131mm x1双顶径96mm胎儿多重 大约是多少K

K+N开关CA11AD4609-EL-G521奥地利
价格:¥1元
生产地:奥地利厂商性质:经销商
品牌:型号:
公司电话:86-025-更新时间:
公司传真:86-025-
沈醉(联系我时,请说明是在中国化工仪器网上看到的,谢谢)
公司主营产品
传感器、编码器、电机
南京灼华电气有限公司是专业从事工业自动化、电气控制、自动化仪表开发、设计、生产、销售、服务为一体的高新企业。可为用户提供技术领先、安全可靠的工业过程控制产品及全面解决方案。产品可广泛应用于水泥、冶金、矿山、石油、化工、机械、电力、能源、环保、航空航天、机器人制造等多个行业领域。本公司与世界千余家各大厂商精诚合作,经销欧美日各类进口工控备件。如美国ASCO电磁阀、德国HYDAC、德国SICK、日本横河EJA、德国SAMSON阀门定位、美国FISHER阀门定位器、德国SCHUNK夹具、德国E+H、德国ASM传感器等等。常年备有大量库存现货,价格优惠,可提供技术选型支持
K+N开关CA11AD4609-EL-G521奥地利CH10-A251-600ECG10-D-6F93-608E转换开关KG316-T303-VE24(316A)KFD16BRCP010EF1000VDC16ACA11YA201/110LAMSCA10PC/G221S0矩形CA10PC5240KRNA.CG8A214-600FT2CH10-A290-600EV765/BH1CAD11A214-600KN2CA102POSITIONCG10-A176(A789)CA10PC9010-2A11MA723/B110USISCG4-A231-600FS2DESFCA10R-A750-600-FT6CA10RC3615CA10-CC/SOG251DH12CD2958*FTCA10PCKG80BT203/01ECA10-PC4123-3转换开关CH10-A220-600FT2/M999/472CA20-A215600CA10PC9025-4CG8-A211-600ECA10-A025-620ECA10-PCC315GBN388CA10-PC3098-7CA10A362-600E"""CAD11A214-600FT2开关"""CH16-A214-600EFG001CA10-A007-G00110AKG20AT306/D-P001VE2L351-A291-622EF201G411C80-A282-620-VE24KG64/K39M510HA开关CH10AT09FA231KG251T105/SGZ013*9P65CA10-XD0171-4CA10ITSX4CA10PC3215-2五位选择开关CH12A714*D-A004FDH10-4E-124*FT3-G521CA10PC3074-5E开关KG160T203/01ECF18C32851EFD-A292CA20F09465档自复位CA10-A214-600E24开关CA10BPC4018-2EG(改F-把手黑色)C42A326-620E/V900/D+V901/OFFCA20XT000*D-131PFKG41AC-33PH380V15KWKG10BT102701ECH10PC6210选择开关(2向)CH10A201FT2KG80K3DM510HCCH10-A230-600ECA10-PC9006-2开关KG20BK300-621E+KOH010/A11-ECAD11A/SOV845/A11/DCA10-1A714-600CH10WAA236-600FT2CA20-A223-600VE2CHR10LA41/EN69470BCG4-A311-FS2CH10A203V750D/3DH11A175-610FT2CG10-A214-608EKG41K301-600E配盒子PFD4KG20SISUBT103/01CG4ASOE2823位D12A-A3A-196-EMCA105POSITIONSKG32F47/24/150BT100/15开关CAD11ACA10-A711-G251徽板图ZH3K1E-005NCCA10PCS0/G221CA10-A723-G001CG87BQ082-600E/KA1065CKG160老练机万能转换开关A11-4对触点CA20XIEC947/EN60947/VDE0860A11-BRB697-EPI:233903NLAX74CA10PCCA10XD0165-1/ECCA10BPC型,F把手CA10-A210-600EG20STD3206ECG8-A203-600ESISU220ACA10A231-600FT2开关CA11BA230USISC315BCH10BA220-600KN1G251KG100T303/58VE2COFDESCG8A210FDESCG6A023-620FS2CG4A216-600C221S00E黑色CAD12A210-600CA10XD0165-1CA10-A176-600E24开关六挡转向模式开关CA10A244KG10BT103/RCZ002UCA10-PC-V750DCA25-A369-600EAT10EA250CA10A120-600EG/IPBG10A200EADA-9A063-2-F041KG10AAT11E591CA10PCCH16A220-600EFG001CG4-A234-600CA10-A72-600CA10A058CA10A212-620CA10PC5029-6CA10R-A235-600-FT6T303/S-A361*VE2-switchKOF456CA10XD0171-4/ECKG20T203/PSH013*KS12VCA10-A7751-FT1-V-G251CA10-PCKG80103/01EAMS#CA11USGD12AC/005KNWKG64BK602/D-A008ST隔离开关KG100T206/SGZ013*9P66CH10D-204*06FT4DAD11A207/GBA001HCG8A210-608E选择开关CA10PC5043-1ECH10-A023-620/SOG001PS-AI00RAC10A/DC4-20MADC24VKG250T203/13380VK+N开关CA11AD4609-EL-G521奥地利限位开关 编辑本词条由&科普中国&百科科学词条编写与应用工作项目 审核 。限位开关又称行程开关,可以安装在相对静止的物体(如固定架、门框等,简称静物)上或者运动的物体(如行车、门等,简称动物)上。当动物接近静物时,开关的连杆驱动开关的接点引起闭合的接点分断或者断开的接点闭合。由开关接点开、合状态的改变去控制电路和电机。中文名 限位开关 外文名 limit switch 分 & &类 缓冲开关、速度开关 作 & &用 限定机械设备的运动极限 又 & &称 行程开关 性 & &质 电气开关目录1 简介2 用途? 日常生活? 工业3 应用4 结构5 关系6 标准尺寸7 分类简介编辑限位开关就是用以限定机械设备的运动极限位置的电气开关。限位开关有接触式的和非接触式的。接触式的比较直观,机械设备的运动部件上,安装上行程开关,与其相对运动的固定点上安装极限位置的挡块,或者是相反安装位置。当行程开关的机械触头碰上挡块时,切断了(或改变了)控制电路,机械就停止运行或改变运行。由于机械的惯性运动,这种行程开关有一定的&超行程&以保护开关不受损坏。非接触式的形式很多,常见的有干簧管、光电式、感应式等,这几种形式在电梯中都能够见到。当然还有更多的先进形式。限位开关是一种常用的小电流主令电器。利用生产机械运动部件的碰撞使其触头动作来实现接通或分断控制电路,达到一定的控制目的。通常,这类开关被用来限制机械运动的位置或行程,使运动机械按一定位置或行程自动停止、反向运动、变速运动或自动往返运动等。在电气控制系统中,限位开关的作用是实现顺序控制、定位控制和位置状态的检测。用于控制机械设备的行程及限位保护。构造:由操作头、触点系统和外壳组成。在实际生产中,将限位开关安装在预先安排的位置,当装于生产机械运动部件上的模块撞击行程开关时,限位开关的触点动作,实现电路的切换。因此,行程开关是一种根据运动部件的行程位置而切换电路的电器,它的作用原理与按钮类似。限位开关广泛用于各类机床和起重机械,用以控制其行程、进行终端限位保护。在电梯的控制电路中,还利用行程开关来控制开关轿门的速度、自动开关门的限位,轿厢的上、下限位保护。 [1]&用途编辑日常生活限位开关的应用方面很多,很多电器里面都有它的身影。那这么简单的开关能起什么作用呢?它主要是起连锁保护的作用。最常见的例子莫过于其在洗衣机和录音机(录像机)中的应用了。在洗衣机的脱水(甩干)过程中转速很高,如果此时有人由于疏忽打开洗衣机的门或盖后,再把手伸进去,很容易对人造成伤害,为了避免这种事故的发生,在洗衣机的门或盖上装了个电接点,一旦有人开启洗衣机的门或盖时,就自动把电机断电,甚至还要靠机械办法联动,使门或盖一打开就立刻&刹车&,强迫转动着的部件停下来,免得伤害人身。在录音机和录像机中,我们常常使用到快进或者倒带,磁带急速地转动,但是当到达磁带的端点时会自动停下来。在这里行程开关又一次发挥了作用,不过这一次不是靠碰撞而是靠磁带的张力的突然增大引起动作的。工业限位开关主要用于将机械位移转变成电信号,使电动机的运行状态得以改变,从而控制机械动作或用作程序控制。限位开关真正的用武之地是在工业上,在那里它与其它设备配合,组成更复杂的自动化设备。机床上有很多这样的限位开关,用它控制工件运动或自动进刀的行程,避免发生碰撞事故。有时利用限位开关使被控物体在规定的两个位置之间自动换向,从而得到不断的往复运动。比如自动运料的小车到达终点碰着限位开关,接通了翻车机构,就把车里的物料翻倒出来,并且退回到起点。到达起点之后又碰着起点的行程开关,把装料机构的电路接通,开始自动装车。总是这样下去,就成了一套自动生产线,用不着人管,日以继夜地工作,节省了人的体力劳动。应用编辑限位开关可广泛应用于建筑、港口、矿山等行业的起重、传输机械的空间三坐标的控制和限位,限位开关由高精限位开关限位开关度的大传动比减速器和与其输出轴同步的机械记忆控制机构、传感器组成,因WTAU系列限位开关具有体积小、功能多、精度高、限位可调、通用性强及维护安装和使用调整方便等特点在工程机械中应用极其广泛。结构编辑限位开关分工作限位开关和极限限位开关,工作限位开关是用来给出机构动作到位信号的。极限限位开关是防止机构动作超出设计范围而发生事故的。工作限位开关安装在机构需要改变工况的位置,开关动作后,给出信号,进行别的相关动作。极限限位开关安装在机构动作的最远端,用来保护机构动作过大出现机构损坏。限位开关,指为保护内置微动开关免受外力、水、油、气体和尘埃等的损害,而组装在外壳内的开关,尤其适用于对机械强度和环境适应 性有特殊要求的地方。 形状大致分为横向型、竖向型和复合型。下图表示典型的竖向型限位开关的构造。限位开关大致上是由五个构成要素组成的。■内置微动开关驱动机构对于限位开关来说,微动开关的驱动机构是与密封性能和动作特性直接相关的重要部分。其构造分为三类,如下表所示。⑴活塞型根据密封方法不同,有表中的A型和B型2个种类。A型是用O型环 或薄膜密封的,由于密封橡胶没有外露,在抵制工作机械的切割碎 屑方面功能较强大,但其反面影响是,有可能会将砂子、切割粉末 等压入活塞的滑动面。B型虽然不会把砂子、切割粉末等压入,且 密封性能优于A型,但由于炽热的切割碎屑飞溅过来,有可能会损 坏橡胶帽。因此,要根据使用场所的不同选用A型或B型。而柱塞 型仍然通过柱塞的往复运动压缩或吸进空气。为此,如果长时间将柱塞压入,限位开关内的压缩空气逸失,内部 压力将与大气压相同,即使急于让柱塞复位,柱塞却有迟缓复位的 倾向。为了避免发生这种故障,设计时,根据柱塞的压入将空气的 压缩量控制在限位开关内部全部空气量的20%以内。另外,为了延 长微动开关的寿命,在这一构造内部设置了一个OT吸收机构,该 OT吸收机构采用OT吸收弹簧,用以吸收残余的柱塞的行程。该机 构相对于柱塞的运动,在中途停止按压微动开关辅助柱塞的行程。⑵铰链摆杆型在摆杆端部(滚珠),柱塞的行程量根据摆杆的比例扩大,因此, 一般不使用OT吸收机构。⑶旋转摆杆型举一个典型的示例,来示例WL的构造,但除此之外,还有两个类 型:将复位柱塞的功能赋予柱塞的类型;通过线圈弹簧获取复位 力、用凸轮带动辅助柱塞的类型。■开关的构成材料开关的主要部分是由下列材料构成的零件 材料 材料记号 特征接点 金 Au 抗腐蚀性非常优越,用于微小负载。因为其质地较柔软(维氏硬度HV25~65),因此较易黏着(接点黏着),并且在接点接触力较大的情况下接点容易凹陷。金、银合金 AuAg 90%金、10%银的合金抗腐蚀性非常优越,硬度为HV30~90,比金高,因此广泛用于微小负载用开关。白金、金、银合金 PGS 69%金、25%银、6%白金的合金抗腐蚀性非常优越,硬度也与金银合金相同,广泛用于微小负载用开关。称为作&1号合金&。银、钯合金 AgPd 抗腐蚀性较好,但较易吸附有机气体生成聚合物。50%银、50%钯的情况下,硬度为HV100 ~200。银 Ag 导电率、热传导率在金属中是最大的。虽然表现出较低的接触电阻,但其缺点是,在硫化气体的环境中较易生成硫化膜,在微小负载区域较易产生接触不良。硬度为HV25~45。多用于一般负载用开关。银、镍合金 AgNi 90%银、10%镍的银、镍合金导电率与银接近,在抗电弧、抗熔化方面表现优良。硬度为 HV65~115。银、铟、锡合金 AgInSn 硬度、熔点较高,抗电弧性优越,不易熔化或转移。可动弹簧、可动片 弹簧用磷青铜 C5210 压延性、抗疲劳性及抗腐蚀性优良。已进行退火处理。如果弹簧临界值(Kb0.075)C5210-H 为40kgf/mm2以上、C5210-EH为47kgf/mm2以上,较低,广泛用于小型微动开关的可动片。用于弹簧用铍铜(时效硬化处理型) C 压延加工后进行时效硬化处理。导电率较高,并且进行硬化处理后,如果弹簧临界值(LX36系列内部图片LX36系列内部图片Kb0.075)C1700-H在90kgf/mm2以上、C1720-H在47kgf/mm2以上,非常高,用于弹簧临界值必须为较高的微动开关。弹簧用铍铜(mill-hardend材料) C1700-□M C1720-□M 出厂时,材料厂商已进行过时效硬化处理(称为密尔哈敦材料),零件加工后(压延)无需进行时效硬化处理。如果弹簧临界值(Kb0.075)在65kgf/mm2以上(参考值),就会比弹簧用磷青铜高,广泛用于小型微动开关的可动弹簧。弹簧用不锈钢(奥氏体系列) SUS301-CSP SUS304-CSP 抗腐蚀性优良。临界值(Kb0.075)SUS301-CSP-H在50kgf/mm2以上、SUS304-CSP-H在40kgf/mm2以上。外壳、保护帽 苯酚树脂 PF 热硬化性树脂。广泛用LX36-82\\84\\88LX36-82\\84\\88于微动开关的外壳材料。UL温度指数为150℃,UL阻燃级别在94V-1 以上,吸水率为0.1~0.3%。微动开关多使用无氨材料。PBT树脂 PBTP 热可塑性树脂。玻璃纤维强化型多用于微动开关的外壳材料。UL温度指数为130,UL阻燃级别在94V-1以上,吸水率为0.07~0.1。PBT树脂 PETP 热可塑性树脂。玻璃纤维强化型用于微动开关的外壳材料。聚酰胺(尼龙)树脂 PA 热可塑性树脂。与PBT和PET相比,玻璃纤维强化型的耐热性较好。由于吸水率较高,因此请尽量选用吸水率较低的品种。UL温度指数为180℃,UL阻燃级别在94V-1以上,吸水率为0.2 ~1.2。聚苯硫醚 PPS 热可塑性树脂。与PA相比,其耐热性更为优越。UL温度指数为200℃,UL阻燃级别在94V-1 以上,吸水率为0.1。开关盒 铝(铸件) ADC 多用于限位开关的开关(箱)盒的材料。JIS H5302中有标准。锌(铸件) ZDC 与铝铸件相比,适用于较薄的部位,抗腐蚀性也比铝铸件优越。JIS H5301中有标准。密封橡胶 定腈橡胶 NBR 耐油性优良,广泛应用于限位开关。根据结合腈的量将腈的等级分为5类,即极高(43%以LX36系列参数简介LX36系列参数简介上)、高(36~42%)、中高(31~35%)、低(24%以下),耐油性、耐热型、耐寒性稍有不同。使用温度范围为-40~130℃。硅胶 SIR 耐热型、耐寒性优良,使用温度范围为-70~280℃,但耐油性较差。氟化胶 FRM 与腈丁二烯、硅胶相比,耐热型、耐寒性、耐油性优良,但在耐油性方面根据油的成分不同有时会比腈丁二烯还差。氯丁二烯橡胶 CR 耐臭氧性、耐气候性较好。广泛应用于对耐气候性有特殊要求的微动开关。限位开关 用语说明■一般用语限位开关:为保护小型开关不受外力、水、油、尘 埃等的侵害而将其装入金属外壳或者塑料 外壳中的开关。(以下称开关)额定值一般指作为开关特性和性能的保证标准的 量, 如额定电流, 额定电压等, 以特定 的条件为前提。有接点指利用接点的机械开合来实现开关的功能。接触形式根据各种用途构成接点的电气输入输出电路的方式。树脂固定(塑封端子)用导线对端子部分完好配线, 通过充填树 脂使该部分固定, 消除暴露在外的带电部 分, 提高密封性的一种方法。 [2]&■与结构、构造相关的用语■关于寿命的用语机械寿命将过行程(OT)设为规格值,在未通电状态下的开关寿命。电气寿命将过行程(OT) 设为规格值,在额定负载(阻性负载)下的开关寿命。FP (自由位置)没有施加外力时驱动杆的位置。OP (动作位置)向驱动杆施加外力,使可动接点刚从自由位置的状态开始反转时的位置。TTP (总行程位置)驱动杆到达驱动杆停止档时的位置。RP (返回位置)减少对驱动杆的外力,使可动接点刚从动作位置反转到自由位置状态时驱动杆的位置。OF (动作力)为了从自由位置移动到工作位置所必须给驱动杆施加的力。RF (回复力)为了从总行程位置移动到回复位置,必须对驱动杆施加的力。PT (预行程)驱动杆从自由位置到动作位置的移动距离 或移动角度。OT (过行程)驱动杆从动作位置到总行程位置的移动距离或移动角度。MD (应差行程)驱动杆从动作位置到返回位置的移动距离或移动角度。TT (总行程)驱动杆从自由位置到总行程位置的移动距离或移动角度。关系编辑(角度限位开关):7551位置限位开关鉴于7551型限位开关对材料,技术解决方案和大尺寸的选择,使得7511型限位开关尤其适用于腐蚀性的工作环境,适用于非常恶劣的操作条件,保证在任何时候整个生命周期的良好工作状态。TANGO位置限位开关Tango是为控制高架移动起重机,卷扬机和机床而设计的限位开关,通过电源接口(例如接触器或可编程控制器)操作电机的辅助控制器。Tango做为醉新一代的限位开关:采用特殊设计和使用高性能的聚合体,保证了在重负荷工作状况下的高抵抗性和耐久性,它的设计和外形尺寸方便安装和维护操作。XFSC-XFRZ 位置限位开关X-FCS系列位置限位开关具有&T&字型或&十&字型条杆,而X-FRZ系列的特点是仅有一个条杆或仅有一个带有弹簧回动滚轮的条杆。限位开关设计用于控制桥式起重机,升降机和机床的移动。限位开关的外壳和头部均由热塑材料(纤维玻璃增强尼龙)制作。这些材料和部件确保了设备的高防水防尘特性和持久性。AZ8系列限位开关(行程开关)通过UL/CSA/CE/CCC认证SUNS美国三实AZ8系列限位开关(行程开关)是一种低成本的检测元件,适合于许多种狭小的安装环境。开关坚固耐用,并有多种操作头可选,适合多种应用。拆下外壳,内部的触点块的正面和侧面都完全暴露在外,这对安装接线非常有利,开关底部柔软的电缆护套使安装接线更方便。防爆限位开关防爆限位开关是为了恶劣环境用户特别设计的。BX的设计是针对腐蚀、水、尘土、和油类进行的密封,这些外环境在NEMA1,3,4,6,7,9,13和IP67以及IEC 529中定义。这些外壳也符合欧洲的恶劣环境设计,双全部BX系列产品符合血European Directive的用于潜在爆炸性气体(94/9/EC)的设备和保护系统要求,这些要求对于与ATEX Directive。 [3]&标准尺寸编辑小型化设计,适用于狭小的空间合金本体,塑料上盖端子部全开放构造,便于布线改进型支持10A电流产品认证:UL、CSA、CE、CCC额定工作电压:250VAC,额定工作电流:10A防护等级:IP64壳体尺寸:28&64&25 mm,安装孔距离:21&56 mmSUNS美国三实产品型号:AZ8104 AZ8107 AZ8108 AZ8111 AZ8112 AZ8122 AZ8166 AZ8169 AZ8200分类编辑限位开关主要由开关元件,接线端子,开关操动件,传动部分组成,根据开关触头接通和断开机械机理,开关元件有下属二类。1. 缓动开关缓动开关:开关的接通和断开动作切换时间与开关操作频率有关,操作频率越快,开关的切换也越快。2. 速度开关速度开关:开关的接通和断开的转换时间与开关被操作的频率无关,只要开关被操作到一定位置,开关便发生接通和断开切换,此过程时间一般为弹簧弹跳所需时间,此时间段为一常数南京灼华电气有限公司是专业从事工业自动化、电气控制、自动化仪表开发、设计、生产、经销、服务为一体的高新企业。可为用户提供技术领先、安全可靠的工业过程控制产品及**解决方案。产品可广泛应用于水泥、冶金、矿山、石油、化工、机械、电力、能源、环保、航空**、机器人制造等多个行业领域。本公司与世界千余家各大厂商精诚合作,经销欧美日各类进口工控备件。如美国ASCO电磁阀、德国HYDAC、德国SICK、日本横河EJA、德国SAMSON阀门定位、美国FISHER阀门定位器、德国SCHUNK夹具、德国E+H、德国ASM传感器等等。常年备有大量库存现货,价格优惠,可提供技术选型支持。灼华优势原厂直购更专业:拥有德国实体公司和专业的技术工程师、询价客服人员组成的原厂直购团队原厂直购更省钱:真正实现源头采购,省去代理商和分销商,没有中间环节,做到优质平价原厂直购更快速:所有货物采用空运快递,让您每一次订购的、货物都能最快速的送达原厂直购更**:与欧盟近1000家工业品供应商建立合作,拥有丰富的产品线,几乎涵盖您所有的需求原厂直购更可靠:每一个订单都拥有进口报关单和原产地证明书,确保每一个产品都是原装进口真品原厂直购更帖心:只需要提供您需求的型号或铭牌,我们德国本土技术工程师将为您查询到相应的产品专业采购德国、法国、意大利等欧盟**工控产品、备品备件。1、我们分公司在德国,可以为您提供提供100%原装正品!2、不易寻找品牌、小金额,我们同样为您采购!3、只要是欧盟**的产品,我们可以为您询价并采购!4、随时欢迎您的来电询价。专注进口自动化设备15年,认真、热情、负责您的每一份询价,灼华是您理想的合作伙伴!&询价注意事项: & & & & & &&1.询价请按(品牌+型号+数量+贵公司名称、联络)格式; & & & & & &&2.询价请发正式询价函(E-mail,QQ,传递等),原厂回复一般为1-2个工作日; & & & & & &&3.提供最原始的询价资料,**附带铭牌、参数表仅在这一点上,后起之秀&华龙一号&就让全世界不可小觑。如果&华龙一号&能够在5年内通过英国通用设计审查,无疑等于拿到一张&全球斤牌通行证&。中法合作拼船出海法国电力拉着中广核角逐英国欣克利角C、塞兹韦尔C和布拉德韦尔B核电项目,有人说,这不是师傅带着徒弟出来揽活儿吗。&
您可能感兴趣的产品
该厂商的其他产品
相关技术文章
产品名称价格地区公司名称更新时间
面议上海市
面议东莞市
面议上海市材料通系统下载
当前位置:>
热门媒体号
热门企业号
金属注射成不锈钢17-4PH: 制程、性质与最佳的颗粒
耀德讲堂长篇专案翻译:邱耀弘博士/赵育德硕士
This paper was populated on page 49~76 Vol.12 No.2, June 2018, Powder Injection Molding International. 本文发表于国际粉末注射成形期刊 2018 年6月份第十二卷第二期第49~76页
Beginning of this article 本文开始
注意翻译按照有关英式英文内容已更改为美式英文!蓝色字体为译者补充说明。红字的提醒为译者认为读者们要注意是在过去的观念上有所忽略或是不一样的地方,特别强调。绿字为实战补充,根据文章内容提出有关补充。
In the Metal Injection Molding industry, 17-4 PH stainless steel is one of the most popular materials thanks to its combination of strength, hardness and corrosion resistance. As a result of its success in MIM, it is also attracting interest for use in the growing number of ‘MIM-like’ Additive Manufacturing processes, including binder jetting and feedstock extrusion. Despite the alloy’s popularity, there remain limited data on the final properties that can be expected, as well as data relating to dimensional control and the impact of Hot Iso-static Pressing. In the following article, Prof Randall German highlights best practice in the de-binding and sintering of 17-4 PH, as well as presenting in-depth analysis of published data. 在金属注射成形产业中,17-4PH不锈钢由于其强度、硬度和耐腐蚀性的结合而成为最流行的材料之一。由于其在MIM的成功表现,它吸引了越来越多的“类MIM”增材制造工艺,包括粘结剂喷射和喂料挤出的。尽管此合金很受欢迎,但其最终的性能却只有很有限的资料可以参考,有关尺寸控制和热等静压的影响的资料都甚少。在本文章中,German教授强调了17-4 PH的脱脂、烧结的最佳实践作业,并对已发表的文献进行了深入的归类分析。
Sintering is a means to fabricate complex, high-performance stainless steel components from powders via injection molding, die compaction, binder jetting, paste extrusion and other binder-assisted routes. The sintering behavior of 17-4 PH stainless steel depends on particle size, peak temperature, heating rate, atmosphere and hold time. MIM制品的烧结是通过注射成型、模内压缩、粘结剂喷流、喂料膏体挤出和其他粘结剂辅助条件,把高性能不锈钢从粉末制备做成复杂部件的方法。17-4PH不锈钢的烧结行为也是取决于粉末颗粒大小、峰值温度、加热速率、气氛和保温时间等。
Complications arise from alloy composition variations and retained carbon and oxygen. Some binders add carbon during burnout and some powders carry high oxygen content. Carbon from the powder or binder, oxygen from the powder or atmosphere and nitrogen from the process atmosphere influence the micro-structural phases, sintering behavior and final properties. Carbon and nitrogen stabilize the face-centered cubic austenite phase, slowing sintering. On the other hand, body-centered cubic delta ferrite increases the sintering rate. Martensite forms on cooling from the sintering temperature and precipitation reactions induce a high hardness and strength. However, retained delta-ferrite reduces strength. 烧结件的问题并发症发生于合金成分变化和保留的碳和氧元素,一部分粘结剂在烧毁过程残留变成碳增量,一些粉末则携带高氧含量。粉末中固有或粘结剂残留造成的碳、粉末中固有或气氛中的氧和工艺使用气氛中的氮,都将影响产品的微观结构相、烧结行为和最终性能。碳和氮稳定了面心立方奥氏体相,减缓烧结;另一方面,体心立方δ-铁素体出现会增加烧结速率。在烧结温度和沉淀反应的冷却过程中,马氏体形成高硬度和高强度。然而,保留δ-铁素体降低了烧结件的强度。
An added difficulty comes from the segregation of alloying ingredients during sintering, leading to heterogeneous microstructures with reduced properties. Doping additions, such as boron, reduce the sintering temperature and improve properties. Manipulation of densification and phases leads to competitive properties. However, in spite of good strength and hardness, impact toughness is low. Considerable data are collected on how 17-4 PH stainless steel sinters and typical mechanical sintered and heat treated properties, with comments on corrosion, wear and biocompatibility. 另一个困难来自烧结过程中合金的成分偏析,导致异质性的微观结构并降低产品的性能。掺杂如硼,则可降低烧结温度和改善性能。致密化和相的操作导致了两者互相的竞争性,然而,产品尽管具有良好的强度和硬度,但冲击韧性却因此降低。本文收集了17-4PH不锈钢烧结件其典型的烧结后机械和热处理后性能的大量资料,并对抗腐蚀、磨损和生物相容性进行了评价。
在产品交货过成一定要注意到,原材料添加任何标准材料以外的元素和添加剂,都必须向客户沟通并取得”免责权”,否则当产品实际应用于商品的时候,一但出现问题并进行追究赔偿时,供应商和客户都会蒙受巨大的损失,在论文上的实验以添加额外的元素而超出国际规范标准时,结果将是没有办法被国际协会认证材料标准所保护,要非常注意。
An introduction to 17-4 PH沉淀硬化不锈钢的简介
Stainless steels are ferrous alloys containing at least 12 wt% chromium. They arose in the early 1900s, with the first patents in the
time frame. These alloys are categorized according austenitic, ferrite, martensitic and semi-austenitic. Some of the alloys are responsive to precipitation hardening. The precipitation hardened martensitic stainless steels range from 12 to 17 wt.% chromium, 4 to 8 wt.% nickel, and 0 to 4 wt.% copper, with possible additions of molybdenum, silicon, manganese, titanium and niobium. Of these, 17-4 PH is a popular variant, consisting of iron alloyed as outlined in Table 1 [1, 2]. This alloy also carries identifications such as UNS S17400, AISI 630, ASTM A564, MIM-17-4PH and AMS 5643. 能称之为不锈钢是含至少12wt%铬的铁合金,它们出现于1900年代早期,在1910年至1919年的时间被申请了第一个专利(英国谢菲尔德大学的着名冶金科学家亨利·布雷尔利Harry Brearley)。这些不生锈的合金按其主要相分类:奥氏体、铁素体、马氏体和半奥氏体,以及一些具有沉淀硬化的能力-沉淀硬化的马氏体不锈钢,其铬含量范围从12~17wt%,4~8wt%的镍,和0~4wt%的铜,与可能的添加钼、硅(硅)、锰、钛和铌。所有的不锈钢中,17-4PH是一种受欢迎的变体不锈钢,由表1 [1, 2]中概述的元素成分组成。该合金还具有其他标识称号,如UNS S17400,AISI 630,ASTM A564,MIM-17-4PH和AMS 5643。
Table 1 Nominal composition for wrought and powder alloys in wt.% (allowed Cr, Ni, and Cu variations are ± 1 wt.%) 不锈钢17-4PH的常规锻造(Wrought)料与粉末合金(Powder alloys)的成分重量百分比比较(允许铬、镍、和铜具有+/-1wt%误差)
The compositional specifications do not include oxygen. However, oxygen is a significant factor in sintered products. A powder has a high initial surface area coated with oxides. Accordingly, the initial oxygen level varies with the powder production process. These oxides remove chromium from its corrosion inhibition role. High oxygen levels result in low mechanical properties and poor corrosion resistance [3, 4]. Indeed, isolation of the oxygen role in sintered 17-4 PH stainless steel is an area requiring further study. 不锈钢17-4PH的组成规格并不包括氧,然而,氧含量却是烧结件中的一个重要影响因素。粉末通常具有很多的氧化物覆盖在初始表面积,因此,初始氧的水准随粉末生产过程而变化。这些氧化物由其缓蚀作用会慢慢拿走铬的防锈能力,高含氧量导致烧结件的机械性能降低和耐腐性变差[3, 4]。事实上,烧结不锈钢17-4PH如何把所含的氧去除是一个需要进一步研究的领域。
“Applications for 17-4 PH arise from the combination of strength, hardness and corrosion resistance.” 17-4PH应用的崛起来自强度、硬度和抗腐蚀的综合需求
It is not the best stainless steel in any of these categories, but, after heat treatment, the property combination is attractive for aerospace, medical, dental, nuclear and consumer products. Depending on the composition (due to the allowed variations in Fe, Ni, Cu and Cr), the solidus temperature varies around 1405°C and the liquids temperature is near 1440°C. Because of precipitation hardening, the mechanical properties are sensitive to heat treatment. The full density elastic modulus is from 196 to 204 GPa [5]. Depending on heat treatment, the hardness reaches 43 HRC, with a yield strength from 760 to 1240 MPa, tensile strength from 1000 to 1340 MPa and fracture elongation between 8 and 14%. This high hardness makes die compaction difficult, but binder-assisted compaction, as well as injection molding, feedstock extrusion and binder jetting and related ideas, are successful. 在所有类别的不锈钢中,17-4PH虽不是最好的,但是经过热处理后其性质组合是有吸引力的,他们可应用于航空航太、医疗、牙科、核能和消费产品。根据其成分(由于铁、镍、铜和铬的允许变化),固相线温度在1405°C附近变化,并且液体温度接近1440°C。由于析出硬化,机械性能对热处理敏感。全密度的弹性模量为196~204 GPa[5],根据热处理后结果,硬度达到HRC43,屈服强度从760~1240 MPa,拉伸强度从 MPa,断裂伸长率在8~14%之间。这种高硬度的材质使得传统压制成型困难,但可改用粘结剂来辅助粉末材料的压实,再利用注射成形将喂料挤出和粘结剂注射和相关的想法,则是成功的。
Due to fluctuations in alloy composition and microstructural phases, the theoretical density and properties change accordingly. Density for wrought material is 7.66 to 8.00 g/cm3. For powder, the average pycnometer density is 7.77 g/cm3. In the as-sintered condition, the average theoretical density is 7.74 g/ cm3 but varies with delta-ferrite content. The density increases slightly with hardening heat treatments, progressively reaching 7.86 g/cm3 at maximum hardness. These changes reflect differences in atomic size and lattice packing associated with the different crystalline phases. High temperature neutron diffraction during sintering identifies lattice constants of 0.35833 nm and 0.28583 nm for the face-centred cubic and body-centred cubic phases, corresponding to densities of 7.80 and 7.68 g/cm3 [6]. Most studies on sintered 17-4 PH ignore these density shifts. For this report, the pycnometer value measured in each study is used to calculate fractional density or porosity, or, where not reported, the theoretical density is assumed to be 7.80 g/cm3. 由于合金成分和微观结构相的变动,理论密度和机械性质相应地改变。锻造件的密度为7.66~8 g/cm3,对于粉末成型而言平均比重瓶密度为7.77 g/cm3。在烧结条件下,平均理论密度为7.74 g/cm3,但δ-铁素体含量变化,密度随硬化热处理略有增加,在最大硬度下可达到7.86 g/cm3。这些变化反映了与不同结晶相关联的原子尺寸和晶格堆积的差异。烧结过程中的高温中子衍射识别面心立方和体心立方相的晶格常数为0.35833 nm和0.28583 nm,对应于密度为7.80~7.68 g/cm3[6]。大多数烧结17-4 PH忽略了这些密度的变化。对于本报告,在每个研究中测量的比重瓶值被用来计算分数密度(指的是具有孔隙率的烧结件密度),或者在没有报导的情况下,理论密度被假定为7.80 g/cm3。
Binder and de-binding effects 粘结剂和脱脂的影响
Many binder systems can be used for shaping stainless steel powders [7-40]. Injection molding and extrusion binders commonly rely on 60% filler, 30% backbone and 10% surfactant. Paraffin wax is a common filler phase, but polyethylene glycol and polyoxymethylene are also widely used. Backbone polymers are more varied, but favor polypropylene, polyethylene, ethylene vinyl acetate, or polymethyl methacrylate. Stearic acid is the most common surfactant/ lubricant/plasticiser, but palm oil, beeswax, glycerin and similar waxy or oily molecules are also in use. Binder ingredients that produce a carbon residue, such as cellulose or polystyrene, are generally avoided, since carbon has profound effects on sintering and sintered properties. Generally, simple, small and inexpensive binder ingredients are most successful. Additive Manufacturing relies on these same binders for extrusion, but also takes on variants such as sucrose, acrylic, latex, starch or other polymers sprayed onto the powder bed during the build process. 许多粘结剂系统可用于不锈钢粉末注射成形[7-40]。注射成形和挤出粘结剂通常依赖60wt%填料,30wt%的主链和10wt%的表面活性剂。其中,石蜡是一种常见的填充剂,但聚乙二醇和聚甲醛也被广泛使用。骨架聚合物变化更大,但有利于聚丙烯、聚乙烯、乙烯-乙酸乙烯酯或聚甲基丙烯酸甲酯。硬脂酸是最常用的表面活性剂/润滑剂/增塑剂,但棕榈油、蜂蜡、甘油和类似的蜡状或油性分子也被使用中。通常会避免产生碳残留物的粘结剂成分,如纤维素或聚苯乙烯,因为碳对烧结和烧结性能有深远的影响。一般来说,简单、小、便宜的粘结剂成分是最成功的。增材制造依赖于这些相同的粘结剂用于挤出,但也需要在生产过程中喷涂到粉末床上的蔗糖、丙烯酸类、胶乳、淀粉或其它聚合物的改性体。
增材制造已经和MIM技术有密不可分的关系,主要在于喂料技术把粘结剂和粉末结合一起的方式、然后又进行脱脂,并使产品烧结致密材为高性能的零件。
De-binding has some influence on properties, especially if the final oxygen or carbon levels are increased. The common first stage de-binding routes are depolymerisation or solvent extraction. For example, paraffin wax dissolves in heptane and polyethylene glycol dissolves in hot water [41]. Catalytic extraction of polyoxymethylene uses fuming nitric acid in the first stage of de-binding [42, 43]. Subsequently, the remaining backbone binder is extracted by pyrolysis during heating to the sintering temperature. Comparative tests with different binders show that 10% sintered property loss occurs in systems retaining more oxygen (0.23% oxygen versus 0.02% oxygen) [19]. Moreover, corrosion resistance is degraded by residual oxygen [4]. 脱脂对产品性能有一定的影响,特别是左右烧结件最终的氧或碳含量增加。常见的第一阶段脱脂路线是降解或溶剂萃取,例如,石蜡溶解在庚烷中,聚乙二醇溶解在热水中[41],催化萃取聚甲醛在脱脂第一阶段使用发烟硝酸[42, 43 ](2017年后中国的深圳星特烁公司发展出草酸脱脂技术更为先进,是一个MIM产业重要的技术里程碑)。随后,第二阶段再加热到烧结温度下,通过前段的加热降解剩余的骨架粘结剂。不同粘结剂的对比试验表明,在保留更多氧气(0.23%氧与0.02%氧)的系统中发生了至少10%的烧结性能损失[19]。此外,耐腐蚀性被残余氧而降低[4]。
Thermal de-binding is often performed in hydrogen or hydrogen nitrogen, but lower temperature air burnout is successful [17, 44]. Optimal binder removal incorporates holds during heating at 600 and 1000°C, using hydrogen [45]. If water atomized powder is added to gas atomized powder, the increase in oxygen from the water atomized powder helps to reduce residual carbon. The oxides react with carbon to form CO or CO2 vapor. Likewise, graphite additions, in roughly equal mass to the starting oxygen content, are effective in oxygen removal during sintering. For example, in MIM, starting with 0.2% O and 0.01% C results in 8% delta-ferrite, 0.03% oxygen and 0.015% C. Otherwise, residual carbon stabilizes austenite during sintering, resulting however, with typical hold times at the peak temperature, the slower sintering rate becomes meaningless [46-48]. 热脱脂通常在氢或氢氮中进行,但可在较低温度的空气环境中燃尽粘结剂是成功的[17, 44]。在600~1000℃加热时,使用氢气可以获得最佳的粘结剂去除结果[45]。如果水雾化粉末加入到气体雾化粉末中,水雾化粉末中的氧的增加有助于减少残余碳,氧化物中的氧与金属中的碳反应形成CO或CO2蒸气。同样,与起始氧含量大致相等的石墨添加剂对烧结过程中的氧去除是有效的。例如,在MIM制程,从0.2% O和0.01% C添加在8%δ-铁素体氧体,得到最后产品是0.03%氧和0.015%C。否则,残余碳将会在烧结过程中稳定奥氏体,导致较慢的烧结;然而,在峰值温度下典型的保温时间,较慢的烧结速率变成毫无意义[46-48]。
Powder characteristics粉末特性
Three powder approaches are applied to sintered 17-4 PH prealloy powder, mixed powder and master alloy powder. Prealloyed implies that each particle is a microcasting with the same composition. Mixed powder implies a combination of iron, chromium, nickel and other particles, each being a single element [49]. Master alloy is a hybrid where small carbonyl iron powder is mixed with 33% alloy powder. The alloy powder has concentrated additives (51% Cr, 12% Cu, 12% Ni, 24% Fe, 0.7% Nb, with traces of Si and Mn). A few variants use tumbled or milled powders [50-52]. Prealloy powder is favored for performance, while the master alloy is favored for low cost. However, prolonged sintering is required to deliver competitive properties from mixed elemental powders. 17-4PH不锈钢的粉末获得可以透过以下方式产出:预合金粉、元素粉混合以及母合金粉末三种。预合金粉末意味着每个颗粒是具有相同成分的微小铸件;元素粉混合意味着铁、铬、镍和其他元素都以颗粒的组合,每个颗粒都是单一元素[49],母合金是一种以羰基铁粉(纯铁)与至少33%预合金粉末混合而成的混合体,此母合金用的预合金粉末有浓度很高的添加剂元素(51% Cr,12% Cu,12% Ni,24% Fe,0.7% Nb,并有Si和Mn的痕迹)。一些调整体可以使用滚筒研磨或碾磨的粉末[50-52],预合金粉末有利于性能;而母合金粉末则是低成本的,但需要延长烧结的时间,以使混合元素粉末能扩散合金化得到与预合金粉末的竞争性能。
Prealloyed powders are gas or water atomized. Because of molten metal exposure to high pressure water, the oxygen content is higher in water atomized powder. Gas atomized powder is spherical. If adhering small satellite particles are avoided, then gas atomized powder delivers a desirable high packing density and good flow properties. The less spherical, lower packing density water atomized powder starts at a lower packing density. Fig. 1 shows micrographs of typical gas and water atomized powders with a nominal particle size of 20 um. For injection molding feedstock, the solids loading might be 62.5 vol. % for gas atomized powder and 55 vol. % for water atomized powder. Similar loadings are anticipated for extrusion Additive Manufacturing. The lower solid loading implies that more sintering densification is needed for the water atomized powder [45, 51, 53]. 预合金粉末得到的方法是以气体或水进行雾化的,如采用水雾化法,由于金属暴露于高压水中,粉末中的氧含量较高、形状较不规则;气体雾化粉末则为球形,如果能够避免附着小的卫星颗粒,则气体雾化粉可以末提供理想的高堆积密度和良好的流动性能。低球形度、低填充密度的水雾化粉末以较低的填充密度开始。图1示出了典型的气体和水雾化粉末的显微照片,其标称粒径为20μm。对于注射成形用的起始原料,就固体装量而言,气体雾化粉末可以高达的62.5vol%而水雾化粉末仅达55vol%。类似的装载量也用于挤出型增材制造(Fused Deposition Molding, FDM熔融沉积成形技术)。较低的固体负荷意味着水雾化粉末需要更多的烧结时间或温度来得到致密化[45, 51, 53]
Fig. 1 Scanning electron micrographs of (a) spherical gas atomized and (b) ligament water atomized powders. The larger particles are nominally 20 um in diameter 扫描式电子显微镜(SEM)照片(a)球形状的气体雾化;(b)韧带水雾化粉末,较大的颗粒在直径为20μm。
The typical 17-4 PH stainless steel powder has a median particle size of 10 to 12 um, with a tap density of 4.3 g/cm3. Table 2 gives the characteristics of several powders in use, reflecting powders from ten producers [18, 39, 41, 44, 46, 53-67]. 典型的17-4PH不锈钢粉末的中值粒径为10~12μm,振实密度为4.3 g/cm3。表2给出了使用中的几种粉末的特性,反映了来自十个生产商的粉末[18, 39, 41, 44, 46, 53-67]。
Table. 2 Examples of 17-4 PH powder characteristics 17-4PH不锈钢粉末的性能(表中GA就是气体雾化粉、WA就是水雾化粉)
Oxygen is higher in the water atomized powder, ranging up to 0.65%. In contrast, gas atomized powder oxygen content is generally lower, near 0.06%. Some oxygen is removed by reacting with residual carbon during sintering. Residual oxygen degrades corrosion resistance. 水雾化粉末中氧含量较高可达0.65%,相比之下,气体雾化粉末的氧含量一般较低,仅达0.06%。在烧结过程中,可通过与残余碳反应来除去一些氧,过多的残余氧会降低了材料的耐腐蚀性。
The sizes D10, D50 and D90 correspond to the 10%, 50% and 90% points on the cumulative mass-based particle size distribution. Due to doubtful accuracy, particle sizes are rounded to the nearest micrometer sizes. The parameter SW is an indication of the log-normal size distribution (narrow size distributions have a high value corresponding to a steep log-normal slope) [68]. 粉体平均粒径尺寸D10、D50和D90是对应于基于粉末累积品质的细微性分布的10%、50%和90%点。由于简化的准确性,颗粒大小被舍入到最接近的微米尺寸。参数SW是对数正态大小分布的指示(窄的细微性分布具有对应于陡峭的对数正斜率的高值)[68],SW公式如下(公式1):
The average SW is similar to that found for many powders. The pycnometer density is the full density for the powder and this is influenced by Ni, Cu, Cr content, as well as C, O, N impurities and any pores inside the particles. The tap density is a precursor to the feedstock solids loading and the green density prior to sintering. 平均SW可以用于许多粉末所发现的,比重计密度为粉末的全密度,这将受Ni、Cu、Cr含量以及C、O、N杂质和颗粒内的任何孔隙的影响。振实密度是原料固体装载和烧结前的生坯密度决定性的前驱物。
Average powder characteristics from about sixty reports are summarized in Table 3. Stainless steel surface chemistry is rich in carbon and oxygen, with upwards of 40 atomic % of each species on the surface [4, 69]. The remaining surface consists of Fe, Si, Cr and Cu, in decreasing order of abundance. For a water atomized powder, the surface consists of Cr2O3, SiO2 and MnO [61]. 在表3中总结了大约60份不同实验报告的平均粉末特性(针对同一支17-4PH不锈钢材料),其表面的化学成分中富含碳和氧,在其表面上至少占有40 atom.%[4, 69],剩余表面由Fe、Si、Cr和Cu组成,含量呈下降趋势。对于水雾化粉末,其表面由Cr2O3, SiO2和MnO[61]等氧化物组成。
Table 3 Typical powder characteristics 17-4HP的典型粉末特性
Master alloy mixtures provide similar properties after sintering to gas atomized powders [70]. For example, hydrogen sintering at 1370°C for 75 min gives a tensile strength of 956 MPa (master) and 954 MPa (gas atomized) with 3.8 and 4.2% elongation. The sintered density is essentially the same at 98%. 母合金混合物在烧结到位是可以逼近气体雾化粉末相似的性能[70]。例如,在1370℃下氢气烧结75分钟,拉伸强度为956 MPa (母合金粉)和954 MPa (气体雾化粉),延伸率为3.8和4.2%。烧结密度在98%时基本相同。
For one binder, water atomized powder with a higher oxygen level reacts with carbon residue from the binder, beneficially reducing sensitivity to de-binding parameters [45]. A comparison of sintered (1300°C, hydrogen) 14 um gas atomized and 14 um water atomized powders shows tensile strength of 1280 MPa (pure gas atomized) and 1080 MPa (pure water atomized) with sintered densities of 98.9 and 97.2% [71]. However, this strength difference is eliminated by sintering the water atomized powder at a higher temperature. 对于任一种粘结剂,具有较高氧水准的水雾化粉末与粘结剂中的碳残留物反应,将有利地降低脱脂参数的灵敏度[45](此处指的是含氧量多的粉末可以因此使氧与碳结合而排除粘结剂更干净)。烧结(1300°C,氢气)14μm气体雾化和14μm水雾化粉末的比较显示,拉伸强度为1280 MPa (纯气体雾化)而1080 MPa(纯水雾化),烧结密度为98.9和97.2% [71]。然而,通过在较高的温度下烧结水雾化粉末的试验,便消除了这种强度差异。
Statistical analysis reveals no significant impact of powder characteristics on sintered properties. Mixed gas and water atomized powders are used to lower cost and improve inter-particle friction to resist slumping during de-binding [54, 71, 72]. A higher sintering temperature is required to attain the same density as the proportion of water atomized powder increases. 统计分析表明,粉末特性对烧结后性能没有太显着影响,混合气体雾化和水雾化粉末用于降低成本并改善颗粒间摩擦以防止脱脂过程中的坍塌很有效[54, 71, 72],当水雾化粉末的比例增加后,需要更高的烧结温度以得到没有添加时的相同的密度值。
Sintering parameter effects 烧结参数的影响
Several sintering parameters interact to determine the sintered density, phases, microstructure and properties. Statistical analysis of eighty sintering studies reveals significant impact from four factors - particle size, starting oxygen content, sintering atmosphere and heat treatment. The dominant factor is sintering temperature, accounting for about 90% of the sintered density variation. The powder type, hold time, green density and starting carbon content are not significant factors with respect to sintered density. As detailed in the following sections, experiments designed to test these several factors touch on molding, de-binding, sintering, Hot Isostatic Pressing (HIP) and heat treating parameters. It seems that often the design of experiments is able to isolate effects, but invariably the interaction of parameters and incomplete reporting hide underlying cause-effect relationships. Inherently, in sintering 17-4 PH stainless steel, we must assume everything is important. Here, we treat the adjustable parameters and report their influence on the response parameters of density and properties. 几个烧结参数会相互作用,用以确定烧结密度、相、微观结构和性能。八十个烧结研究的统计分析揭示了四个主要影响的因素:颗粒大小、起始氧含量、烧结气氛和热处理有显着的影响。其中,烧结温度占主导地位,占烧结件密度变化的90%左右;粉末类型、保温时间、生坯密度和起始含碳量对烧结密度则没有显着影响。在下面的部分中详细介绍了实验,这些试验旨在测试这些因素对成型、脱脂、烧结、热等静压(HIP)和热处理参数的影响。似乎这些实验的设计希望能够隔离出一些结果,但是总因参数和不完整报告的交互隐藏潜在的因果关系。因此,在烧结17-4PH不锈钢中,我们必须假定一切都是重要的。在这里,我们处理的可调参数,并报告其影响的密度和性质的回应参数。
Green density生坯密度
In Metal Injection Molding and Additive Manufacturing, the green density is about 96% of the particle tap density. The relation between fractional sintered density fS , green density fG , and sintering shrinkage Y is as follows: 在金属注射成形和增材制造中,生坯密度约是震实密度的96%左右。烧结件的分数密度fS、生坯密度fG和烧结收缩率Y之间的关系如下:
This equation assumes no mass loss during sintering. For stainless steel powder, the usual behavior is that a higher green density produces a higher sintered density [73]. However, contrary to this sense are results using mixed particle sizes to improve green density from 64 to 71% of theoretical. Surprisingly, the lowest green density produces the highest sintered density. This is because of the smaller median particle size for the lower green density. Reports from other studies, including Additive Manufacturing, find that a higher green density does not necessarily result in a significant sintered density gain [74]. 该方程在烧结过程中假设没有质量的损失。对于不锈钢粉末而言,通常的行为是较高的生坯密度就会产生更高的烧结密度[73]。然而,与此相反的是使用混合颗粒大小来提高生坯密度,从理论的64提升到71%,结果令人惊讶的是,最低的生坯密度产却得到了最高的烧结密度。这是因为较低密度的生坯,中值粒径(d50)变小的缘故。来自其他研究的报告,包括增材制造(AM, 3D列印),都发现较高的生坯密度不一定导致显着的烧结密度增益[74]。(不要一味的追求高生坯密度,而是改善粉末粒径的分配)
在过去的工作经验中,以水气雾化的粉末较不规则形状来协助气雾化粉圆球外型的堆叠保形(Conformal)性,并且可以节省气雾化细粉的用量,我们曾经在许多客户的案例上完成外观-结构件产品,便是采用混合粉末得到兼具的特性。
Gas atomized spherical particles enable a higher solids loading and green density. Water atomized powders can approach similar high packing densities, sintering to nearly the same final density. In vacuum sintering (120 min hold at 1390°C), gas atomized powder at 65 vol.% solids loading reaches 98% density, while lower packing density water atomized powder (55 vol.% solids loading) reaches almost the same value at 97% [51]. The latter exhibited more shrinkage. 气体雾化球形颗粒能够提高固体装载量和生坯密度;水雾化粉末也可以接近类似的高堆积密度,烧结到也几乎相同的前者的最终密度。在真空烧结(在1390°C保持120mins)下,气体雾化粉末在65vol%固体负载下达到98%密度,而低堆积密度的水雾化粉末(55vol%固体装载)在97%[51],也达到几乎相同的值。后者表现出更大的收缩。(别忘记密度不是唯一评断产品的重点,收缩大使产品密度变高。但尺寸就会减少)
Another study compares 9 um water atomized powder with green densities ranging from 55 to 71% [46]. After sintering (60 min at 1365°C), a higher sintered density results from the lower green density. Thus, from a few direct comparison studies, there is little evidence of a dominant green density effect on sintered density, or even sintered properties. Efforts to improve tap density or green density seem to be counterproductive. 另一项研究是采用9μm水雾化粉末与55~71%[46]的生坯密度进行比较。烧结后[1365℃保温60mins],较低的烧结密度反而导致烧结件密度较高。因此,从一些直接的比较研究,很少有证据表明主导的生坯密度对烧结密度的影响,甚至烧结性能的影响。提高振实密度或生坯密度的努力想获得较高的烧结密度似乎适得其反。
高震实密度的粉末一定是越趋于圆形、尺寸细小,因此阻碍了成形和脱脂的顺畅性,结果导致烧结后产品的密度反而不好。在许多粉末厂常常以高震实密度作为判断粉末品质好坏的依据,这是沿袭自传统粉末冶金的作法,但必须要注意到传统粉末冶金的粘结剂很少,也没有辅助压实坯体的填充剂与辅助剂,良好的分配粉末等级以及充分混练得到够好的分散,MIM喂料对于震实密度的要求并不需要极度的高。
Furnace types烧结炉型
A wide variety of sintering furnaces are used to sinter 17-4 PH [75, 76]. The options include laboratory tube, refractory metal batch, graphite batch, and continuous belt, pusher, or walking beam designs. Microwave sintering trials conclude that this is inferior to standard sintering, but the difference is not explained [77]. In a study on molybdenum and graphite furnaces sintering 316L stainless in argon, the final density, yield strength, tensile strength and ductility are essentially identical [76]. The same study compared nitrogen as the atmosphere with a slight density-property gain for the graphite furnace (yield strength 375 MPa versus 330 MPa). However, when vacuum or hydrogen sintering are applied to 17-4 PH, there is no evident furnace role. Sintering is dominated by other factors, especially the peak temperature. Note that some furnace types restrict the atmosphere options, but, to-date, the furnace type is not significant. 各种形式的烧结炉都可用于烧结17-4PH[75, 76]。选择包括实验室管炉、耐火金属批次炉、石墨批次炉、和连续网带炉、推杆炉,或步进梁炉的设计,其中以微波烧结炉试验得出的结论,产品烧成可低于正常标准烧结温度,但差异并没有解释[77](微波炉烧结法的能量很集中,并且有磁场因素的介入,所散失能量很少,不过有许多限制条件,不是小篇幅可以解释的,过去有很多案例都是受到粘结剂的干扰造成微波烧结过程产品炸裂,尺寸忽大忽小,最后没有很明确的结论)。在研究中,钼内胆和石墨内胆炉中烧结通以氩气的316L不锈钢产品时,其最终密度、屈服强度、抗拉强度和延展性基本上两种炉子是相同的[76]。相同的研究比较了氮气作为气氛与石墨炉有着轻微密度特性的增益(屈服强度375 MPa与330 MPa)。然而,当真空或氢气烧结应用于17-4 pH时,没有明显的炉子作用。烧结主要受其它因素的影响,特别是峰值温度。请注意,一些炉类型限制了大气的选择,但到目前为止,炉子类型并不太重要。(哎呀,17-4PH真是乖小孩,完全不挑嘴)
实际在大量化产品烧结时,金属热场的洁净度加上氢气确实优于石墨热场炉,但实验室的烧结炉容积小、放置的烧结件少,差异不会太明显。量产时的真实尺寸效应和数量,对于烧结影响是很大的,必须注意到。
Particle size粉末粒径尺寸大小
Initial particle bonding during sintering is by surface diffusion [78]. Smaller particles have more surface area and, therefore, naturally the initial bonding and strengthening is dependent on particle size. Surface diffusion induced bonding replaces the particle adhesion initially provided by the backbone polymer, so slow heating is a typical protocol to add strength as binder pyrolysis occurs. As the sinter bonds grow between particles, grain boundary diffusion becomes the controlling process. This requires neck growth to form a grain boundary between particles. As grain boundaries form, the rate of sintering shifts to an inverse grain size dependence. Once shrinkage starts, the initial particle size role becomes secondary and attention shifts to the grain size. Even so, particle size is easily monitored as a starting parameter while grain size is less frequently measured. 烧结过程中的初始颗粒结合是通过表面扩散[78]。较小的颗粒具有更大的比表面积,因此,自然的初始结合和强化取决于颗粒大小。表面扩散诱导键合取代最初由主链聚合物提供的颗粒粘附,因此缓慢加热是典型的协议,以维持粘结剂发生热分解时的生坯强度。随着烧结件因颗粒间的成长,晶界扩散成为控制过程。这时需要颈部生长,以形成颗粒之间的晶界。当晶界形成时,烧结速率转变成逆晶粒尺寸依赖性。一旦收缩开始,初始颗粒尺寸的作用就变为次要的,注意力将转移到晶粒尺寸。即使如此,颗粒尺寸很容易被监测作为起始参数,而晶粒尺寸反而是不太频繁被测量的。
In a study with median particle sizes (D50) varied from 5.8 to 12.2 um, the sintered strength is essentially the same once the peak temperature exceeds 1250°C (60 min, hydrogen) [56, 64]. Sintered densities of 98% or higher are attained for 11 to 12 um powders when sintered at temperatures over 1288°C. A comparison of 8 and 10 um particle sizes (vacuum sintered at 1330°C for 60 min) reports a slightly higher density (98.2%) with smaller particles [79]. This promotes a slightly higher yield strength (760 versus 728 MPa) and tensile strength (888 versus 870 MPa) on using the finer powder. Longer hold times or higher peak temperatures tend to offset the early particle size effect. Indeed, for a 60 um particle size, sintered at 1340°C for 60 min in hydrogen, the density is lower at 92.3%, but the heat treated strength reaches 1100 MPa with a fracture elongation of 2% [80].在一个中值粒径(D50)从5.8~12.2μm变化的研究中,一旦峰值温度超过1250°C(60分钟,氢)[56, 64],烧结强度基本相同。当在1288℃以上的温度下烧结时,11~12μm的粉末达到98%或更高的烧结密度。8~10μm的颗粒尺寸(真空烧结在1330℃时保温60分钟)比较报告密度稍小98.2%,颗粒较小[79]。这促进了使用更细的粉末得到稍微高的屈服强度(760比728 MPa)和拉伸强度(888比870 MPa)。较长的保持时间或更高的峰值温度倾向于抵消早期的颗粒尺寸效应。事实上,对于60μm的粒径,在1340℃下在氢气中烧结60分钟,在92.3%的密度较低,但热处理强度达到1100 MPa,断裂伸长率为2%[80]。(这代表控制的好,粗粉仍旧可以烧到高致密性)
Sintering distortion is lowest with the smaller particle size and largest with the
both increase with sintering temperature. This is one justification for smaller particles or even mixtures of different particle sizes or powder types. However, more careful experiments are required to sort out densification versus distortion in cycles optimized for each particle size. To date, the sintering cycle is held constant using differing particle size, but this over-sinters the small particles or under-sinters the large particles. 烧结变形最小,粒径越小;粒径越大,烧结温度越高。这是对于更小的颗粒,甚至是不同粒径或粉末类型的混合物的一个理由。然而,需要更仔细的实验来对每个颗粒尺寸优化的回圈中的致密化与畸变进行排序。到目前为止,以上所有实验的烧结周期是使用不同的颗粒尺寸但保持恒定时间,但不能用于烧结过度小颗粒或烧结过大颗粒。
Heating rate 加热速率
Sintering cycles involve heats and holds to allow binder burnout and impurity removal. Optimal holds are near 600°C for final polymer removal and near 1000°C for impurity reduction. The heating rate approach to the peak temperature ranges from 2 to 10°C/min. When the heating rate drops to 2°C/min, then almost all shrinkage occurs prior to the isothermal hold [81]. As a specific example, for 1270°C, the density on reaching that temperature is 88%, starting from a green density of 55%. Fig. 2 illustrates how the rate of densification declines quickly at the highest temperatures. Most of the densification occurs during heating, especially prior to reaching 1300°C. Indeed, with 2°C/min heating from 1010°C to 1320°C, near full density occurs with a 10 min hold [81, 82]; delivering a tensile strength of 1185 MPa [42]. 烧结回圈涉及加热和保持温度,以允许粘结剂烧毁和杂质去除。最终的聚合物完全去除接近于600°C,杂质完全去除接近1000°C。加热速率接近峰值温度范围为2~10°C/min,当加热速率下降到2°C/min时,几乎所有收缩都发生在等温保持[81]之前。举一个具体的例子,对于1270°C,达到该温度的密度为88%,生坯密度开始是从55vol%的装载量。图2表示出了致密化率如何在最高温度下迅速下降。大多数致密化发生在加热过程中,特别是在达到1300°C之前。实际上,2°C/min的加热从1010°C到1320°C,接近完全密度发生,保持10分钟[81, 82];拉伸强度为1185 MPa[42]。
一样的,提醒大家量产过程要注意到尺寸的效应,譬如脱脂不完成的坯体,对升温效率是很敏感的,过高的升温率可导致坯体开裂、鼓泡甚至发生炸裂,因此不能掉以轻心。厚度越大的产品,心部的位置就越容易残留粘结剂,因此摆放数量、产品形貌,对于升温速率的调整必须经过测试和验证的。
Fig. 2 Data showing sintered density versus hold time after heating to various temperatures [81]. Heating is 2°C/min from 1010°C to the peak temperature. For a peak temperature of 1320°C, almost all densification occurs prior to the isothermal hold. The starting density is 55% using 10 um gas atomized powder 图上的数据显17-4PH在加热到不同温度后的烧结密度与保温时间的资料[81],加热温度从1010℃到峰值温度为2°C/min升温速率。在1320°C的峰值温度那条曲线,几乎发现致密化已经发生在保温温度之前(也就是只要稍微保温就够了,多的保温时间是浪费),使用10μm气体雾化粉末,起始密度为55vol %。
Temperature 烧结设定温度
When tested using dilatometer, the onset of sintering shrinkage is detected near 900°C [51]. The peak sintering shrinkage rate is near 1250°C [27, 47], but full-density sintering (say 98%) requires peak temperatures approaching 1300°C. However, such high temperatures evaporate copper and chromium, with a potential loss of heat treatment response and corrosion resistance. Delta-ferrite formation is favored by higher temperatures and this phase assists final densification due to faster diffusion. Data on the shrinkage and sintered density (60 min, hydrogen) versus temperature for a 10 um water atomized powder are plotted in Fig. 3 [59]. Almost the same values were reported in a study with gas atomized powder [53]. At 1350°C, a density of 99% is reached, about the same as achieved with gas atomized powder [47] and, at 1300°C, the density is 96%, which compares favorably with a report of 97% for the same conditions [83]. Shrinkage for 60% green density is 15.4%, similar to another report at 15.7%. Such small differences in dimensional change probably reflect differences in delta-ferrite content. A study starting at 55% green density reports 17.5% shrinkage, giving 98% sintered density. In this case, about 10% delta-ferrite remained. 当使用膨胀计测试时,在900°C[51]附近检测到烧结收缩的开始。峰值烧结收缩率接近1250°C[27, 47],但全密度烧结(98%)需要接近1300°C的峰值温度,但这样的高温会使铜和铬蒸发,从而导致热处理回应和耐腐蚀性的潜在损失。δ-铁素体的形成受较高温度的影响,这一阶段由于更快的扩散有助于最终致密化。在图3(59)中绘制了关于10μm水雾化粉末的收缩和烧结密度(60分钟保温,氢气)与温度的资料。在气体雾化粉末的研究中报导了几乎相同的值[53 ]。在1350°C时,达到99%的密度,与气体雾化粉末[47]相同,在1300°C时,密度为96%,与相同条件下的97%的报告相比有利[83]。60 vol%生坯密度的收缩率为15.4%,类似于另一个报告的15.7%。尺寸变化的这种微小差异可能反映δ-铁素体含量的差异。从55 vol%生坯密度开始的研究报告最后有17.5%收缩,得到了98%烧结密度。在这种情况下,大约10%δ-铁素体仍然存在。
Fig. 3 Plot of sintering shrinkage and sintered density versus hold temperature, heating is at 5°C/min with a 60 min hold at the final temperature [59] 烧结收缩率和烧结密度与保温温度、升温速率为5°C/min,在最终温度下保持60分钟[59]。
The sintering shrinkage curve is a reflection of atomic scale atom motion. Mathematically, the dimensional change is treated as a viscous flow event, similar to how glass deforms at high temperature. For 17-4 PH, the viscosity during sintering is approximated as: 3.4?107 exp (3305/ T ) Pa?s, where T is the absolute temperature [84-86]. This is an effective viscosity that includes many factors lumped into a single term. Quenched samples harvested during heating show fully austenitic structures from 780°C up to 1200°C and the emergence of delta-ferrite over 1220°C. Fig. 4 is an example of hydrogen sintered material quenched from 1260°C, showing colonies of delta-ferrite. The pores are transforming to spherical shapes. Property adjustments are possible by mixing austenitic 316L powder with 17-4 PH powder, possibly delivering altered magnetic and mechanical properties [87]. This is an area lacking attention, probably due to the difficulty in qualifying products sintered from mixed stainless steel powders. 烧结收缩曲线是由原子级的运动所反映。在数学上,尺寸变化被视为粘性流动事件,类似于玻璃在高温下变形的方式。对于17-4 PH,烧结过程中的粘度近似为: ,其中T是绝对温度[84-86]。这是一种有效的粘度,将许多因素集中在一个公式内。在加热过程中对样品进行的淬火,显示出从780°C~1200°C的完全奥氏体结构以及在1220°C出现的δ-铁素体。图4是从1260℃淬火的氢烧结材料的实例,显示出δ-铁素体的聚落,生坯体的孔隙正在转变为球形。通过将奥氏体316L粉末与17-4 PH粉末混合,可以进行性能调整,可能会改变磁性和机械性能[87]。这是一个缺乏关注的领域,可能是由于难以鉴定由混合不锈钢粉末烧结的产品。(注意非标准的材料必须要求客户签定免责权,否则不要轻易尝试混合)
Fig. 4 Microstructure of 17-4 PH water quenched from 1260°C during hydrogen sintering, showing emergence of white delta-ferrite colonies. The dark regions are pores with some small circular oxide inclusions以氢气烧结从1260℃淬火的17-4PH,其微观结构显示出白色δ-铁素体聚落的出现。暗区是具有一些小的圆形且有氧化物夹杂的孔。
Independent trials using 60 min holds in hydrogen are widespread and tend to report similar densities [53]. For example, 1350°C produces 99.4% density for gas atomized 10.7 um powder. Other studies find equivalent densification at slightly lower temperatures for longer times. Fig. 5 maps interpolated time temperature effects on sintered density for a gas atomized powder [57]. Generally, the sintering studies are in agreement with respect to the time-temperature trade-off. For example, the horizontal one hour trace in this figure shows progressive density gains with increasing sintering temperature. However, long hold times are less productive. A comparison of gas and water atomized powders at 1300°C and 1380°C found both powders sintered to a high density at the lower temperature [71]. Another study comparing , or 1380°C at times of 60, 90, or 120 min concluded that 1380°C for 90 min resulted in the highest tensile strength (1275 MPa, 36 HRC, 5% elongation) [88]. As previously mentioned, a problem with such a high sintering temperature is evaporative loss of chromium vapor pressure is 4.5 times higher at 1380°C versus 1300°C and copper vapor pressure is double that of chromium. 使用氢气60分钟保温的独立试验是很普遍的方法,一些报告都反映出类似的密度[53]。例如,1350℃对气体雾化粉粒径是10.7μm粉末烧结后获得了99.4%的密度,其他的研究发现在较低温度下等效致密化时间较长。图5显示了内插时间温度对采用气体雾化粉末体的烧结密度之影响[57]。通常,烧结研究对于时间 - 温度权衡是一致的。例如,该图中的水平一小时迹线显示随着烧结温度的增加而逐渐增加的密度。但是,长时间保持效率较低。将气体雾化和水雾化粉末在1300℃和1380℃下进行比较,发现两种粉末在较低温度下可以烧结成高的密度[71]。另一项在保温60, 90或120分钟时比较或1380°C的研究得出结论,1380°C 90分钟导致最高的拉伸强度(1275 MPa,36 HRC,5%伸长率)[88]。如前所述,这种较高的烧结温度会有问题是铬和铜的蒸发损失;铬蒸气压在1380°C时相对于1300°C高4.5倍,铜蒸气压是铬的两倍。(高温烧结容易对17-4PH表面的铬和铜蒸发,因而导致盐雾测试的快速生锈)
Fig. 5 Map of computer interpolated sintered density contours versus time and temperature [57] 计算机内插法的烧结密度等值线与时间和温度的关系图[57]
Hold times保温时间
Typical sintering hold times at the peak temperature are in the 60 to 120 min range. Little gain comes from the long holds. For one hour, the horizontal line in Fig. 5 indicates a progressive density gain from 96.3% to 98.5% as the temperature increases from 1240 to 1360°C. With about 60 min hold the compacts almost reach full density. As porosity is eliminated, the rate of pore annihilation declines, partly due to exhaustion of porosity and partly due to loss of grain boundaries due to grain growth. Grain boundaries are the annihilation sites for vacancies during sintering. Pores are massive collections of vacancies. Dilatometry shows that the peak shrinkage rate during heating occurs while about 7% porosity remains (near 1250°C) [47]. Longer holds the densification has gone about as far as possible due to grain size increases and loss of grain boundaries. The results plotted in Figs. 2, 5 and 6 verify that, when °C is reached, the density is high and further gains with extended holds are small. This implies that, upon reaching the ideal sintering temperature range, only a few minutes of hold are required. Most of the densification occurs during heating [51, 81]. 峰值温度下的典型烧结保持时间在60~120分钟范围内,长期保温的收益微乎其微。在一小时之内,如图5中的水平线表示随着温度从1240℃升至1360℃,渐进密度增益从96.3%增加到98.5%。持续约60分钟,坯块就几乎达到全密度。随着孔隙率的消除,孔隙湮没率下降,部分原因是孔隙度被填满耗尽(质量移动,原子的扩散造成质量移动),而部分原因是由于晶粒生长导致的晶界消失。晶界是烧结过程中空位的湮没位置,孔洞是大量物质的空缺。以膨胀计测量表明,加热过程中经过峰值收缩率发生后,孔隙率约为7%(在接近1250°C位置)[47]。证据越来越明显:由于晶粒尺寸的增加和晶界的损失,致密化已尽可能地发生。结果绘制在图2和3中,图2, 5和6证实,当达到℃时,密度增高时即使延长保温时间,但产品的密度进一步增益却很小。这意味着,在达到理想的烧结温度范围时,仅需要几分钟的保持时间。大多数17-4PH致密化发生在加热过程中[51,81]。
上图是典型的烧结17-4PH显微结构,我们可以发现气孔的分部是沿着边界有一层高密度层包着MIM固有的气孔分部结构,这个孔隙度约为3%具有表层致密的结果,通常要小心抛光和研磨不要超过这个致密层的限度,否则就会发现抛光后出现大量孔洞在抛光面。
Fig. 6 Constant heating rate dilatometry data for three powder types, heating at 10°C/min [51]. The data illustrate how full density is approached during heating if the peak temperature reaches about 1350°C采用膨胀测量三种粉末类型在恒定加热速率下的热膨胀数据,以10°C / min加热[51]。 数据说明了如果峰值温度达到约1350°C,在加热过程中几乎接近完全密度。
Sintering parameters play a role in compact densification. At first, surface diffusion induces particle bonding. Once necks with grain boundaries form, densification follows by grain boundary diffusion. The model for grain boundary diffusion controlled sintering gives the isothermal shrinkage as a function of the processing conditions as follows [78]: 烧结参数在致密致密化中起了关键作用,首先,表面扩散引起粉末颗粒的结合,一旦形成具有晶界的颈部,便可以迅速通过晶界扩散致密化。晶界扩散控制烧结模型则给出了等温收缩作为加工条件的函数如下[78]:
where ΔL is the change in length from the initial size LO , t is the hold time, γ is the solid-vapor surface energy, δ is the atom diameter (assuming the grain boundary is five atoms wide), Ω is the atomic volume, k = Boltzmann’s constant (1.38?10-23 J/K), T is the absolute temperature, G is the grain size, DB is the frequency factor for grain boundary diffusion, QB is the activation energy and R is the universal gas constant (8.31 J/(mol K)). Such an isothermal model
as illustrated already, since most of the sintering shrinkage occurs before reaching isothermal conditions. Temperature and grain size are dominant parameters in comparison with hold time. ΔL是从初始尺寸L0开始的长度变化值、t是保温时间、γ是固体蒸汽表面能、δ是原子直径(假设晶界宽度为5个原)、Ω是原子体积、k =玻尔兹曼常数(1.38?10-23 J / K)、T是绝对温度、G是晶粒尺寸、DB是晶界扩散的频率因子、QB是活化能、R是通用气体常数(8.31 J /(mol K))。 这种等温模型很难测试;如已经说明,大部分烧结收缩在达到等温条件之前发生。 与保持时间相比,温度和晶粒尺寸是主要参数。
Trials to extract an apparent activation energy from shrinkage data result in values ranging from 312 to 350 kJ/mol [54, 81]. This is slightly higher than 167 kJ/mol reported for other stainless steels [78]. For 17-4 PH, the simultaneous surface diffusion acts to exhaust surface energy, but does not contribute to densification. The result is a high appare surface diffusion acts to form interparticle necks containing grain boundaries, but grain boundary diffusion is only monitored by shrinkage. Further, grain growth goes hand-in-hand with sintering densification, since mass transport across the grain boundary produces grain growth while mass transport along the grain boundary produces densification. Finally, the activation energy extracted from densification data is complicated by phase changes during heating [89]. Surface diffusion provides compact shape retention by building bonds between particles as the backbone binder evaporates. The resulting open pore structure is captured in Fig. 7. Neck growth by surface diffusion under isothermal conditions is modelled as follows [78]: 从收缩资料中提取表面活化能的试验结果为312~350 kJ / mol [54, 81],这比起其他不锈钢报导的略高于167 kJ / mol [78]。对于17-4 PH而言,表面扩散的同时和表面能的作用并不会导致致密化,但是高表面活化能与表面扩散作用形成含有晶界的颈部生成才是致密化的关键,而晶界扩散则仅能通过收缩来监测。不过,晶粒生长与烧结致密化则有密切关系,因为穿过晶界的品质传递造成晶粒生长,而沿晶界的品质传递产生致密化。最后,从致密化资料中提取的活化能因加热过程中的相变而变得复杂[89]。当骨架粘合剂蒸发时,表面扩散通过在颗粒之间建立粘合来提供紧凑的形状保持。得到的开孔结构如图7所示,在等温条件下通过表面扩散的颈部生长模拟如下[78]:
The neck diameter is X , particle diameter is D and X/D is the neck size ratio. In Fig. 7, the neck size ratio varies from 0.3 to 0.5, averaging 0.38. In this equation, t = isothermal hold time, γ = surface energy, δ= atomic spacing, k = Boltzmann’s constant (1.38?10-23 J/K), T is the absolute temperature in kelvin, DS is the surface diffusion frequency factor, QS = the activation energy for surface diffusion and R = universal gas constant (8.31 J/(mol K)). Data for 316L stainless steel provide a means to estimate surface diffusion neck growth since 17-4 PH is also austenitic during heating. In turn, neck growth by surface diffusion provides a means of estimating strength evolution during heating. Table 4 summarizes the calculation parameters. 颈部直径为X、粒径为D,则X / D为颈部与粉末粒径尺寸比。 在图7中,颈部尺寸比从0.3到0.5变化,平均为0.38。 在这个等式中,t =等温保持时间,γ=表面能,δ=原子间距,k =玻尔兹曼常数(1.38?10-23 J / K),T是以凯氏温度表示的绝对温度,DS是表面扩散频率因子 ,QS =表面扩散的活化能,R =通用气体常数(8.31 J /(mol K))。 采用316L不锈钢的数据提供了一

我要回帖

更多关于 双顶径96mm股骨长69mm 的文章

 

随机推荐