Dong Young Bae如何写成圆体英文26个字母写法

Dongyoung Kim | MEng Electronic and Electrical Engineering | University College London, London | UCL | Department of Electronic and Electrical Engineering | ResearchGate
· MEng Electronic and Electrical EngineeringNetworkResearch 1520Research items1,137Reads46CitationsSep 2013London, England, United KingdomSep 2013 - Aug 2018Sep 2010 - Jun 2014London, United KingdomView AllUniversity College LondonUniversity College LondonUniversity College LondonThe University of WarwickUniversity College LondonView AllUniversity College LondonUniversity College LondonUniversity College LondonThe University of WarwickUniversity College LondonView AllUniversity of GlasgowUniversity of SydneyPolitecnico di TorinoNelson Mandela UniversityToyota Technological InstituteView AllUniversity of GlasgowUniversity College LondonTampere University of TechnologyUniversity College LondonUniversity of SydneyJul 2016[...]One of the requirements for strong subbandgap photon absorption in the quantum-dot intermediate-band solar cell (QD-IBSC) is the partial filling of the intermediate band. Studies have shown that the partial filling of the intermediate band can be achieved by introducing Si doping to the QDs. However, the existence of too many Si dopants leads to the formation of point defects and, hence, a reduction of photocurrent. In this study, the effect of Si doping on InAs/GaAs QD solar cells with AlAs cap layers is studied. The AlAs cap layers prevent the formation of the wetting layer during QD growth and reduce the Si doping density needed to achieve QD state filling. Furthermore, the passivation of defect states in the QD with moderate Si doping is demonstrated, which leads to an enhancement of the carrier lifetime in the QDs and, hence, the open-circuit voltage.Dec 2015[...]III-V nanowire quantum dots (NWQDs) monolithically grown on silicon substrates, combining the advantages of both one- and zero-dimensional materials, represent one of the most promising technologies for integrating advanced III-V photonic technologies on a silicon microelectronics platform. However, there are great challenges in the fabrication of high-quality III-V NWQDs by a bottom-up approach, i.e., growth by the vapor-liquid-solid method, because of the potential contamination caused by external metal catalysts and the various types of interfacial defects introduced by self-catalyzed growth. Here, we report the defect-free self-catalyzed III-V NWQDs – GaAs quantum dots in GaAsP nanowires – on a silicon substrate with pure zinc blende structure for the first time. Well-resolved excitonic emission is observed with a narrow linewidth. These results pave the way toward on-chip III-V quantum information and photonic devices on silicon platform.Dec 2015[...]The influences of droplet size on the growth of self-catalyzed ternary nanowires (NWs) were studied using GaAsP NWs. The size-induced Gibbs-Thomson (GT) effect makes the smaller catalytic droplets have lower effective supersaturations and hence slower nucleation rates than the larger ones. Large variation in droplet size thus led to the growth of NWs with low uniformity, while a good size uniformity of droplets resulted in the production of highly-uniform NWs. Moreover, thinner NWs were observed to be richer in P, indicating that P is more resistant to the GT effect than As because of a higher chemical potential inside Ga droplets. These results provide useful information for understanding the mechanisms of self-catalyzed III-V NW nucleation and growth with the important ternary III-V material systems.Jan 2016[...]We studied the growth of InAs/InGaP quantum dot (QD) solar cells with near ideal bandgaps for intermediate band solar cells. Using a solid-source molecular beam epitaxy system, the evolution of InAs QDs grown on an InGaP buffer layer was examined as a function of InAs coverage and growth temperature. QDs were initiated with defective clusters for InAs deposition as small as 0.3 monolayer. The cross diffusion of In atoms and As–P exchange between InAs and the InGaP buffer layer could be responsible for the formation of coherent QDs and large defective clusters. An AlGaAs interlayer was inserted between InAs and the InGaP buffer layer to prevent the surface exchange reactions between InAs and InGaP. As a result, InAs QDs with a density of 1×1011 cm-2 have been demonstrated with stronger photoluminescence emission compared to those with the GaAs interlayer. This growth technique was applied to fabricate InAs/InGaP QD solar cells. Post-growth annealing treatment was also investigated to improve the performance of QD solar cells.Jan 2014[...]The effect of post-growth annealing on InAs/GaAs quantum dot solar cells (QDSCs) has been studied. A significant improvement in photoemission, photocurrent density, and spectral response has been observed with post-growth annealing. The optimal anneal temperature was found to be 700 ° C, which lead to an 18% improvement in current density from 4.9 mA cm -2 for as-grown sample to 5.8 mA cm -2 . We assign this enhanced performance to the reduced density of inherent point defects that was formed at the quantum dot (QD) and GaAs barrier. Post-growth thermal anneal treatment of QDSCs is demonstrated as a simple route for achieving improved device performance.Mar 2018[...]One of the primary challenges facing quantum dot (QD)-based intermediate band solar cells is the short lifetime of charge carriers (~1 ns). To investigate this, InAs QD/GaAs ${}_{\text{1}\hbox{--}x}$ Sb ${}_{x}$ quantum well (QW) solar cells (SCs) with a 2-nm GaAs interlayer between the QDs and QW were fabricated for x = 0, 0.08, 0.14, and 0.17, respectively. Time-resolved photoluminescence measurements demonstrated prolonged carrier lifetimes up to 480 ns for the type-II SCs with x ≥ 14%. This improvement in carrier lifetime is assigned to the GaAs interlayer that reduces the wavefunction overlap between the electrons accumulated in the QDs and holes in the QW, and hence limits the possible emission pathways. External quantum efficiency measurements were performed to analyze the SC performance. An order of magnitude improvement was observed in the QD region (900–1200 nm) for the type-II SCs and is linked to the prolonged carrier lifetime.Feb 2018[...]This paper presents an experimental and theoretical study on the impact of doping and recombination mechanisms on quantum dot solar cells based on the InAs/GaAs system. Numerical simulations are built on a hybrid approach that includes the quantum features of the charge transfer processes between the nanostructured material and the bulk host material in a classical transport model of the macroscopic continuum. This allows gaining a detailed understanding of the several physical mechanisms affecting the photovoltaic conversion efficiency and provides a quantitatively accurate picture of real devices at a reasonable computational cost. Experimental results demonstrate that QD doping provides a remarkable increase of the solar cell open-circuit voltage, which is explained by the numerical simulations as the result of reduced recombination loss through quantum dots and defects.Jan 2018[...]Layered van der Waals heterostructures have attracted considerable attention recently, due to their unique properties both inherited from individual two-dimensional (2D) components and imparted from their interactions. Here, a novel few-layer MoS2/glassy-graphene heterostructure, synthesized by a layer-by-layer transfer technique, and its application as transparent photodetectors are reported for the first time. Instead of a traditional Schottky junction, coherent ohmic contact is formed at the interface between the MoS2 and the glassy-graphene nanosheets. The device exhibits pronounced wavelength selectivity as illuminated by monochromatic lights. A responsivity of 12.3 mA W-1 and detectivity of 1.8 × 1010 Jones are obtained from the photodetector under 532 nm light illumination. Density functional theory calculations reveal the impact of specific carbon atomic arrangement in the glassy-graphene on the electronic band structure. It is demonstrated that the band alignment of the layered heterostructures can be manipulated by lattice engineering of 2D nanosheets to enhance optoelectronic performance.May 2018[...]We report thin-film InAs/GaAs quantum dot (QD) solar cells with n-i-p+ deep junction structure and planar back reflector fabricated by epitaxial lift-off (ELO) of full 3-in wafers. External quantum efficiency measurements demonstrate twofold enhancement of the QD photocurrent in the ELO QD cell compared to the wafer-based QD cell. In the GaAs wavelength range, the ELO QD cell perfectly preserves the current collection efficiency of the baseline single-junction ELO cell. We demonstrate by full-wave optical simulations that integrating a micro-patterned diffraction grating in the ELO cell rearside provides more than tenfold enhancement of the near-infrared light harvesting by QDs. Experimental results are thoroughly discussed with the help of physics-based simulations to single out the impact of QD dynamics and defects on the cell photovoltaic behavior. It is demonstrated that non radiative recombination in the QD stack is the bottleneck for the open circuit voltage (Voc) of the reported devices. More important, our theoretical calculations demonstrate that the Voc offset of 0.3. V from the QD ground state identified by Tanabe et al., 2012, from a collection of experimental data of high quality III-V QD solar cells is a reliable - albeit conservative - metric to gauge the attainable Voc and to quantify the scope for improvement by reducing non radiative recombination. Provided that material quality issues are solved, we demonstrate - by transport and rigorous electromagnetic simulations - that light-trapping enhanced thin-film cells with twenty InAs/GaAs QD layers reach efficiency higher than 28% under unconcentrated light, ambient temperature. If photon recycling can be fully exploited, 30% efficiency is deemed to be feasible.Dec 2017[...]Controlled and reproducible doping is essential for nanowires (NWs) to realize their functions. However, for the widely used self-catalyzed vapor-liquid-solid (VLS) growth mode, the doping mechanism is far from clear, as the participation of the nanoscale liquid phase makes the doping environment highly complex and significantly different from that of the thin film growth. Here, the doping mechanism of self-catalyzed NWs and the influence of self-catalytic droplets on the doping process are systematically studied using beryllium (Be) doped GaAs NWs. Be atoms are found for the first time to be incorporated into NWs predominantly through the Ga droplet that is observed to be beneficial for setting up thermodynamic equilibrium at the growth front. Be dopants are thus substitutional on Ga sites and redundant Be atoms are accumulated inside the Ga droplets when NWs are saturated, leading to the change of the Ga droplet properties and causing the growth of phase-pure zincblende NWs. This study is an essential step toward the design and fabrication of nanowire devices.Jul 2017[...]The growth of self-catalyzed core–shell nanowires (NWs) is investigated systematically using GaAs(P) NWs. The defects in the core NW are found to be detrimental for the shell growth. These defects are effectively eliminated by introducing beryllium (Be) doping during the NW core growth and hence forming Be–Ga alloy droplets that can effectively suppress the WZ nucleation and facilitate the droplet consumption. Shells with pure zinc-blende crystal quality and highly regular morphology are successfully grown on the defect-free NW cores and demonstrated an enhancement of one order of magnitude for room-temperature emission compared to that of the defective shells. These results provide useful information on guiding the growth of high-quality shell, which can greatly enhance the NW device performance.Feb 2017SPIE OPTO[...]In this work, the effect of Si doping on InAs/GaAs quantum dot solar cells with AlAs cap layers is studied. The AlAs cap layers suppress the formation of the wetting layer during quantum dot growth. This helps achieve quantum dot state filling, which is one of the requirements for strong sub-bandgap photon absorption in the quantum dot intermediate band solar cell, at lower Si doping density. Furthermore, the passivation of defect states in the quantum dots with moderate Si doping is demonstrated, which leads to an enhancement of the carrier lifetime in the quantum dots, and hence the open-circuit voltage.Feb 2017SPIE OPTO[...]Nanowires (NWs) have better functionality and superior performance as compared with the traditional thin film counterparts. However, NW growth is highly complicated and the growth mechanism is far from clear, especially when it is grown by vapor-liquid-solid mode. In this work, the influences of droplet size on the growth of self-catalyzed ternary NWs were studied using GaAsP NWs. The size-induced Gibbs-Thomson (GT) effect is observed for the first time in the self-catalyzed growth mode, which can make the smaller catalytic droplets have lower effective supersaturations. Thus, the droplet size can significantly influence the uniformity and composition of NWs. By carefully control the droplet size, the growth of highly uniform NW arrays are demonstrated. These results provide useful information for understanding the mechanisms of self-catalyzed III-V NW nucleation and growth with the important ternary III-V material systems.Jan 2017[...]One of the key issues in the design and development of a satellite Photovoltaic Assembly (PVA) is the trade-off to be made between the available volume located to the PVA, its mass and the total amount of power that the solar panels have to guarantee to the spacecraft. The development of high-efficiency, flexible, lightweight solar cells is therefore instrumental to the design of future satellites providing enhanced missions and services. Based on the consolidated development of GaAs-based single junction and lattice matched triple-junction solar cells, several research efforts are being pursued worldwide to further increase the efficiency and reduce mass. Promising approaches include thin-film technologies such as Inverted Metamorphic and Epitaxial Lift-Off (ELO), and the use of nanostructures or highly mismatched alloys grown by MBE. We propose here an alternative path towards the development of lightweight GaAs-based solar cells with the potential to exceed the Shockley-Queisser (SQ) limit of single junction cells. Our approach is based on the synergistic combination of thin-film design, quantum dots (QDs) absorption, and photonic nanostructures. Challenges and opportunities offered by the use of QDs are discussed. A cost-effective and scalable fabrication process including ELO technology and nanoimprint lithography is outlined. Finally, a proof-of-concept design, based on rigorous electromagnetic and physics-based simulations, is presented. Efficiency higher than 30% and weight reduction close to 90% - owing to the substrate removal - makes the proposed device to rank record power-to-weight ratio, with the potential to become a cost-effective, attractive option for next generation space solar cells.Jan 2017[...]In this work, the effect of Si doping on InAs/GaAs quantum dot solar cells with AlAs cap layers is studied. The AlAs cap layers suppress the formation of the wetting layer during quantum dot growth. This helps achieve quantum dot state filling, which is one of the requirements for strong sub-bandgap photon absorption in the quantum dot intermediate band solar cell, at lower Si doping density. Furthermore, the passivation of defect states in the quantum dots with moderate Si doping is demonstrated, which leads to an enhancement of the carrier lifetime in the quantum dots, and hence the open-circuit voltage.Jan 201711th European Space Power Conference (ESPC)[...]One of the key issues in the design and development of a satellite Photovoltaic Assembly (PVA) is the trade-off to be made between the available volume located to the PVA, its mass and the total amount of power that the solar panels have to guarantee to the spacecraft. The development of high-efficiency, flexible, lightweight solar cells is therefore instrumental to the design of future satellites providing enhanced missions and services. Based on the consolidated development of GaAs-based single junction and lattice matched triple-junction solar cells, several research efforts are being pursued worldwide to further increase the efficiency and reduce mass. Promising approaches include thin-film technologies such as Inverted Metamorphic and Epitaxial Lift-Off (ELO), and the use of nanostructures or highly mismatched alloys grown by MBE. We propose here an alternative path towards the development of lightweight GaAs-based solar cells with the potential to exceed the Shockley-Queisser (SQ) limit of single junction cells. Our approach is based on the synergistic combination of thin-film design, quantum dots (QDs) absorption, and photonic nanostructures. Challenges and opportunities offered by the use of QDs are discussed. A cost-effective and scalable fabrication process including ELO technology and nanoimprint lithography is outlined. Finally, a proof-of-concept design, based on rigorous electromagnetic and physics-based simulations, is presented. Efficiency higher than 30% and weight reduction close to 90% - owing to the substrate removal - makes the proposed device to rank record power-to-weight ratio, with the potential to become a cost-effective, attractive option for next generation space solar cells.Jan 201711th European Space Power Conference (ESPC)[...]In this work, the effect of Si doping on InAs/GaAs quantum dot solar cells with AlAs cap layers is studied. The AlAs cap layers suppress the formation of the wetting layer during quantum dot growth. This helps achieve quantum dot state filling, which is one of the requirements for strong sub-bandgap photon absorption in the quantum dot intermediate band solar cell, at lower Si doping density. Furthermore, the passivation of defect states in the quantum dots with moderate Si doping is demonstrated, which leads to an enhancement of the carrier lifetime in the quantum dots, and hence the open-circuit voltage.Mar 2016SPIE OPTO[...]Self-catalyzed GaAsP nanowires (NWs) have a band gap that is capable of covering the working wavelengths from green to infrared. However, the difficulties in controlling P and the complexities of the growth of ternary NWs make it challenging to fabricate them. In this work, self-catalyzed GaAsP NWs were successfully grown on Si substrates by solid-source molecular beam epitaxy and demonstrated almost stacking fault free zinc blend crystal structure, Growth of high-quality shell has been realized on the core NWs. In the shell, a quasi-3-fold composition symmetry has been observed for the first time. Moreover, these growth techniques have been successfully applied for growth on patterned Si substrates after some creative modifications such as high-temperature substrate cleaning and Ga pre-deposition. These results open up new perspectives for integrating III-V nanowire photovoltaics and visible light emitters on the silicon platform using self-catalyzed GaAsP core-shell nanowires. (C) (2016) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.Jun 2015Journal of Physics: Conference Series[...]We present a study of 1.3-μm InAs/GaAs quantum dot lasers monolithically grown on Si substrates by molecular beam epitaxy. We focused on the optimization of III-V buffer layers epitaxy grown on Si substrates, which includes the nucleation layers and the dislocation filter layers. The effect of growth temperature of GaAs nucleation layer has been investigated. Additionally, InAlAs/GaAs and In GaAs/GaAs strained layer superlattices(SLSs) are compared as dislocation filter layers. Our results show the optimization of III-V buffer layers grown on Si is critical to achieve high performance quantum-dot lasers. An optimised 1.3-μm board-area laser has been demonstrated with a low threshold current density of 194 A/cm2 and output power of 77 mW at room temperature.Sep 2012ELOPTO 2012, 13th International Symposium on Colloidal and Molecular Electrooptic[...]

我要回帖

更多关于 圆体 简 的文章

 

随机推荐