并留言的同学。真的谢谢大家的支持,也很抱歉不能一一回复。因为知乎专栏的留言要逐次加载,为了看到最后一条要点很多次加载。当然我都坚持看完了,只是没办法一一回复。  本文只是介绍了一种对傅里叶分析新颖的理解方法,对于求学,还是要踏踏实实弄清楚公式和概念,学习,真的没有捷径。但至少通过本文,我希望可以让这条漫长的路变得有意思一些。在关注微信号 eetop-1 之后回复如下关键词
查看下列文章:数学 :简单说说傅立叶变换和拉普拉斯变换(z 变换)傅立叶变换、拉普拉斯变换、Z变换最全攻略复数的物理意义傅立叶变换的物理意义拉普拉斯变换的物理意义卷积的物理意义论频谱中负频率成分的物理意义FFT结果的物理意义MIT牛人解说数学体系香农公式和奈奎斯特准则在通信中的意义是什么?
发表评论:
TA的最新馆藏[转]&[转]&傅里叶变换:MP3、JPEG和Siri背后的数学 - 文章 - 伯乐在线
& 傅里叶变换:MP3、JPEG和Siri背后的数学
九年前,当我还坐在学校的物理数学课的课堂里时,我的老师为我们讲授了一种新方法,给我留下了深刻印象。
我认为,毫不夸张地说,这是对数学理论发现最广泛的应用。应用的领域包括:量子物理、射电天文学、MP3和JPEG压缩、X-射线晶体学、语音识别、PET或MRI扫描。这种数学方法叫做傅里叶变换,这种方法因18世纪的法国物理学家、数学家约瑟夫·傅立叶(Joseph Fourier)而得名。这种方法甚至被詹姆斯·沃森和弗朗西斯·克里克用来解码由罗莎琳德·富兰克林通过X射线得到的DNA双螺旋结构。(克里克是傅里叶变换的专家,他写过一篇名为《傅里叶变换在观鸟者中的应用》的趣文,来向名为沃森的观鸟爱好者解释这一数学概念。)
无论你在听MP3格式的歌曲,还是在网页上浏览图片,或者向SIRI提问,甚至打开收音机时,你都可能在日常生活中应用了演化的傅里叶变换。(顺便说一下,傅里叶并不是一个敷衍取巧的人。在他研究的理论物理和数学之外,他还是第一个发现温室效应的人&&)。
那么,什么是傅里叶理论呢,为什么他的这个理论如此有用?想想你在钢琴键盘上敲响一个音符。当你按下琴键的时候,钢琴中有一个小锤来来回回地敲击一根琴弦(对于音准do大约是440次每秒)。随着琴弦振动,它周围的空气分子也来回震动,从而创造了一波震动的空气分子,我们称之为声。如果你能看空气中进行的这种有规律的舞蹈,你会发现一系列平稳,起伏的,无休止的重复。这就是所谓的正弦波曲线,或正弦波。(特别说明:在钢琴的例子中,肯能会产生不止一条正弦波实际演奏中,钢琴音色的丰富性正是来源于在主要正弦波之外的那些轻柔的泛音。钢琴的音符可以大致模仿一条正弦波,但是对于单一的正弦波声音来说,音叉发出的声音是一个更加贴切的例子。)
现在,让我们暂时放下单独一个音符,而考虑由三个按键同时发出的和弦声。和弦结果的声波并不漂亮——它看起来杂乱无章。但是,在这混乱的背后有一个简单的模型。毕竟,和弦只是三个音符的相互融合与碰撞,因此这样混乱的声波,实际上只是三种音符(正弦曲线)的和而已。
傅里叶认为这不仅仅音乐和弦的特殊属性,而可以推广应用到一切重复的波形中,无论这个波形是方形,圆形,波浪,三角形伙食其他。傅里叶变换像是一种数学棱镜——你输入一个波形并且将这种波形分解为不同成分——这些音符(正弦曲线)会相互叠加而形成新的重建波形。
如果这听起来有一些抽象的话,有一些可视化的方式来使得傅里叶的方法更加直观。第一种方法是有卢卡斯(Lucas V. Barbosa)提出的。他是一名来自巴西的物理学学生,他将业余时间无偿用于为维基百科制作关于数学和科学的动画,在维基百科上他被称为“LucasVB”。
那么,现在让我们来看看输入一个方形波,经过傅里叶变换后,会输出怎样的波形。
在这些图形中(),红色的方形波被分离为单纯波形的集合(蓝色的正弦曲线)。将这些蓝色波形认为是红色波形的数学成分列表。在这个比喻中,傅里叶变换就像是一种药方——他准确地告诉你要重建原始波形,每一种简单波形你要使用多少。动画中的垂直蓝色线,是每种波形数量的直观表示。
思考这个问题,还有一种由马修·亨德森( Matthew Henderson or Matthen)提供的方法。他是剑桥大学的博士生,并且对于创建数学动画模型非常有兴趣。他用圆形而不是正弦曲线来解释傅里叶变换。这种方法包含了一组不同大小的源,每个圆的圆心都在一个更大的圆的边缘上。然后,这些圆开始转动,大圆在小圆的周围摆动,小圆的运动速度大于大圆。如果你追踪最小圆上一个点的运动轨迹,如下面的动画和截图所示,你可以重建任意形状的波形。傅里叶变换再一次告诉你波形是怎样产生的:以怎样的速度去移动哪些圆。
如果你年纪够大以至于你用过呼吸量描记仪,那么通过层叠的齿轮来描述复杂模型的想法你可能很熟悉。LucasVB在同一个动画上制作了互动的版本,使得你可以随意改变圆圈的大小。
总的来说,傅里叶变换告诉你,在一个整体的波形中,每一个单独的“音符”(正弦曲线或是圆圈)的比例。这就是傅里叶变换如此有用的原因。想象一下,你正在和你的朋友通电话,同时你想让他们能够画出近似方形的波形。复杂的方式是读出一长串的数字,每个数字表示了相应时间点上波形的高度。有了这些数字,你的朋友可以耐心地绘制出原始波形。这就是原始的音频格式比如WAV的基本原理。但是,如果你的朋友知道傅里叶变换,那么你可以更加聪明地完成这个工作:你只要告诉他们少量数字——上图中提到的不同的圆的尺寸。他们可以用这些圆来重建原始波形。
这不仅仅是数学花招。傅里叶变换出现在几乎所有存在波形的地方。无处不在的MP3格式使用一种变形的傅里叶变换来达到相比之前的WAV(读作“wave”)更大的压缩率。对于每个音频片段,傅里叶变换将音频波形分解为它的成分音符并且保存下来,从而代替存储原始波形。傅里叶变换还可以告诉你在一首歌中每个音符所占的比例,你可以知道哪些音符是这首歌的基本元素。音调很高的音符并不重要(我们的耳朵几乎不能听见),因此,MP3格式放弃保存这些音符,从而取得了更高的数据压缩率。这正是高保真音响爱好者不喜欢MP3格式的原因——它不是一种无损的音频格式,高保真爱好者表示他们可以听出其中的差别。
这也是智能手机的应用程序Shazam怎样识别一首歌的原理。它将音乐分割成块,利用傅里叶变换算出每一块中的音符成分。然后它搜索数据库,来寻找这样的“音符指纹”与他们已有文件中的一首歌相匹配。语音识别同样使用“傅里叶——指纹”的思想,将你的声音与已知单词列表进行比较。
你也可以在图像上利用傅里叶变换。有一个极好的视频来说明你怎么利用圆圈来绘制辛普森的脸。在线百科全书Wolfram Alpha采用了相似的理念来绘制名人头像。听起来,这似乎可以存下来用于一个恶搞的鸡尾酒会,但是,这种方法也用于将图像压缩为JPEG文件。在以前的微软绘图中,图像是用位图(BMP)存放的,这种文件包含了一长串的数字,代表对每个像素点的颜色编码。JPEG格式就相当于图像格式中的MP3格式。建立一个JPEG文件,你首先将图片分割为很小的块,每块都是8像素*8像素。对于每个像素块,你可以用与重建辛普森的脸相同的画圆的办法来重建局部图像。正如MP3放弃保存高音一样,JPEG不保存极小的圆。这样做的结果是:牺牲了小部分的画面质量,来取得文件大小的巨大压缩。这样的理念,使得我们都喜欢的可视化网络世界成为可能(同时最终让我们得到了GIF格式)。
在科学研究中,傅里叶变换又有怎样的应用呢?我在推特上邀请科学家们来描述他们在工作中是怎样应用傅里叶的思想的。他们的回复使我惊讶。做出回复的科学家表示,他们正在利用傅里叶变换:研究不同的潜水器结构与水流的相互作用,试图预测即将到来的地震,识别距离遥远的星系的组成部分,寻找热量大爆炸残余物中的新物理成分,从x射线衍射模式揭示蛋白质的结构,为NASA分析数字信号,研究乐器的声学原理,改进水循环的模型,寻找脉冲星(自转的中子星),用核磁共振研究分子结构。傅里叶变换已经被用于通过破译油画中的化学物质,来识别假冒的杰克逊·波洛克绘画。
哇!这仅仅是一个相当传统的小数学技巧!
关于作者:
写的好形象。不知道有没有类似通俗易懂的小波变换的文章。
关于伯乐在线博客
在这个信息爆炸的时代,人们已然被大量、快速并且简短的信息所包围。然而,我们相信:过多“快餐”式的阅读只会令人“虚胖”,缺乏实质的内涵。伯乐在线内容团队正试图以我们微薄的力量,把优秀的原创文章和译文分享给读者,为“快餐”添加一些“营养”元素。
新浪微博:
推荐微信号
(加好友请注明来意)
– 好的话题、有启发的回复、值得信赖的圈子
– 分享和发现有价值的内容与观点
– 为IT单身男女服务的征婚传播平台
– 优秀的工具资源导航
– 翻译传播优秀的外文文章
– 国内外的精选文章
– UI,网页,交互和用户体验
– 专注iOS技术分享
– 专注Android技术分享
– JavaScript, HTML5, CSS
– 专注Java技术分享
– 专注Python技术分享
& 2016 伯乐在线

我要回帖

更多关于 高数微分方程求解 的文章

 

随机推荐