单个分析时,M受到m给其的滚动摩擦力力被如何抵消

3v,a、b之间的电势差为22g.
科目:高中物理
如图所示,质量为m的球,被长为L的细绳吊起处于静止状态.现对小球施加水平向右的恒力F,小球开始向右运动,当细绳与竖直方向的夹角为60°,小球速度恰好为0(  )A.整个过程重力做功为0B.整个过程重力做功为C.恒力F的大小为D.恒力F的大小为
科目:高中物理
(2003?徐州一模)如图所示,质量为M的木板可以沿倾角为α的固定斜面无摩擦地滑下,欲使木板静止在斜面上,木板上质量为m的人应以多大的加速度向下奔跑?
科目:高中物理
题型:阅读理解
(选修3-5)(1)核能是一种高效的能源.①在核电站中,为了防止放射性物质泄漏,核反应堆有三道防护屏障:燃料包壳,压力壳和安全壳(见图甲).结合图乙可知,安全壳应当选用的材料是混凝土.②图丙是用来监测工作人员受到辐射情况的胸章,通过照相底片被射线感光的区域,可以判断工作人员受到何种辐射.当胸章上1mm铝片和3mm铝片下的照相底片被感光,而铅片下的照相底片未被感光时,结合图2分析工作人员受到了β射线的辐射;当所有照相底片被感光时,工作人员受到了γ射线的辐射.(2)下列说法正确的是A.卢瑟福的a粒子散射实验揭示了原子核有复杂的结构B.受普朗克量子论的启发,爱因斯坦在对光电效应的研究中,提出了光子说C.核反应方程U→Th+He属于裂变D.宏观物体的物质波波长非常小,极易观察到它的波动性E.根据爱因斯坦质能方程,物体具有的能量和它的质量之间存在着正比关系F.β衰变中产生的β射线实际上是原子的核外电子挣脱原子核的束缚而形成的G.中子与质子结合成氘核的过程中需要吸收能量H.升高放射性物质的温度,可缩短其半衰期I.氢原子辐射出一个光子后,根据玻尔理论可知氢原子的电势能增大,核外电子的运动加速度增大J.对于任何一种金属都存在一个“最大波长”,入射光的波长必须小于这个波长,才能产生光电效应(3)如图所示,质量为M=2kg的足够长的小平板车静止在光滑水平面上,车的一端静止着质量为MA=2kg的物体A(可视为质点).一个质量为m=20g的子弹以500m/s的水平速度迅即射穿A后,速度变为100m/s,最后物体A静止在车上.若物体A与小车间的动摩擦因数μ=0.5.(g取10m/s2)①平板车最后的速度是多大?②全过程损失的机械能为多少?③A在平板车上滑行的距离为多少?
精英家教网新版app上线啦!用app只需扫描书本条形码就能找到作业,家长给孩子检查作业更省心,同学们作业对答案更方便,扫描上方二维码立刻安装!
请输入姓名
请输入手机号高一物理摩擦力课件
高一物理摩擦力课件
【www.ruiwen.com - 课件】
  高一物理摩擦力课件  知识目标  1、知道摩擦力产生的条件;  2、能在简单的问题中,根据物体的运动状态,判断静摩擦力的有无、大小和方向;知道存在着最大静摩擦力;  3、掌握动摩擦因数,会在具体问题中计算滑动摩擦力,掌握判定摩擦力方向的方法;  4、知道影响动摩擦因数的因素;  能力目标  1、通过观察演示实验,概括出摩擦力产生的条件以及摩擦力的特点,培养学生的观察、概括能力.通过静摩擦力与滑动摩擦力的区别对比,培养学生的分析综合能力.  情感目标  渗透物理方法的教育.在分析物体所受摩擦力时,突出主要矛盾,忽略次要因素及无关因素,总结出摩擦力产生的条件和规律.  教学建议  一、基本知识技能:  1、两个互相接触且有相对滑动或的物体,在它们的接触面上会产生阻碍相对运动的摩擦力,称为滑动摩擦力;  2、两个物体相互接触,当有相对滑动的趋势,但又保持相对静止状态时,在它们接触面上出现的阻碍相对滑动的作用力  3、两个物体间的滑动摩擦力的大小跟这两个物体接触面间的压力大小成正比.  4、动摩擦因数的大小跟相互接触的两个物体的材料有关.  5、摩擦力的方向与接触面相切,并且跟物体相对运动或相对运动趋势相反.  6、静摩擦力存在最大值——最大静摩擦力.  二、重点难点分析:  1、本节课的内容分滑动摩擦力和静摩擦力两部分.重点是摩擦力产生的条件、特性和规律,通过演示实验得出关系.  2、难点是在理解滑动摩擦力计算公式时,尤其是理解水平面上运动物体受到的摩擦力时,学生往往直接将重力大小认为是压力大小,而没有分析具体情况.  教法建议  一、讲解摩擦力有关概念的教法建议  介绍滑动摩擦力和静摩擦力时,从基本的事实出发,利用二力平衡的知识使学生接受摩擦力的存在.由于摩擦力的内容是本节的难点,所以在讲解时不要求“一步到位”,关于摩擦力的概念可以通过实验、学生讨论来理解.  1、可以让学生找出生活和生产中利用摩擦力的例子;  2、让学生思考讨论,如:  (1)、摩擦力一定都是阻力;  (2)、静止的物体一定受到静摩擦力;  (3)、运动的物体不可能受到静摩擦力;  主要强调:摩擦力是接触力,摩擦力是阻碍物体间的相对运动或相对运动趋势的,但不一定阻碍物体的运动,即在运动中也可以充当动力,如传送带的例子.  二、有关讲解摩擦力的大小与什么因素有关的教法建议  1、滑动摩擦力的大小,跟相互接触物体材料及其表面的光滑程度有关;跟物体间的正压力有关;但和接触面积大小无关.注意正压力的解释.  不是表面越光滑,动摩擦因数越小.实际上,当两物体表面很粗糙时,由于接触面上交错齿合,会使动摩擦因数很大;对于非常光滑的表面,尤其是非常清洁的表面,由于分子力起主要作用,所以动摩擦因数更大,表面越光洁,动摩擦因数越大.但在力学中,常称“物体表面是光滑的”这是忽略物体之间的摩擦力的一种提法,实际上是一种理想化模型,与上面叙述毫无关系.  N为物体所受的正压力.摩擦力的大小变化随着外力的变化关系如图:滑动摩擦力的大小小于最大静摩擦力,但一般情况下认为两者相等。  第四节 摩擦力  课时安排:  1课时  教学方法:  设问法、讲解法相结合  教学过程设计:  一、复习提问  问题1、目前我们学了哪几种力?它们产生的原因是什么?它们大小方向如何确定?  教师总结前几节所学习内容,为方便知识体系的理解,在分析力时可把握如下几个过程:  1、力产生的原因;  2、力的大小、方向.  二、新课教学  (一)、引入新课  力学中常见的三种力是重力、弹力、摩擦力.对于每一种力,都需要知道它的产生条件、会计算它的大小、能判断它的方向.前面我们为你学习了其中两种力:重力和弹力.这一节我们学习第三种力——摩擦力.摩擦力是三种力种比较难掌握.  首先请学生分析图示(如图所示),教师可以演示这个实验,B物体用钩码代替:  提问1:木块A受几个力?  答案:重力、支持力、拉力、摩擦力  提问2:拉力与摩擦力是什么关系?去掉B,摩擦力是否存在?  答案:一对平衡力.不存在,即摩擦力为0.  提问3:摩擦力起什么作用?  答案:在B的作用下,物体A要向右运动,有向右运动的趋势.摩擦力就是阻碍A物体向右运动,从而使A物体与支持面保持相对静止.  (二)静摩擦力的讲解:  1、概念总结:  (1)、静摩擦力:物体间保持相对静止,但有相对运动趋势时的摩擦力.  (2)、静摩擦力的大小和方向:在上述实验中,不断增加钩码,使拉力增大,可以分析出:静摩擦力也是增大.但当增大到某一值时,A物体开始滑动了.A物体将要滑动的瞬间  2、例题讲解:  握住水杯,使水杯在空中保持不动.让学生讨论水杯是否受摩檫力.若受,则其大小、方向怎样?  答案:水杯受到重力、手的弹力、手的静摩擦力作用.由于水杯静止在空中,因此静摩擦力大小与重力大小相等.  3、继续演示实验,在前述实验中,继续增加钩码个数,木块开始缓慢匀速滑动后,开始提问.  提问4:木块此时受几个力?  答案:重力、支持力、拉力、摩擦力.  提问5:此时摩擦力起到什么作用?  答案:阻碍物体运动.  教师总结:  (三)滑动摩擦力的讲解  1、滑动摩擦力:物体间相对滑动时产生的摩擦力.  2、滑动摩擦力的方向:与物体相对运动的方向相反.  继续实验,向A木块施加压力(可以添加砝码),接着再愿基础上添加钩码,让木块又开始缓慢滑动.让学生讨论比较两次滑动摩擦力的大小.  (四)讲解例题,可以参考书上的例题.  三、小结  四、组织学生讨论课后习题  五、布置作业  探究活动  课题1:  内容:通过对日常生活的观察和研究,写出对于我们日常活动密切相关的摩擦的认识。  可以选择的课题建议:  1、“如果没有摩擦力,世界将会怎样”,关于本课题,可以让学生查找一些类似的文章并写出感想……,对于本文的写作形式可以不加限制。  2、“关于摩擦力在生活、生产中的作用”,本课题具有专题性质,可以针对某一方面详细叙述,如“摩擦在体育运动中”;“摩擦在我们的学习生活中”等等。  课题2:  内容:通过实验研究影响滑动摩擦力大小有关的因素。  1、实验验证影响滑动摩擦力大小的因素  由于教师在课堂上已经详细的讲述了影响滑动摩擦力大小的因素,因此学生在用实验研究滑动摩擦力时往往对实验的原理忽略,而注重实验的过程和实验的准确性,因此可以要求学生自己提出实验方案并说明为什么要如此设计,在教师指导下独立完成实验后写出详细的实验报告。  2、测量滑动摩擦力  相对与“实验验证影响滑动摩擦力大小的因素”实验,本实验是其延续,如果说实验1是提出了研究问题的方向,那么实验2就是针对具体细节的研究方案。建议学生自己提出实验方案,在教师指导下独立完成实验后写出详细的实验报告。  高一物理摩擦力课件【2】  学习目标:  1.知道滑动摩擦产生的条件,会正确判断滑动摩擦力的方向。  2.会用公式F=μFN计算滑动摩擦力的大小,知道影响动摩擦因数的大小因素。  3.知道静摩擦力的产生条件,能判断静摩擦力的有无以及大小和方向。  4.理解最大静摩擦力。能根据二力平衡条件确定静摩擦力的大小。  学习重点:1.滑动摩擦力产生的条件及规律,并会用F摩=μFN解决具体问题。  2.静摩擦力产生的条件及规律,正确理解最大静摩擦力的概念。  学习难点:  1.正压力FN的确定。  2.静摩擦力的有无、大小的判定。  主要内容:  一、摩擦力  一个物体在另一个物体上滑动时,或者在另一个物体上有滑动的趋势时我们会感到它们之间有相互阻碍的作用,这就是摩擦,这种情况下产生力我们就称为摩擦力。固体、液体、气体的接触面上都会有摩擦作用。  二、滑动摩擦力  1.产生:一个物体在另一个物体表面上相对于另一个物体发生相对滑动时,另一个物体阻碍它相对滑动的力称为滑动摩擦力。  2.产生条件:相互接触、相互挤压、相对运动、表面粗糙。  ①两个物体直接接触、相互挤压有弹力产生。  摩擦力与弹力一样属接触作用力,但两个物体直接接触并不挤压就不会出现摩擦力。挤压的效果是有压力产生。压力就是一个物体对另一个物体表面的垂直作用力,也叫正压力,压力属弹力,可依上一节有关弹力的知识判断有无压力产生。  ②接触面粗糙。当一个物体沿另一物体表面滑动时,接触面粗糙,各凹凸不平的部分互相啮合,形成阻碍相对运动的力,即为摩擦力。凡题中写明“接触面光滑”、“光滑小球”等,统统不考虑摩擦力(“光滑”是一个理想化模型)。  ③接触面上发生相对运动。  特别注意:“相对运动”与“物体运动”不是同一概念,“相对运动”是指受力物体相对于施力物体(以施力物体为参照物)的位置发生了改变;而“物体的运动”一般指物体相对地面的位置发生了改变。  3.方向:总与接触面相切,且与相对运动方向相反。  这里的“相对”是指相互接触发生摩擦的物体,而不是相对别的物体。滑动摩擦力的方向跟物体的相对运动的方向相反,但并非一定与物体的运动方向相反。  4.大小:与压力成正比F=μFN  ①压力FN与重力G是两种不同性质的力,它们在大小上可以相等,也可以不等,也可以毫无关系,用力将物块压在竖直墙上且让物块沿墙面下滑,物块与墙面间的压力就与物块重力无关,不要一提到压力,就联想到放在水平地面上的物体,认为物体对支承面的压力的大小一定等于物体的重力。  ②μ是比例常数,称为动摩擦因数,没有单位,只有大小,数值与相互接触的______、接触面的______程度有关。在通常情况下,μ&1。  ③计算公式表明:滑动摩擦力F的大小只由μ和FN共同决定,跟物体的运动情况、接触面的大小等无关。  5.滑动摩擦力的作用点:在两个物体的接触面上的受力物体上。  问题:1.相对运动和运动有什么区别?请举例说明。  2.压力FN的值一定等于物体的重力吗?请举例说明。  3.滑动摩擦力的大小与物体间的接触面积有关吗?  4.滑动摩擦力的大小跟物体间相对运动的速度有关吗?  三、静摩擦力  1.产生:两个物体满足产生摩擦力的条件,有相对运动趋势时,物体间所产生的阻碍相对运动趋势的力叫静摩擦力。  2.产生条件:  ①两物体直接接触、相互挤压有弹力产生;  ②接触面粗糙;  ③两物体保持相对静止但有相对运动趋势。  所谓“相对运动趋势”,就是说假设没有静摩擦力的存在,物体间就会发生相对运动。比如物体静止在斜面上就是由于有静摩擦力存在;如果接触面光滑.没有静摩擦力,则由于重力的作用,物体会沿斜面下滑。  跟滑动摩擦力条件的区别是:  3.大小:两物体间实际发生的静摩擦力F在零和最大静摩擦力Fmax之间  实际大小可根据二力平衡条件判断。  4.方向:总跟接触面相切,与相对运动趋势相反  ①所谓“相对运动趋势的方向”,是指假设接触面光滑时,物体将要发生的相对运动的方向。比如物体静止在粗糙斜面上,假没没有摩擦,物体将沿斜面下滑,即物体静止时相对(斜面)运动趋势的方向是沿斜面向下,则物体所受静摩擦力的方向沿斜面向上,与物体相对运动趋势的方向相反。  ②判断静摩擦力的方向可用假设法。其操作程序是:  A.选研究对象----受静摩擦力作用的物体;  B.选参照物体----与研究对象直接接触且施加静摩擦力的物体;  C.假设接触面光滑,找出研究对象相对参照物体的运动方向即相对运动趋势的方向  D.确定静摩擦力的方向一一与相对运动趋势的方向相反  ③静摩擦力的方向与物体相对运动趋势的方向相反,但并非一定与物体的运动方向相反。  5.静摩擦力的作用点:在两物体的接触面受力物体上。  【例一】下述关于静摩擦力的说法正确的是:()  A.静摩擦力的方向总是与物体运动方向相反;  B.静摩擦力的大小与物体的正压力成正比;  C.静摩擦力只能在物体静止时产生;  D.静摩擦力的方向与接触物体相对运动的趋势相反.  D  【例二】用水平推力F把重为G的黑板擦紧压在竖直的墙面上静止不动,不计手指与黑板擦之间的摩擦力,当把推力增加到2F时,黑板擦所受的摩擦力大小是原来的几倍?  摩擦力没变,一直等于重力.  四、滑动摩擦力和静摩擦力的比较  滑动摩擦力静摩擦力符号及单位  产生原因表面粗糙有挤压作用的物体间发生相对运动时表面粗糙有挤压作用的物体间具有相对运动趋势时摩擦力用f表示  单位:牛顿  简称:牛  符号:N  大小f=μN始终与外力沿着接触面的分量相等  方向与相对运动方向相反与相对运动趋势相反  问题:1.摩擦力一定是阻力吗?  2.静摩擦力的大小与正压力成正比吗?  3.最大静摩擦力等于滑动摩擦力吗?  课堂训练:  1.下列关于摩擦力的说法中错误的是()  A.两个相对静止物体间一定有静摩擦力作用.B.受静摩擦力作用的物体一定是静止的.  C.静摩擦力对物体总是阻力.D.有摩擦力一定有弹力  2.下列说法中不正确的是()  A.物体越重,使它滑动时的摩擦力越大,所以摩擦力与物重成正比.  B.由μ=f/N可知,动摩擦因数与滑动摩擦力成正比,与正压力成反比.  C.摩擦力的方向总是与物体的运动方向相反.  D.摩擦力总是对物体的运动起阻碍作用.  3.如图所示,一个重G=200N的物体,在粗糙水平面上向左运动,物体和水平面间的摩擦因数μ=0.1,同时物体还受到大小为10N、方向向右的水平力F作用,则水平面对物体的摩擦力的大小和方向是()  A.大小是10N,方向向左.B.大小是10N,方向向右.  C.大小是20N,方向向左.D.大小是20N,方向向右.  4.粗糙的水平面上叠放着A和B两个物体,A和B间的接触面也是粗糙的,如果用水平力F拉B,而B仍保持静止,则此时()  A.B和地面间的静摩擦力等于F,B和A间的静摩擦力也等于F.  B.B和地面间的静摩擦力等于F,B和A间的静摩擦力等于零.  C.B和地面间的静摩擦力等于零,B和A间的静摩擦力也等于零.  D.B和地面间的静摩擦力等于零,B和A间的静摩擦力等于F.  答案:1.ABC2.ABCD3.D4.B  阅读材料:从经典力学到相对论的发展  在以牛顿运动定律为基础的经典力学中,空间间隔(长度)S、时间t和质量m这三个物理量都与物体的运动速度无关。一根尺静止时这样长,当它运动时还是这样长;一只钟不论处于静止状态还是处于运动状态,其快慢保持不变;一个物体静止时的质量与它运动时的质量一样。这就是经典力学的绝对时空观。到了十九世纪末,面对高速运动的微观粒子发生的现象,经典力学遇到了困难。在新事物面前,爱因斯坦打破了传统的绝对时空观,于1905年发表了题为《论运动物体的电动力学》的论文,提出了狭义相对性原理和光速不变原理,创建了狭义相对论。狭义相对论指出:长度、时间和质量都是随运动速度变化的。长度、时间和质量随速度变化的关系可用下列方程来表示:,(通称“尺缩效应”)、(通称“钟慢效应”)、(通称“质—速关系”)  上列各式里的v是物体运动的速度,C是真空中的光速,l0和l分别为在相对静止和运动系统中沿速度v的方向测得的物体长度;t0和t分别为在相对静止和运动系统中测得的时间;m0和m分别为在相对静止和运动系统中测得的物体质量。  但是,当宏观物体的运动速度远小于光速时(v&  继狭义相对论之后,1915年爱因斯坦又建立了广义相对论,指出空间——时间不可能离开物质而独立存在,空间的结构和性质取决于物体的分布,使人类对于时间、空间和引力现象的认识大大深化了。“狭义相对论”和“广义相对论”统称为相对论。
[高一物理摩擦力课件]相关文章:
本文来源:如图,物体m和M保持相对静止,一起沿倾角为θ的光滑固定斜面下滑,则M和m间的摩擦力大小是多少?_百度知道
如图,物体m和M保持相对静止,一起沿倾角为θ的光滑固定斜面下滑,则M和m间的摩擦力大小是多少?
如图,物体m和M保持相对静止,一起沿倾角为θ的光滑固定斜面下滑,则M和m间的摩擦力大小是多少?
已知加速度后知道整体的加速度然后对m单独分析水平方向上只受摩擦力(M m之间的作用力)那么答案应该为二分之一mgsin2θ,可答案是f = mgsinθ·cosθ
sorry 那个是我我复制的。已知a=gsinθ,单独对m受力分析,竖直方向上力抵消了,那么水平方向只受到摩擦力的作用,F=ma=mgsinθ
二分之一mgsin2θ就是mgsinθ·cosθ三角公式sin2θ=2sinθ·cosθ
已知a=gsinθ,单独对m受力分析,竖直方向上力抵消了,那么水平方向只受到摩擦力的作用,F=ma=mgsinθ
不不不,竖直方向上的力当然不能抵消,此时物体的加速度是gsinθ,在竖直方向上有加速度分量,所以物体处于失重状态,弹力是小于竖直方向上的重力的。图来啦~
采纳率:86%
在滴答滴答滴答滴答滴答滴答滴答滴答滴答滴答滴答滴答滴答滴答滴答滴答滴答滴答
为您推荐:
其他类似问题
摩擦力的相关知识
换一换
回答问题,赢新手礼包
个人、企业类
违法有害信息,请在下方选择后提交
色情、暴力
我们会通过消息、邮箱等方式尽快将举报结果通知您。解:当所受的摩擦力与拉力反向时.角速度最小.则有: 得: 当所受的摩擦力与拉力同向时.角速度最大. 得: 所以:m处于静止状态时转台角速度ω的范围为:——精英家教网——
暑假天气热?在家里学北京名师课程,
解:当所受的摩擦力与拉力反向时.角速度最小.则有: 得: 当所受的摩擦力与拉力同向时.角速度最大. 得: 所以:m处于静止状态时转台角速度ω的范围为: 【】
题目列表(包括答案和解析)
下面为同学们推荐部分热门搜索同步练习册答案,要查找更多练习册答案请点击访问
第二部分 &牛顿运动定律第一讲 牛顿三定律一、牛顿第一定律1、定律。惯性的量度2、观念意义,突破“初态困惑”二、牛顿第二定律1、定律2、理解要点a、矢量性b、独立作用性:ΣF&→&a&,ΣFx&→&ax&…c、瞬时性。合力可突变,故加速度可突变(与之对比:速度和位移不可突变);牛顿第二定律展示了加速度的决定式(加速度的定义式仅仅展示了加速度的“测量手段”)。3、适用条件a、宏观、低速b、惯性系对于非惯性系的定律修正——引入惯性力、参与受力分析三、牛顿第三定律1、定律2、理解要点a、同性质(但不同物体)b、等时效(同增同减)c、无条件(与运动状态、空间选择无关)第二讲 牛顿定律的应用一、牛顿第一、第二定律的应用单独应用牛顿第一定律的物理问题比较少,一般是需要用其解决物理问题中的某一个环节。应用要点:合力为零时,物体靠惯性维持原有运动状态;只有物体有加速度时才需要合力。有质量的物体才有惯性。a可以突变而v、s不可突变。1、如图1所示,在马达的驱动下,皮带运输机上方的皮带以恒定的速度向右运动。现将一工件(大小不计)在皮带左端A点轻轻放下,则在此后的过程中(& & &&)A、一段时间内,工件将在滑动摩擦力作用下,对地做加速运动B、当工件的速度等于v时,它与皮带之间的摩擦力变为静摩擦力C、当工件相对皮带静止时,它位于皮带上A点右侧的某一点D、工件在皮带上有可能不存在与皮带相对静止的状态解说:B选项需要用到牛顿第一定律,A、C、D选项用到牛顿第二定律。较难突破的是A选项,在为什么不会“立即跟上皮带”的问题上,建议使用反证法(t&→&0&,a&→&∞&,则ΣFx&→&∞&,必然会出现“供不应求”的局面)和比较法(为什么人跳上速度不大的物体可以不发生相对滑动?因为人是可以形变、重心可以调节的特殊“物体”)此外,本题的D选项还要用到匀变速运动规律。用匀变速运动规律和牛顿第二定律不难得出只有当L&>&时(其中μ为工件与皮带之间的动摩擦因素),才有相对静止的过程,否则没有。答案:A、D思考:令L = 10m ,v = 2 m/s ,μ= 0.2 ,g取10 m/s2&,试求工件到达皮带右端的时间t(过程略,答案为5.5s)进阶练习:在上面“思考”题中,将工件给予一水平向右的初速v0&,其它条件不变,再求t(学生分以下三组进行)——① v0&= 1m/s &(答:0.5 + 37/8 = 5.13s)② v0&= 4m/s &(答:1.0 + 3.5 = 4.5s)③ v0&= 1m/s &(答:1.55s)2、质量均为m的两只钩码A和B,用轻弹簧和轻绳连接,然后挂在天花板上,如图2所示。试问:① 如果在P处剪断细绳,在剪断瞬时,B的加速度是多少?② 如果在Q处剪断弹簧,在剪断瞬时,B的加速度又是多少?解说:第①问是常规处理。由于“弹簧不会立即发生形变”,故剪断瞬间弹簧弹力维持原值,所以此时B钩码的加速度为零(A的加速度则为2g)。第②问需要我们反省这样一个问题:“弹簧不会立即发生形变”的原因是什么?是A、B两物的惯性,且速度v和位移s不能突变。但在Q点剪断弹簧时,弹簧却是没有惯性的(没有质量),遵从理想模型的条件,弹簧应在一瞬间恢复原长!即弹簧弹力突变为零。答案:0 ;g 。二、牛顿第二定律的应用应用要点:受力较少时,直接应用牛顿第二定律的“矢量性”解题。受力比较多时,结合正交分解与“独立作用性”解题。在难度方面,“瞬时性”问题相对较大。1、滑块在固定、光滑、倾角为θ的斜面上下滑,试求其加速度。解说:受力分析 →&根据“矢量性”定合力方向&→&牛顿第二定律应用答案:gsinθ。思考:如果斜面解除固定,上表仍光滑,倾角仍为θ,要求滑块与斜面相对静止,斜面应具备一个多大的水平加速度?(解题思路完全相同,研究对象仍为滑块。但在第二环节上应注意区别。答:gtgθ。)进阶练习1:在一向右运动的车厢中,用细绳悬挂的小球呈现如图3所示的稳定状态,试求车厢的加速度。(和“思考”题同理,答:gtgθ。)进阶练习2、如图4所示,小车在倾角为α的斜面上匀加速运动,车厢顶用细绳悬挂一小球,发现悬绳与竖直方向形成一个稳定的夹角β。试求小车的加速度。解:继续贯彻“矢量性”的应用,但数学处理复杂了一些(正弦定理解三角形)。分析小球受力后,根据“矢量性”我们可以做如图5所示的平行四边形,并找到相应的夹角。设张力T与斜面方向的夹角为θ,则θ=(90°+ α)- β= 90°-(β-α) & & & & & & & & (1)对灰色三角形用正弦定理,有&=&& & & & & & & & & & & & & & & & & & & &(2)解(1)(2)两式得:ΣF =&最后运用牛顿第二定律即可求小球加速度(即小车加速度)答:&。2、如图6所示,光滑斜面倾角为θ,在水平地面上加速运动。斜面上用一条与斜面平行的细绳系一质量为m的小球,当斜面加速度为a时(a<ctgθ),小球能够保持相对斜面静止。试求此时绳子的张力T 。解说:当力的个数较多,不能直接用平行四边形寻求合力时,宜用正交分解处理受力,在对应牛顿第二定律的“独立作用性”列方程。正交坐标的选择,视解题方便程度而定。解法一:先介绍一般的思路。沿加速度a方向建x轴,与a垂直的方向上建y轴,如图7所示(N为斜面支持力)。于是可得两方程ΣFx&= ma&,即Tx&-&Nx&= maΣFy&= 0&,&即Ty&+ Ny&= mg代入方位角θ,以上两式成为T cosθ-N sinθ = ma & & & & & & & & & && &(1)T sinθ + Ncosθ = mg& & & & & & & & & & & &(2)这是一个关于T和N的方程组,解(1)(2)两式得:T = mgsinθ&+ ma&cosθ解法二:下面尝试一下能否独立地解张力T 。将正交分解的坐标选择为:x——斜面方向,y——和斜面垂直的方向。这时,在分解受力时,只分解重力G就行了,但值得注意,加速度a不在任何一个坐标轴上,是需要分解的。矢量分解后,如图8所示。根据独立作用性原理,ΣFx&= max即:T&-&Gx&= max即:T&-&mg&sinθ&= m acosθ显然,独立解T值是成功的。结果与解法一相同。答案:mgsinθ&+ ma&cosθ思考:当a>ctgθ时,张力T的结果会变化吗?(从支持力的结果N&= mgcosθ-ma sinθ看小球脱离斜面的条件,求脱离斜面后,θ条件已没有意义。答:T = m&。)学生活动:用正交分解法解本节第2题“进阶练习2”进阶练习:如图9所示,自动扶梯与地面的夹角为30°,但扶梯的台阶是水平的。当扶梯以a = 4m/s2的加速度向上运动时,站在扶梯上质量为60kg的人相对扶梯静止。重力加速度g = 10 m/s2,试求扶梯对人的静摩擦力f 。解:这是一个展示独立作用性原理的经典例题,建议学生选择两种坐标(一种是沿a方向和垂直a方向,另一种是水平和竖直方向),对比解题过程,进而充分领会用牛顿第二定律解题的灵活性。答:208N 。3、如图10所示,甲图系着小球的是两根轻绳,乙图系着小球的是一根轻弹簧和轻绳,方位角θ已知。现将它们的水平绳剪断,试求:在剪断瞬间,两种情形下小球的瞬时加速度。解说:第一步,阐明绳子弹力和弹簧弹力的区别。(学生活动)思考:用竖直的绳和弹簧悬吊小球,并用竖直向下的力拉住小球静止,然后同时释放,会有什么现象?原因是什么?结论——绳子的弹力可以突变而弹簧的弹力不能突变(胡克定律)。第二步,在本例中,突破“绳子的拉力如何瞬时调节”这一难点(从即将开始的运动来反推)。知识点,牛顿第二定律的瞬时性。答案:a甲&= gsinθ ;a乙&= gtgθ 。应用:如图11所示,吊篮P挂在天花板上,与吊篮质量相等的物体Q被固定在吊篮中的轻弹簧托住,当悬挂吊篮的细绳被烧断瞬间,P、Q的加速度分别是多少?解:略。答:2g ;0 。三、牛顿第二、第三定律的应用要点:在动力学问题中,如果遇到几个研究对象时,就会面临如何处理对象之间的力和对象与外界之间的力问题,这时有必要引进“系统”、“内力”和“外力”等概念,并适时地运用牛顿第三定律。在方法的选择方面,则有“隔离法”和“整体法”。前者是根本,后者有局限,也有难度,但常常使解题过程简化,使过程的物理意义更加明晰。对N个对象,有N个隔离方程和一个(可能的)整体方程,这(N + 1)个方程中必有一个是通解方程,如何取舍,视解题方便程度而定。补充:当多个对象不具有共同的加速度时,一般来讲,整体法不可用,但也有一种特殊的“整体方程”,可以不受这个局限(可以介绍推导过程)——Σ= m1&+ m2&+ m3&+ … + mn其中Σ只能是系统外力的矢量和,等式右边也是矢量相加。1、如图12所示,光滑水平面上放着一个长为L的均质直棒,现给棒一个沿棒方向的、大小为F的水平恒力作用,则棒中各部位的张力T随图中x的关系怎样?解说:截取隔离对象,列整体方程和隔离方程(隔离右段较好)。答案:N =&x 。思考:如果水平面粗糙,结论又如何?解:分两种情况,(1)能拉动;(2)不能拉动。第(1)情况的计算和原题基本相同,只是多了一个摩擦力的处理,结论的化简也麻烦一些。第(2)情况可设棒的总质量为M ,和水平面的摩擦因素为μ,而F = μMg ,其中l<L ,则x<(L-l)的右段没有张力,x>(L-l)的左端才有张力。答:若棒仍能被拉动,结论不变。若棒不能被拉动,且F = μMg时(μ为棒与平面的摩擦因素,l为小于L的某一值,M为棒的总质量),当x<(L-l),N≡0 ;当x>(L-l),N =&〔x -〈L-l〉〕。应用:如图13所示,在倾角为θ的固定斜面上,叠放着两个长方体滑块,它们的质量分别为m1和m2&,它们之间的摩擦因素、和斜面的摩擦因素分别为μ1和μ2&,系统释放后能够一起加速下滑,则它们之间的摩擦力大小为:A、μ1&m1gcosθ ; & &B、μ2&m1gcosθ ;C、μ1&m2gcosθ ; & &D、μ1&m2gcosθ ;解:略。答:B 。(方向沿斜面向上。)思考:(1)如果两滑块不是下滑,而是以初速度v0一起上冲,以上结论会变吗?(2)如果斜面光滑,两滑块之间有没有摩擦力?(3)如果将下面的滑块换成如图14所示的盒子,上面的滑块换成小球,它们以初速度v0一起上冲,球应对盒子的哪一侧内壁有压力?解:略。答:(1)不会;(2)没有;(3)若斜面光滑,对两内壁均无压力,若斜面粗糙,对斜面上方的内壁有压力。2、如图15所示,三个物体质量分别为m1&、m2和m3&,带滑轮的物体放在光滑水平面上,滑轮和所有接触面的摩擦均不计,绳子的质量也不计,为使三个物体无相对滑动,水平推力F应为多少?解说:此题对象虽然有三个,但难度不大。隔离m2&,竖直方向有一个平衡方程;隔离m1&,水平方向有一个动力学方程;整体有一个动力学方程。就足以解题了。答案:F =&&。思考:若将质量为m3物体右边挖成凹形,让m2可以自由摆动(而不与m3相碰),如图16所示,其它条件不变。是否可以选择一个恰当的F′,使三者无相对运动?如果没有,说明理由;如果有,求出这个F′的值。解:此时,m2的隔离方程将较为复杂。设绳子张力为T ,m2的受力情况如图,隔离方程为:&= m2a隔离m1&,仍有:T = m1a解以上两式,可得:a =&g最后用整体法解F即可。答:当m1&≤ m2时,没有适应题意的F′;当m1&> m2时,适应题意的F′=&&。3、一根质量为M的木棒,上端用细绳系在天花板上,棒上有一质量为m的猫,如图17所示。现将系木棒的绳子剪断,同时猫相对棒往上爬,但要求猫对地的高度不变,则棒的加速度将是多少?解说:法一,隔离法。需要设出猫爪抓棒的力f ,然后列猫的平衡方程和棒的动力学方程,解方程组即可。法二,“新整体法”。据Σ= m1&+ m2&+ m3&+ … + mn&,猫和棒的系统外力只有两者的重力,竖直向下,而猫的加速度a1&= 0 ,所以:( M + m )g = m·0 + M a1&解棒的加速度a1十分容易。答案:g 。四、特殊的连接体当系统中各个体的加速度不相等时,经典的整体法不可用。如果各个体的加速度不在一条直线上,“新整体法”也将有一定的困难(矢量求和不易)。此时,我们回到隔离法,且要更加注意找各参量之间的联系。解题思想:抓某个方向上加速度关系。方法:“微元法”先看位移关系,再推加速度关系。、1、如图18所示,一质量为M 、倾角为θ的光滑斜面,放置在光滑的水平面上,另一个质量为m的滑块从斜面顶端释放,试求斜面的加速度。解说:本题涉及两个物体,它们的加速度关系复杂,但在垂直斜面方向上,大小是相等的。对两者列隔离方程时,务必在这个方向上进行突破。(学生活动)定型判断斜面的运动情况、滑块的运动情况。位移矢量示意图如图19所示。根据运动学规律,加速度矢量a1和a2也具有这样的关系。(学生活动)这两个加速度矢量有什么关系?沿斜面方向、垂直斜面方向建x 、y坐标,可得:a1y&= a2y& & & & & & &①且:a1y&= a2sinθ & & ②隔离滑块和斜面,受力图如图20所示。对滑块,列y方向隔离方程,有:mgcosθ- N = ma1y& & &③对斜面,仍沿合加速度a2方向列方程,有:Nsinθ= Ma2& & & & & ④解①②③④式即可得a2&。答案:a2&=&&。(学生活动)思考:如何求a1的值?解:a1y已可以通过解上面的方程组求出;a1x只要看滑块的受力图,列x方向的隔离方程即可,显然有mgsinθ= ma1x&,得:a1x&= gsinθ 。最后据a1&=&求a1&。答:a1&=&&。2、如图21所示,与水平面成θ角的AB棒上有一滑套C ,可以无摩擦地在棒上滑动,开始时与棒的A端相距b ,相对棒静止。当棒保持倾角θ不变地沿水平面匀加速运动,加速度为a(且a>gtgθ)时,求滑套C从棒的A端滑出所经历的时间。解说:这是一个比较特殊的“连接体问题”,寻求运动学参量的关系似乎比动力学分析更加重要。动力学方面,只需要隔离滑套C就行了。(学生活动)思考:为什么题意要求a>gtgθ?(联系本讲第二节第1题之“思考题”)定性绘出符合题意的运动过程图,如图22所示:S表示棒的位移,S1表示滑套的位移。沿棒与垂直棒建直角坐标后,S1x表示S1在x方向上的分量。不难看出:S1x&+ b = S cosθ & & & & & & & & & ①设全程时间为t ,则有:S =&at2& & & & & & & & & & & & & ②S1x&=&a1xt2& & & & & & & & & & & & ③而隔离滑套,受力图如图23所示,显然:mgsinθ= ma1x& & & & & & & & & & & &④解①②③④式即可。答案:t =&另解:如果引进动力学在非惯性系中的修正式 Σ+&*&= m&(注:*为惯性力),此题极简单。过程如下——以棒为参照,隔离滑套,分析受力,如图24所示。注意,滑套相对棒的加速度a相是沿棒向上的,故动力学方程为:F*cosθ- mgsinθ= ma相& & & & & & (1)其中F*&= ma & & & & & & & & & & &(2)而且,以棒为参照,滑套的相对位移S相就是b ,即:b = S相&=&a相&t2& & & & & & & & &(3)解(1)(2)(3)式就可以了。第二讲 配套例题选讲教材范本:龚霞玲主编《奥林匹克物理思维训练教材》,知识出版社,2002年8月第一版。例题选讲针对“教材”第三章的部分例题和习题。
第Ⅰ卷(选择题 共31分) 一、单项选择题.本题共5小题,每小题3分,共计15分.每小题只有一个选项符合题意. 1. 关于科学家和他们的贡献,下列说法中正确的是[来源:Www..com] A.安培首先发现了电流的磁效应 B.伽利略认为自由落体运动是速度随位移均匀变化的运动 C.牛顿发现了万有引力定律,并计算出太阳与地球间引力的大小 D.法拉第提出了电场的观点,说明处于电场中电荷所受到的力是电场给予的 2.如图为一种主动式光控报警器原理图,图中R1和R2为光敏电阻,R3和R4为定值电阻.当射向光敏电阻R1和R2的任何一束光线被遮挡时,都会引起警铃发声,则图中虚线框内的电路是 A.与门&&&& &&&&&&&&&&&& B.或门 &&&&&&&&&&&&& C.或非门&& &&&&&&&&&&&&& &D.与非门
3.如图所示的交流电路中,理想变压器原线圈输入电压为U1,输入功率为P1,输出功率为P2,各交流电表均为理想电表.当滑动变阻器R的滑动头向下移动时 A.灯L变亮&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& B.各个电表读数均变大 C.因为U1不变,所以P1不变& &&&&&&&&&&&&&&&&&&&&&&&&&&& D.P1变大,且始终有P1= P2 4.竖直平面内光滑圆轨道外侧,一小球以某一水平速度v0从A点出发沿圆轨道运动,至B点时脱离轨道,最终落在水平面上的C点,不计空气阻力.下列说法中不正确的是 A.在B点时,小球对圆轨道的压力为零 B.B到C过程,小球做匀变速运动 C.在A点时,小球对圆轨道压力大于其重力 D.A到B过程,小球水平方向的加速度先增加后减小 5.如图所示,水平面上放置质量为M的三角形斜劈,斜劈顶端安装光滑的定滑轮,细绳跨过定滑轮分别连接质量为m1和m2的物块.m1在斜面上运动,三角形斜劈保持静止状态.下列说法中正确的是 A.若m2向下运动,则斜劈受到水平面向左摩擦力 B.若m1沿斜面向下加速运动,则斜劈受到水平面向右的摩擦力 C.若m1沿斜面向下运动,则斜劈受到水平面的支持力大于(m1+ m2+M)g D.若m2向上运动,则轻绳的拉力一定大于m2g 二、多项选择题.本题共4小题,每小题4分,共计16分.每小题有多个选项符合题意.全部选对的得4分,选对但不全的得2分,错选或不答的得0分. 6.木星是太阳系中最大的行星,它有众多卫星.观察测出:木星绕太阳作圆周运动的半径为r1、 周期为T1;木星的某一卫星绕木星作圆周运动的半径为r2、 周期为T2.已知万有引力常量为G,则根据题中给定条件 A.能求出木星的质量 B.能求出木星与卫星间的万有引力 C.能求出太阳与木星间的万有引力 D.可以断定 7.如图所示,xOy坐标平面在竖直面内,x轴沿水平方向,y轴正方向竖直向上,在图示空间内有垂直于xOy平面的水平匀强磁场.一带电小球从O点由静止释放,运动轨迹如图中曲线.关于带电小球的运动,下列说法中正确的是 A.OAB轨迹为半圆 B.小球运动至最低点A时速度最大,且沿水平方向 C.小球在整个运动过程中机械能守恒 D.小球在A点时受到的洛伦兹力与重力大小相等 8.如图所示,质量为M、长为L的木板置于光滑的水平面上,一质量为m的滑块放置在木板左端,滑块与木板间滑动摩擦力大小为f,用水平的恒定拉力F作用于滑块.当滑块运动到木板右端时,木板在地面上移动的距离为s,滑块速度为v1,木板速度为v2,下列结论中正确的是 A.上述过程中,F做功大小为             B.其他条件不变的情况下,F越大,滑块到达右端所用时间越长 C.其他条件不变的情况下,M越大,s越小 D.其他条件不变的情况下,f越大,滑块与木板间产生的热量越多 9.如图所示,两个固定的相同细环相距一定的距离,同轴放置,O1、O2分别为两环的圆心,两环分别带有均匀分布的等量异种电荷.一带正电的粒子从很远处沿轴线飞来并穿过两环.则在带电粒子运动过程中 A.在O1点粒子加速度方向向左 B.从O1到O2过程粒子电势能一直增加 C.轴线上O1点右侧存在一点,粒子在该点动能最小 D.轴线上O1点右侧、O2点左侧都存在场强为零的点,它们关于O1、O2连线中点对称
第Ⅱ卷(非选择题 共89分) 三、简答题:本题分必做题(第lO、11题)和选做题(第12题)两部分,共计42分.请将解答填写在答题卡相应的位置.
必做题 10.测定木块与长木板之间的动摩擦因数时,采用如图所示的装置,图中长木板水平固定. (1)实验过程中,电火花计时器应接在& ▲& (选填“直流”或“交流”)电源上.调整定滑轮高度,使& ▲& . (2)已知重力加速度为g,测得木块的质量为M,砝码盘和砝码的总质量为m,木块的加速度为a,则木块与长木板间动摩擦因数μ=& ▲& . (3)如图为木块在水平木板上带动纸带运动打出的一条纸带的一部分,0、1、2、3、4、5、6为计数点,相邻两计数点间还有4个打点未画出.从纸带上测出x1=3.20cm,x2=4.52cm,x5=8.42cm,x6=9.70cm.则木块加速度大小a=& ▲& m/s2(保留两位有效数字).
11.为了测量某电池的电动势 E(约为3V)和内阻 r,可供选择的器材如下: A.电流表G1(2mA& 100Ω)&&&& &&&&&&& B.电流表G2(1mA& 内阻未知) C.电阻箱R1(0~999.9Ω)&&&&&&& &&&&&&&&&&&&& D.电阻箱R2(0~9999Ω) E.滑动变阻器R3(0~10Ω& 1A)&& &&&&& F.滑动变阻器R4(0~1000Ω& 10mA) G.定值电阻R0(800Ω& 0.1A)&&&&&&& &&&&&& H.待测电池 I.导线、电键若干 (1)采用如图甲所示的电路,测定电流表G2的内阻,得到电流表G1的示数I1、电流表G2的示数I2如下表所示:
根据测量数据,请在图乙坐标中描点作出I1—I2图线.由图得到电流表G2的内阻等于 & ▲& Ω. (2)在现有器材的条件下,测量该电池电动势和内阻,采用如图丙所示的电路,图中滑动变阻器①应该选用给定的器材中& ▲& ,电阻箱②选& ▲& (均填写器材代号). (3)根据图丙所示电路,请在丁图中用笔画线代替导线,完成实物电路的连接.
12.选做题(请从A、B和C三小题中选定两小题作答,并在答题卡上把所选题目对应字母后的方框涂满涂黑.如都作答,则按A、B两小题评分.) A.(选修模块3-3)(12分) (1)下列说法中正确的是& ▲&
A.液体表面层分子间距离大于液体内部分子间距离,液体表面存在张力 B.扩散运动就是布朗运动 C.蔗糖受潮后会粘在一起,没有确定的几何形状,它是非晶体 D.对任何一类与热现象有关的宏观自然过程进行方向的说明,都可以作为热力学第二定律的表述 (2)将1ml的纯油酸加到500ml的酒精中,待均匀溶解后,用滴管取1ml油酸酒精溶液,让其自然滴出,共200滴.现在让其中一滴落到盛水的浅盘内,待油膜充分展开后,测得油膜的面积为200cm2,则估算油酸分子的大小是& ▲& m(保留一位有效数字). (3)如图所示,一直立的汽缸用一质量为m的活塞封闭一定量的理想气体,活塞横截面积为S,汽缸内壁光滑且缸壁是导热的,开始活塞被固定,打开固定螺栓K,活塞下落,经过足够长时间后,活塞停在B点,已知AB=h,大气压强为p0,重力加速度为g. ①求活塞停在B点时缸内封闭气体的压强; ②设周围环境温度保持不变,求整个过程中通过缸壁传递的热量Q(一定量理想气体的内能仅由温度决定). B.(选修模块3-4)(12分) (1)下列说法中正确的是& ▲&
A.照相机、摄影机镜头表面涂有增透膜,利用了光的干涉原理 B.光照射遮挡物形成的影轮廓模糊,是光的衍射现象 C.太阳光是偏振光 D.为了有效地发射电磁波,应该采用长波发射 (2)甲、乙两人站在地面上时身高都是L0, 甲、乙分别乘坐速度为0.6c和0.8c(c为光速)的飞船同向运动,如图所示.此时乙观察到甲的身高L& ▲& L0;若甲向乙挥手,动作时间为t0,乙观察到甲动作时间为t1,则t1& ▲& t0(均选填“&”、“ =” 或“&”). (3)x=0的质点在t=0时刻开始振动,产生的波沿x轴正方向传播,t1=0.14s时刻波的图象如图所示,质点A刚好开始振动. ①求波在介质中的传播速度; ②求x=4m的质点在0.14s内运动的路程. && C.(选修模块3-5)(12分)
(1)下列说法中正确的是& ▲&
A.康普顿效应进一步证实了光的波动特性 B.为了解释黑体辐射规律,普朗克提出电磁辐射的能量是量子化的 C.经典物理学不能解释原子的稳定性和原子光谱的分立特征 D.天然放射性元素衰变的快慢与化学、物理状态有关 (2)是不稳定的,能自发的发生衰变. ①完成衰变反应方程& &&▲& . ②衰变为,经过& ▲& 次α衰变,& ▲& 次β衰变. (3)1919年,卢瑟福用α粒子轰击氮核发现质子.科学研究表明其核反应过程是:α粒子轰击静止的氮核后形成了不稳定的复核,复核发生衰变放出质子,变成氧核.设α粒子质量为m1,初速度为v0,氮核质量为m2,质子质量为m0, 氧核的质量为m3,不考虑相对论效应. ①α粒子轰击氮核形成不稳定复核的瞬间,复核的速度为多大? ②求此过程中释放的核能. 四、计算题:本题共3小题,共计47分.解答时请写出必要的文字说明、方程式和重要的演算步骤,只写出最后答案的不能得分,有数值计算的题,答案中必须明确写出数值和单位. 13.如图所示,一质量为m的氢气球用细绳拴在地面上,地面上空风速水平且恒为v0,球静止时绳与水平方向夹角为α.某时刻绳突然断裂,氢气球飞走.已知氢气球在空气中运动时所受到的阻力f正比于其相对空气的速度v,可以表示为f=kv(k为已知的常数).则 (1)氢气球受到的浮力为多大? (2)绳断裂瞬间,氢气球加速度为多大? (3)一段时间后氢气球在空中做匀速直线运动,其水平方向上的速度与风速v0相等,求此时气球速度大小(设空气密度不发生变化,重力加速度为g).
14.如图所示,光滑绝缘水平面上放置一均匀导体制成的正方形线框abcd,线框质量为m,电阻为R,边长为L.有一方向竖直向下的有界磁场,磁场的磁感应强度为B,磁场区宽度大于L,左边界与ab边平行.线框在水平向右的拉力作用下垂直于边界线穿过磁场区. (1)若线框以速度v匀速穿过磁场区,求线框在离开磁场时ab两点间的电势差; (2)若线框从静止开始以恒定的加速度a运动,经过t1时间ab边开始进入磁场,求cd边将要进入磁场时刻回路的电功率; (3)若线框以初速度v0进入磁场,且拉力的功率恒为P0.经过时间T,cd边进入磁场,此过程中回路产生的电热为Q.后来ab边刚穿出磁场时,线框速度也为v0,求线框穿过磁场所用的时间t. &&&&&&
15.如图所示,有界匀强磁场的磁感应强度为B,方向垂直纸面向里,MN为其左边界,磁场中放置一半径为R的圆柱形金属圆筒,圆心O到MN的距离OO1=2R,圆筒轴线与磁场平行.圆筒用导线通过一个电阻r0接地,最初金属圆筒不带电.现有范围足够大的平行电子束以速度v0从很远处沿垂直于左边界MN向右射入磁场区,已知电子质量为m,电量为e. (1)若电子初速度满足,则在最初圆筒上没有带电时,能够打到圆筒上的电子对应MN边界上O1两侧的范围是多大? (2)当圆筒上电量达到相对稳定时,测量得到通过电阻r0的电流恒为I,忽略运动电子间的相互作用,求此时金属圆筒的电势φ和电子到达圆筒时速度v(取无穷远处或大地电势为零). (3)在(2)的情况下,求金属圆筒的发热功率.
第一部分 &力&物体的平衡第一讲 力的处理一、矢量的运算1、加法表达:&+&&=&&。名词:为“和矢量”。法则:平行四边形法则。如图1所示。和矢量大小:c =&&,其中α为和的夹角。和矢量方向:在、之间,和夹角β= arcsin2、减法表达:&=&-&。名词:为“被减数矢量”,为“减数矢量”,为“差矢量”。法则:三角形法则。如图2所示。将被减数矢量和减数矢量的起始端平移到一点,然后连接两时量末端,指向被减数时量的时量,即是差矢量。差矢量大小:a =&&,其中θ为和的夹角。差矢量的方向可以用正弦定理求得。一条直线上的矢量运算是平行四边形和三角形法则的特例。例题:已知质点做匀速率圆周运动,半径为R&,周期为T&,求它在T内和在T内的平均加速度大小。解说:如图3所示,A到B点对应T的过程,A到C点对应T的过程。这三点的速度矢量分别设为、和。根据加速度的定义&=&得:=&,=&由于有两处涉及矢量减法,设两个差矢量&=&-&,=&-&,根据三角形法则,它们在图3中的大小、方向已绘出(的“三角形”已被拉伸成一条直线)。本题只关心各矢量的大小,显然:&=&&=&&=&&,且:&=&=&&,&= 2=&所以:=&&=&&=&&,=&&=&&=&&。(学生活动)观察与思考:这两个加速度是否相等,匀速率圆周运动是不是匀变速运动?答:否;不是。3、乘法矢量的乘法有两种:叉乘和点乘,和代数的乘法有着质的不同。⑴ 叉乘表达:×&=&名词:称“矢量的叉积”,它是一个新的矢量。叉积的大小:c = absinα,其中α为和的夹角。意义:的大小对应由和作成的平行四边形的面积。叉积的方向:垂直和确定的平面,并由右手螺旋定则确定方向,如图4所示。显然,×≠×,但有:×=&-×⑵ 点乘表达:·&= c名词:c称“矢量的点积”,它不再是一个矢量,而是一个标量。点积的大小:c = abcosα,其中α为和的夹角。二、共点力的合成1、平行四边形法则与矢量表达式2、一般平行四边形的合力与分力的求法余弦定理(或分割成RtΔ)解合力的大小正弦定理解方向三、力的分解1、按效果分解2、按需要——正交分解第二讲 物体的平衡一、共点力平衡1、特征:质心无加速度。2、条件:Σ&= 0 ,或&&= 0 ,&= 0例题:如图5所示,长为L 、粗细不均匀的横杆被两根轻绳水平悬挂,绳子与水平方向的夹角在图上已标示,求横杆的重心位置。解说:直接用三力共点的知识解题,几何关系比较简单。答案:距棒的左端L/4处。(学生活动)思考:放在斜面上的均质长方体,按实际情况分析受力,斜面的支持力会通过长方体的重心吗?解:将各处的支持力归纳成一个N ,则长方体受三个力(G 、f 、N)必共点,由此推知,N不可能通过长方体的重心。正确受力情形如图6所示(通常的受力图是将受力物体看成一个点,这时,N就过重心了)。答:不会。二、转动平衡1、特征:物体无转动加速度。2、条件:Σ= 0 ,或ΣM+&=ΣM-&如果物体静止,肯定会同时满足两种平衡,因此用两种思路均可解题。3、非共点力的合成大小和方向:遵从一条直线矢量合成法则。作用点:先假定一个等效作用点,然后让所有的平行力对这个作用点的和力矩为零。第三讲 习题课1、如图7所示,在固定的、倾角为α斜面上,有一块可以转动的夹板(β不定),夹板和斜面夹着一个质量为m的光滑均质球体,试求:β取何值时,夹板对球的弹力最小。解说:法一,平行四边形动态处理。对球体进行受力分析,然后对平行四边形中的矢量G和N1进行平移,使它们构成一个三角形,如图8的左图和中图所示。由于G的大小和方向均不变,而N1的方向不可变,当β增大导致N2的方向改变时,N2的变化和N1的方向变化如图8的右图所示。显然,随着β增大,N1单调减小,而N2的大小先减小后增大,当N2垂直N1时,N2取极小值,且N2min&= Gsinα。法二,函数法。看图8的中间图,对这个三角形用正弦定理,有:&=&&,即:N2&=&&,β在0到180°之间取值,N2的极值讨论是很容易的。答案:当β= 90°时,甲板的弹力最小。2、把一个重为G的物体用一个水平推力F压在竖直的足够高的墙壁上,F随时间t的变化规律如图9所示,则在t = 0开始物体所受的摩擦力f的变化图线是图10中的哪一个?解说:静力学旨在解决静态问题和准静态过程的问题,但本题是一个例外。物体在竖直方向的运动先加速后减速,平衡方程不再适用。如何避开牛顿第二定律,是本题授课时的难点。静力学的知识,本题在于区分两种摩擦的不同判据。水平方向合力为零,得:支持力N持续增大。物体在运动时,滑动摩擦力f = μN ,必持续增大。但物体在静止后静摩擦力f′≡ G ,与N没有关系。对运动过程加以分析,物体必有加速和减速两个过程。据物理常识,加速时,f < G ,而在减速时f > G 。答案:B 。3、如图11所示,一个重量为G的小球套在竖直放置的、半径为R的光滑大环上,另一轻质弹簧的劲度系数为k ,自由长度为L(L<2R),一端固定在大圆环的顶点A ,另一端与小球相连。环静止平衡时位于大环上的B点。试求弹簧与竖直方向的夹角θ。解说:平行四边形的三个矢量总是可以平移到一个三角形中去讨论,解三角形的典型思路有三种:①分割成直角三角形(或本来就是直角三角形);②利用正、余弦定理;③利用力学矢量三角形和某空间位置三角形相似。本题旨在贯彻第三种思路。分析小球受力→矢量平移,如图12所示,其中F表示弹簧弹力,N表示大环的支持力。(学生活动)思考:支持力N可不可以沿图12中的反方向?(正交分解看水平方向平衡——不可以。)容易判断,图中的灰色矢量三角形和空间位置三角形ΔAOB是相似的,所以:& & & & & & & & & & & & & & & & & &⑴由胡克定律:F = k(- R) & & & & & & & &⑵几何关系:= 2Rcosθ & & & & & & & & & & ⑶解以上三式即可。答案:arccos&。(学生活动)思考:若将弹簧换成劲度系数k′较大的弹簧,其它条件不变,则弹簧弹力怎么变?环的支持力怎么变?答:变小;不变。(学生活动)反馈练习:光滑半球固定在水平面上,球心O的正上方有一定滑轮,一根轻绳跨过滑轮将一小球从图13所示的A位置开始缓慢拉至B位置。试判断:在此过程中,绳子的拉力T和球面支持力N怎样变化?解:和上题完全相同。答:T变小,N不变。4、如图14所示,一个半径为R的非均质圆球,其重心不在球心O点,先将它置于水平地面上,平衡时球面上的A点和地面接触;再将它置于倾角为30°的粗糙斜面上,平衡时球面上的B点与斜面接触,已知A到B的圆心角也为30°。试求球体的重心C到球心O的距离。解说:练习三力共点的应用。根据在平面上的平衡,可知重心C在OA连线上。根据在斜面上的平衡,支持力、重力和静摩擦力共点,可以画出重心的具体位置。几何计算比较简单。答案:R 。(学生活动)反馈练习:静摩擦足够,将长为a 、厚为b的砖块码在倾角为θ的斜面上,最多能码多少块?解:三力共点知识应用。答:&。4、两根等长的细线,一端拴在同一悬点O上,另一端各系一个小球,两球的质量分别为m1和m2&,已知两球间存在大小相等、方向相反的斥力而使两线张开一定角度,分别为45和30°,如图15所示。则m1&: m2??为多少?解说:本题考查正弦定理、或力矩平衡解静力学问题。对两球进行受力分析,并进行矢量平移,如图16所示。首先注意,图16中的灰色三角形是等腰三角形,两底角相等,设为α。而且,两球相互作用的斥力方向相反,大小相等,可用同一字母表示,设为F 。对左边的矢量三角形用正弦定理,有:&=&& & & & &①同理,对右边的矢量三角形,有:&=&& & & & & & & & & & & & & & & &②解①②两式即可。答案:1 :&。(学生活动)思考:解本题是否还有其它的方法?答:有——将模型看成用轻杆连成的两小球,而将O点看成转轴,两球的重力对O的力矩必然是平衡的。这种方法更直接、简便。应用:若原题中绳长不等,而是l1&:l2&= 3 :2 ,其它条件不变,m1与m2的比值又将是多少?解:此时用共点力平衡更加复杂(多一个正弦定理方程),而用力矩平衡则几乎和“思考”完全相同。答:2 :3&。5、如图17所示,一个半径为R的均质金属球上固定着一根长为L的轻质细杆,细杆的左端用铰链与墙壁相连,球下边垫上一块木板后,细杆恰好水平,而木板下面是光滑的水平面。由于金属球和木板之间有摩擦(已知摩擦因素为μ),所以要将木板从球下面向右抽出时,至少需要大小为F的水平拉力。试问:现要将木板继续向左插进一些,至少需要多大的水平推力?解说:这是一个典型的力矩平衡的例题。以球和杆为对象,研究其对转轴O的转动平衡,设木板拉出时给球体的摩擦力为f&,支持力为N&,重力为G&,力矩平衡方程为:f R + N(R + L)= G(R + L)& & & & & &①球和板已相对滑动,故:f = μN & & & &②解①②可得:f =&再看木板的平衡,F = f 。同理,木板插进去时,球体和木板之间的摩擦f′=&&= F′。答案:&。第四讲 摩擦角及其它一、摩擦角1、全反力:接触面给物体的摩擦力与支持力的合力称全反力,一般用R表示,亦称接触反力。2、摩擦角:全反力与支持力的最大夹角称摩擦角,一般用φm表示。此时,要么物体已经滑动,必有:φm&= arctgμ(μ为动摩擦因素),称动摩擦力角;要么物体达到最大运动趋势,必有:φms&= arctgμs(μs为静摩擦因素),称静摩擦角。通常处理为φm&=&φms&。3、引入全反力和摩擦角的意义:使分析处理物体受力时更方便、更简捷。二、隔离法与整体法1、隔离法:当物体对象有两个或两个以上时,有必要各个击破,逐个讲每个个体隔离开来分析处理,称隔离法。在处理各隔离方程之间的联系时,应注意相互作用力的大小和方向关系。2、整体法:当各个体均处于平衡状态时,我们可以不顾个体的差异而讲多个对象看成一个整体进行分析处理,称整体法。应用整体法时应注意“系统”、“内力”和“外力”的涵义。三、应用1、物体放在水平面上,用与水平方向成30°的力拉物体时,物体匀速前进。若此力大小不变,改为沿水平方向拉物体,物体仍能匀速前进,求物体与水平面之间的动摩擦因素μ。解说:这是一个能显示摩擦角解题优越性的题目。可以通过不同解法的比较让学生留下深刻印象。法一,正交分解。(学生分析受力→列方程→得结果。)法二,用摩擦角解题。引进全反力R&,对物体两个平衡状态进行受力分析,再进行矢量平移,得到图18中的左图和中间图(注意:重力G是不变的,而全反力R的方向不变、F的大小不变),φm指摩擦角。再将两图重叠成图18的右图。由于灰色的三角形是一个顶角为30°的等腰三角形,其顶角的角平分线必垂直底边……故有:φm&= 15°。最后,μ= tgφm&。答案:0.268 。(学生活动)思考:如果F的大小是可以选择的,那么能维持物体匀速前进的最小F值是多少?解:见图18,右图中虚线的长度即Fmin&,所以,Fmin&= Gsinφm&。答:Gsin15°(其中G为物体的重量)。2、如图19所示,质量m = 5kg的物体置于一粗糙斜面上,并用一平行斜面的、大小F = 30N的推力推物体,使物体能够沿斜面向上匀速运动,而斜面体始终静止。已知斜面的质量M = 10kg ,倾角为30°,重力加速度g = 10m/s2&,求地面对斜面体的摩擦力大小。解说:本题旨在显示整体法的解题的优越性。法一,隔离法。简要介绍……法二,整体法。注意,滑块和斜面随有相对运动,但从平衡的角度看,它们是完全等价的,可以看成一个整体。做整体的受力分析时,内力不加考虑。受力分析比较简单,列水平方向平衡方程很容易解地面摩擦力。答案:26.0N 。(学生活动)地面给斜面体的支持力是多少?解:略。答:135N 。应用:如图20所示,一上表面粗糙的斜面体上放在光滑的水平地面上,斜面的倾角为θ。另一质量为m的滑块恰好能沿斜面匀速下滑。若用一推力F作用在滑块上,使之能沿斜面匀速上滑,且要求斜面体静止不动,就必须施加一个大小为P = 4mgsinθcosθ的水平推力作用于斜面体。使满足题意的这个F的大小和方向。解说:这是一道难度较大的静力学题,可以动用一切可能的工具解题。法一:隔离法。由第一个物理情景易得,斜面于滑块的摩擦因素μ= tgθ对第二个物理情景,分别隔离滑块和斜面体分析受力,并将F沿斜面、垂直斜面分解成Fx和Fy&,滑块与斜面之间的两对相互作用力只用两个字母表示(N表示正压力和弹力,f表示摩擦力),如图21所示。对滑块,我们可以考查沿斜面方向和垂直斜面方向的平衡——Fx&= f + mgsinθFy&+ mgcosθ= N且 f = μN = Ntgθ综合以上三式得到:Fx&= Fytgθ+ 2mgsinθ & & & & & & & ①对斜面体,只看水平方向平衡就行了——P = fcosθ+ Nsinθ即:4mgsinθcosθ=μNcosθ+ Nsinθ代入μ值,化简得:Fy&= mgcosθ & & &②②代入①可得:Fx&= 3mgsinθ最后由F =解F的大小,由tgα=&解F的方向(设α为F和斜面的夹角)。答案:大小为F = mg,方向和斜面夹角α= arctg()指向斜面内部。法二:引入摩擦角和整体法观念。仍然沿用“法一”中关于F的方向设置(见图21中的α角)。先看整体的水平方向平衡,有:Fcos(θ- α) = P & & & & & & & & & & & & & & & & & ⑴再隔离滑块,分析受力时引进全反力R和摩擦角φ,由于简化后只有三个力(R、mg和F),可以将矢量平移后构成一个三角形,如图22所示。在图22右边的矢量三角形中,有:&=&=&& &&&⑵注意:φ= arctgμ=&arctg(tgθ) = θ & & & & & & & & & & & & & & & & & & & & & & &⑶解⑴⑵⑶式可得F和α的值。
第五部分 动量和能量第一讲 基本知识介绍一、冲量和动量1、冲力(F—t图象特征)→&冲量。冲量定义、物理意义冲量在F—t图象中的意义→从定义角度求变力冲量(F对t的平均作用力)2、动量的定义动量矢量性与运算二、动量定理1、定理的基本形式与表达2、分方向的表达式:ΣIx&=ΔPx&,ΣIy&=ΔPy&…3、定理推论:动量变化率等于物体所受的合外力。即=ΣF外&三、动量守恒定律1、定律、矢量性2、条件a、原始条件与等效b、近似条件c、某个方向上满足a或b,可在此方向应用动量守恒定律四、功和能1、功的定义、标量性,功在F—S图象中的意义2、功率,定义求法和推论求法3、能的概念、能的转化和守恒定律4、功的求法a、恒力的功:W = FScosα= FSF&= FS&Sb、变力的功:基本原则——过程分割与代数累积;利用F—S图象(或先寻求F对S的平均作用力)c、解决功的“疑难杂症”时,把握“功是能量转化的量度”这一要点五、动能、动能定理1、动能(平动动能)2、动能定理a、ΣW的两种理解b、动能定理的广泛适用性六、机械能守恒1、势能a、保守力与耗散力(非保守力)→&势能(定义:ΔEp&=&-W保)b、力学领域的三种势能(重力势能、引力势能、弹性势能)及定量表达2、机械能3、机械能守恒定律a、定律内容b、条件与拓展条件(注意系统划分)c、功能原理:系统机械能的增量等于外力与耗散内力做功的代数和。七、碰撞与恢复系数1、碰撞的概念、分类(按碰撞方向分类、按碰撞过程机械能损失分类)碰撞的基本特征:a、动量守恒;b、位置不超越;c、动能不膨胀。2、三种典型的碰撞a、弹性碰撞:碰撞全程完全没有机械能损失。满足——m1v10&+ m2v20&= m1v1&+ m2v2&m1&+&&m2&=&&m1&+&&m2解以上两式(注意技巧和“不合题意”解的舍弃)可得:v1&=&,& v2&=&对于结果的讨论:①当m1&= m2&时,v1&= v20&,v2&= v10&,称为“交换速度”;②当m1&<<&m2&,且v20&= 0时,v1&≈&-v10&,v2&≈&0&,小物碰大物,原速率返回;③当m1&>>&m2&,且v20&= 0时,v1&≈&v10&,v2&≈&2v10&,b、非(完全)弹性碰撞:机械能有损失(机械能损失的内部机制简介),只满足动量守恒定律c、完全非弹性碰撞:机械能的损失达到最大限度;外部特征:碰撞后两物体连为一个整体,故有v1&= v2&=&3、恢复系数:碰后分离速度(v2&-&v1)与碰前接近速度(v10&-&v20)的比值,即:e =&&。根据“碰撞的基本特征”,0&≤&e&≤&1&。当e = 0&,碰撞为完全非弹性;当0&<&e&<&1&,碰撞为非弹性;当e = 1&,碰撞为弹性。八、“广义碰撞”——物体的相互作用1、当物体之间的相互作用时间不是很短,作用不是很强烈,但系统动量仍然守恒时,碰撞的部分规律仍然适用,但已不符合“碰撞的基本特征”(如:位置可能超越、机械能可能膨胀)。此时,碰撞中“不合题意”的解可能已经有意义,如弹性碰撞中v1&= v10&,v2&= v20的解。2、物体之间有相对滑动时,机械能损失的重要定势:-ΔE =&ΔE内&= f滑·S相&,其中S相指相对路程。第二讲 重要模型与专题一、动量定理还是动能定理?物理情形:太空飞船在宇宙飞行时,和其它天体的万有引力可以忽略,但是,飞船会定时遇到太空垃圾的碰撞而受到阻碍作用。设单位体积的太空均匀分布垃圾n颗,每颗的平均质量为m ,垃圾的运行速度可以忽略。飞船维持恒定的速率v飞行,垂直速度方向的横截面积为S ,与太空垃圾的碰撞后,将垃圾完全粘附住。试求飞船引擎所应提供的平均推力F 。模型分析:太空垃圾的分布并不是连续的,对飞船的撞击也不连续,如何正确选取研究对象,是本题的前提。建议充分理解“平均”的含义,这样才能相对模糊地处理垃圾与飞船的作用过程、淡化“作用时间”和所考查的“物理过程时间”的差异。物理过程需要人为截取,对象是太空垃圾。先用动量定理推论解题。取一段时间Δt&,在这段时间内,飞船要穿过体积ΔV = S·vΔt的空间,遭遇nΔV颗太空垃圾,使它们获得动量ΔP&,其动量变化率即是飞船应给予那部分垃圾的推力,也即飞船引擎的推力。&=&&=&&=&&=&&= nmSv2如果用动能定理,能不能解题呢?同样针对上面的物理过程,由于飞船要前进x = vΔt的位移,引擎推力须做功W =&x ,它对应飞船和被粘附的垃圾的动能增量,而飞船的ΔEk为零,所以:W =&ΔMv2即:vΔt =&(n m S·vΔt)v2得到:&=&nmSv2两个结果不一致,不可能都是正确的。分析动能定理的解题,我们不能发现,垃圾与飞船的碰撞是完全非弹性的,需要消耗大量的机械能,因此,认为“引擎做功就等于垃圾动能增加”的观点是错误的。但在动量定理的解题中,由于I =&t&,由此推出的&=&必然是飞船对垃圾的平均推力,再对飞船用平衡条件,的大小就是引擎推力大小了。这个解没有毛病可挑,是正确的。(学生活动)思考:如图1所示,全长L、总质量为M的柔软绳子,盘在一根光滑的直杆上,现用手握住绳子的一端,以恒定的水平速度v将绳子拉直。忽略地面阻力,试求手的拉力F 。解:解题思路和上面完全相同。答:二、动量定理的分方向应用物理情形:三个质点A、B和C ,质量分别为m1&、m2和m3&,用拉直且不可伸长的绳子AB和BC相连,静止在水平面上,如图2所示,AB和BC之间的夹角为(π-α)。现对质点C施加以冲量I ,方向沿BC ,试求质点A开始运动的速度。模型分析:首先,注意“开始运动”的理解,它指绳子恰被拉直,有作用力和冲量产生,但是绳子的方位尚未发生变化。其二,对三个质点均可用动量定理,但是,B质点受冲量不在一条直线上,故最为复杂,可采用分方向的形式表达。其三,由于两段绳子不可伸长,故三质点的瞬时速度可以寻求到两个约束关系。下面具体看解题过程——绳拉直瞬间,AB绳对A、B两质点的冲量大小相等(方向相反),设为I1&,BC绳对B、C两质点的冲量大小相等(方向相反),设为I2&;设A获得速度v1(由于A受合冲量只有I1&,方向沿AB ,故v1的反向沿AB),设B获得速度v2(由于B受合冲量为+,矢量和既不沿AB ,也不沿BC方向,可设v2与AB绳夹角为〈π-β〉,如图3所示),设C获得速度v3(合冲量+沿BC方向,故v3沿BC方向)。对A用动量定理,有:I1&= m1&v1& & & & & & & & & & & & & & & & &①B的动量定理是一个矢量方程:+= m2&,可化为两个分方向的标量式,即:I2cosα-I1&= m2&v2cosβ & & & & & & & & &②I2sinα= m2&v2sinβ & & & & & & & & & & & ③质点C的动量定理方程为:I - I2&= m3&v3& & & & & & & & & & & & & &④AB绳不可伸长,必有v1&= v2cosβ & & & & & ⑤BC绳不可伸长,必有v2cos(β-α) = v3& & &⑥六个方程解六个未知量(I1&、I2&、v1&、v2&、v3&、β)是可能的,但繁复程度非同一般。解方程要注意条理性,否则易造成混乱。建议采取如下步骤——1、先用⑤⑥式消掉v2&、v3&,使六个一级式变成四个二级式:I1&= m1&v1& & & & & & & & & & & & & & & & & & & & &⑴I2cosα-I1&= m2&v1& & & & & & & & & & & & & & & & ⑵I2sinα= m2&v1&tgβ & & & & & & & & & & & & & & & &⑶I - I2&= m3&v1(cosα+ sinαtgβ) & & & & & & & & &⑷2、解⑶⑷式消掉β,使四个二级式变成三个三级式:I1&= m1&v1& & & & & & & & & & & & & & & & & & & & & & & & &㈠I2cosα-I1&= m2&v1& & & & & & & & & & & & & & & & & & & & ㈡I = m3&v1&cosα+ I2& & & & & & & & & & && & & & & & &&&㈢3、最后对㈠㈡㈢式消I1&、I2&,解v1就方便多了。结果为:v1&=&(学生活动:训练解方程的条理和耐心)思考:v2的方位角β等于多少?解:解“二级式”的⑴⑵⑶即可。⑴代入⑵消I1&,得I2的表达式,将I2的表达式代入⑶就行了。答:β= arc tg()。三、动量守恒中的相对运动问题物理情形:在光滑的水平地面上,有一辆车,车内有一个人和N个铅球,系统原来处于静止状态。现车内的人以一定的水平速度将铅球一个一个地向车外抛出,车子和人将获得反冲速度。第一过程,保持每次相对地面抛球速率均为v ,直到将球抛完;第二过程,保持每次相对车子抛球速率均为v ,直到将球抛完。试问:哪一过程使车子获得的速度更大?模型分析:动量守恒定律必须选取研究对象之外的第三方(或第四、第五方)为参照物,这意味着,本问题不能选车子为参照。一般选地面为参照系,这样对“第二过程”的铅球动量表达,就形成了难点,必须引进相对速度与绝对速度的关系。至于“第一过程”,比较简单:N次抛球和将N个球一次性抛出是完全等效的。设车和人的质量为M ,每个铅球的质量为m 。由于矢量的方向落在一条直线上,可以假定一个正方向后,将矢量运算化为代数运算。设车速方向为正,且第一过程获得的速度大小为V1&第二过程获得的速度大小为V2&。第一过程,由于铅球每次的动量都相同,可将多次抛球看成一次抛出。车子、人和N个球动量守恒。0 = Nm(-v) + MV1&得:V1&=&v & & & & & & & & & & & & & & & & & &①第二过程,必须逐次考查铅球与车子(人)的作用。第一个球与(N–1)个球、人、车系统作用,完毕后,设“系统”速度为u1&。值得注意的是,根据运动合成法则,铅球对地的速度并不是(-v),而是(-v + u1)。它们动量守恒方程为:0 = m(-v + u1) +〔M +(N-1)m〕u1得:u1&=第二个球与(N -2)个球、人、车系统作用,完毕后,设“系统”速度为u2&。它们动量守恒方程为:〔M+(N-1)m〕u1&= m(-v + u2) +〔M+(N-2)m〕u2&得:u2&=&&+&第三个球与(N -2)个球、人、车系统作用,完毕后,设“系统”速度为u3&。铅球对地的速度是(-v + u3)。它们动量守恒方程为:〔M+(N-2)m〕u2&= m(-v + u3) +〔M+(N-3)m〕u3得:u3&=&+&&+&以此类推(过程注意:先找uN和uN-1关系,再看uN和v的关系,不要急于化简通分)……,uN的通式已经可以找出:V2&= uN&=&&+&&+&&+ … +&即:V2&=&& & & & & & & & & & & & & & & &②我们再将①式改写成:V1&=&& & & & & & & & & & & & & & & & & & & & ①′不难发现,①′式和②式都有N项,每项的分子都相同,但①′式中每项的分母都比②式中的分母小,所以有:V1&> V2&。结论:第一过程使车子获得的速度较大。(学生活动)思考:质量为M的车上,有n个质量均为m的人,它们静止在光滑的水平地面上。现在车上的人以相对车大小恒为v、方向水平向后的初速往车下跳。第一过程,N个人同时跳下;第二过程,N个人依次跳下。试问:哪一次车子获得的速度较大?解:第二过程结论和上面的模型完全相同,第一过程结论为V1&=&&。答:第二过程获得速度大。四、反冲运动中的一个重要定式物理情形:如图4所示,长度为L、质量为M的船停止在静水中(但未抛锚),船头上有一个质量为m的人,也是静止的。现在令人在船上开始向船尾走动,忽略水的阻力,试问:当人走到船尾时,船将会移动多远?(学生活动)思考:人可不可能匀速(或匀加速)走动?当人中途停下休息,船有速度吗?人的全程位移大小是L吗?本系统选船为参照,动量守恒吗?模型分析:动量守恒展示了已知质量情况下的速度关系,要过渡到位移关系,需要引进运动学的相关规律。根据实际情况(人必须停在船尾),人的运动不可能是匀速的,也不可能是匀加速的,运动学的规律应选择S =&t 。为寻求时间t ,则要抓人和船的位移约束关系。对人、船系统,针对“开始走动→中间任意时刻”过程,应用动量守恒(设末态人的速率为v ,船的速率为V),令指向船头方向为正向,则矢量关系可以化为代数运算,有:0 = MV + m(-v)&即:mv = MV&由于过程的末态是任意选取的,此式展示了人和船在任一时刻的瞬时速度大小关系。而且不难推知,对中间的任一过程,两者的平均速度也有这种关系。即:m&= M& & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & ①设全程的时间为t ,乘入①式两边,得:mt = Mt设s和S分别为人和船的全程位移大小,根据平均速度公式,得:m s = M S & & & & ②受船长L的约束,s和S具有关系:s + S = L & & & & & & & & & & & & & & & & & ③解②、③可得:船的移动距离 S =L(应用动量守恒解题时,也可以全部都用矢量关系,但这时“位移关系”表达起来难度大一些——必须用到运动合成与分解的定式。时间允许的话,可以做一个对比介绍。)另解:质心运动定律人、船系统水平方向没有外力,故系统质心无加速度→系统质心无位移。先求出初态系统质心(用它到船的质心的水平距离x表达。根据力矩平衡知识,得:x =&),又根据,末态的质量分布与初态比较,相对整体质心是左右对称的。弄清了这一点后,求解船的质心位移易如反掌。(学生活动)思考:如图5所示,在无风的天空,人抓住气球下面的绳索,和气球恰能静止平衡,人和气球地质量分别为m和M ,此时人离地面高h 。现在人欲沿悬索下降到地面,试问:要人充分安全地着地,绳索至少要多长?解:和模型几乎完全相同,此处的绳长对应模型中的“船的长度”(“充分安全着地”的含义是不允许人脱离绳索跳跃着地)。答:h 。(学生活动)思考:如图6所示,两个倾角相同的斜面,互相倒扣着放在光滑的水平地面上,小斜面在大斜面的顶端。将它们无初速释放后,小斜面下滑,大斜面后退。已知大、小斜面的质量分别为M和m ,底边长分别为a和b ,试求:小斜面滑到底端时,大斜面后退的距离。解:水平方向动量守恒。解题过程从略。答:(a-b)。进阶应用:如图7所示,一个质量为M ,半径为R的光滑均质半球,静置于光滑水平桌面上,在球顶有一个质量为m的质点,由静止开始沿球面下滑。试求:质点离开球面以前的轨迹。解说:质点下滑,半球后退,这个物理情形和上面的双斜面问题十分相似,仔细分析,由于同样满足水平方向动量守恒,故我们介绍的“定式”是适用的。定式解决了水平位移(位置)的问题,竖直坐标则需要从数学的角度想一些办法。为寻求轨迹方程,我们需要建立一个坐标:以半球球心O为原点,沿质点滑下一侧的水平轴为x坐标、竖直轴为y坐标。由于质点相对半球总是做圆周运动的(离开球面前),有必要引入相对运动中半球球心O′的方位角θ来表达质点的瞬时位置,如图8所示。由“定式”,易得:x =&Rsinθ & & & & & & & & & ①而由图知:y = Rcosθ & & & & & & & &②不难看出,①、②两式实际上已经是一个轨迹的参数方程。为了明确轨迹的性质,我们可以将参数θ消掉,使它们成为:&+&&= 1这样,特征就明显了:质点的轨迹是一个长、短半轴分别为R和R的椭圆。五、功的定义式中S怎么取值?在求解功的问题时,有时遇到力的作用点位移与受力物体的(质心)位移不等,S是取力的作用点的位移,还是取物体(质心)的位移呢?我们先看下面一些事例。1、如图9所示,人用双手压在台面上推讲台,结果双手前进了一段位移而讲台未移动。试问:人是否做了功?2、在本“部分”第3页图1的模型中,求拉力做功时,S是否可以取绳子质心的位移?3、人登静止的楼梯,从一楼到二楼。楼梯是否做功?4、如图10所示,双手用等大反向的力F压固定汽缸两边的活塞,活塞移动相同距离S,汽缸中封闭气体被压缩。施力者(人)是否做功?在以上四个事例中,S若取作用点位移,只有第1、2、4例是做功的(注意第3例,楼梯支持力的作用点并未移动,而只是在不停地交换作用点),S若取物体(受力者)质心位移,只有第2、3例是做功的,而且,尽管第2例都做了功,数字并不相同。所以,用不同的判据得出的结论出现了本质的分歧。面对这些似是而非的“疑难杂症”,我们先回到“做功是物体能量转化的量度”这一根本点。第1例,手和讲台面摩擦生了热,内能的生成必然是由人的生物能转化而来,人肯定做了功。S宜取作用点的位移;第2例,求拉力的功,在前面已经阐述,S取作用点位移为佳;第3例,楼梯不需要输出任何能量,不做功,S取作用点位移;第4例,气体内能的增加必然是由人输出的,压力做功,S取作用点位移。但是,如果分别以上四例中的受力者用动能定理,第1例,人对讲台不做功,S取物体质心位移;第2例,动能增量对应S取L/2时的值——物体质心位移;第4例,气体宏观动能无增量,S取质心位移。(第3例的分析暂时延后。)以上分析在援引理论知识方面都没有错,如何使它们统一?原来,功的概念有广义和狭义之分。在力学中,功的狭义概念仅指机械能转换的量度;而在物理学中功的广义概念指除热传递外的一切能量转换的量度。所以功也可定义为能量转换的量度。一个系统总能量的变化,常以系统对外做功的多少来量度。能量可以是机械能、电能、热能、化学能等各种形式,也可以多种形式的能量同时发生转化。由此可见,上面分析中,第一个理论对应的广义的功,第二个理论对应的则是狭义的功,它们都没有错误,只是在现阶段的教材中还没有将它们及时地区分开来而已。而且,我们不难归纳:求广义的功,S取作用点的位移;求狭义的功,S取物体(质心)位移。那么我们在解题中如何处理呢?这里给大家几点建议:&1、抽象地讲“某某力做的功”一般指广义的功;2、讲“力对某物体做的功”常常指狭义的功;3、动能定理中的功肯定是指狭义的功。当然,求解功地问题时,还要注意具体问题具体分析。如上面的第3例,就相对复杂一些。如果认为所求为狭义的功,S取质心位移,是做了功,但结论仍然是难以令人接受的。下面我们来这样一个处理:将复杂的形变物体(人)看成这样一个相对理想的组合:刚性物体下面连接一压缩的弹簧(如图11所示),人每一次蹬梯,腿伸直将躯体重心上举,等效为弹簧将刚性物体举起。这样,我们就不难发现,做功的是人的双腿而非地面,人既是输出能量(生物能)的机构,也是得到能量(机械能)的机构——这里的物理情形更象是一种生物情形。本题所求的功应理解为广义功为宜。以上四例有一些共同的特点:要么,受力物体情形比较复杂(形变,不能简单地看成一个质点。如第2、第3、第4例),要么,施力者和受力者之间的能量转化不是封闭的(涉及到第三方,或机械能以外的形式。如第1例)。以后,当遇到这样的问题时,需要我们慎重对待。(学生活动)思考:足够长的水平传送带维持匀速v运转。将一袋货物无初速地放上去,在货物达到速度v之前,与传送带的摩擦力大小为f ,对地的位移为S 。试问:求摩擦力的功时,是否可以用W = fS ?解:按一般的理解,这里应指广义的功(对应传送带引擎输出的能量),所以“位移”取作用点的位移。注意,在此处有一个隐含的“交换作用点”的问题,仔细分析,不难发现,每一个(相对皮带不动的)作用点的位移为2S&。(另解:求货物动能的增加和与皮带摩擦生热的总和。)答:否。(学生活动)思考:如图12所示,人站在船上,通过拉一根固定在铁桩的缆绳使船靠岸。试问:缆绳是否对船和人的系统做功?解:分析同上面的“第3例”。答:否。六、机械能守恒与运动合成(分解)的综合物理情形:如图13所示,直角形的刚性杆被固定,水平和竖直部分均足够长。质量分别为m1和m2的A、B两个有孔小球,串在杆上,且被长为L的轻绳相连。忽略两球的大小,初态时,认为它们的位置在同一高度,且绳处于拉直状态。现无初速地将系统释放,忽略一切摩擦,试求B球运动L/2时的速度v2&。模型分析:A、B系统机械能守恒。A、B两球的瞬时速度不等,其关系可据“第三部分”知识介绍的定式(滑轮小船)去寻求。(学生活动)A球的机械能是否守恒?B球的机械能是否守恒?系统机械能守恒的理由是什么(两法分析:a、“微元法”判断两个WT的代数和为零;b、无非弹性碰撞,无摩擦,没有其它形式能的生成)?由“拓展条件”可以判断,A、B系统机械能守恒,(设末态A球的瞬时速率为v1&)过程的方程为:m2g&=&&+&& & & & & & ①在末态,绳与水平杆的瞬时夹角为30°,设绳子的瞬时迁移速率为v ,根据“第三部分”知识介绍的定式,有:v1&= v/cos30°, v2&= v/sin30°两式合并成:v1&= v2&tg30°= v2/& & &②解①、②两式,得:v2&=&七、动量和能量的综合(一)物理情形:如图14所示,两根长度均为L的刚性轻杆,一端通过质量为m的球形铰链连接,另一端分别与质量为m和2m的小球相连。将此装置的两杆合拢,铰链在上、竖直地放在水平桌面上,然后轻敲一下,使两小球向两边滑动,但两杆始终保持在竖直平面内。忽略一切摩擦,试求:两杆夹角为90°时,质量为2m的小球的速度v2&。模型分析:三球系统机械能守恒、水平方向动量守恒,并注意约束关系——两杆不可伸长。(学生活动)初步判断:左边小球和球形铰链的速度方向会怎样?设末态(杆夹角90°)左边小球的速度为v1(方向:水平向左),球形铰链的速度为v(方向:和竖直方向夹θ角斜向左),对题设过程,三球系统机械能守恒,有:mg( L-L) =&m&+&mv2&+&2m& & &①三球系统水平方向动量守恒,有:mv1&+ mvsinθ= 2mv2& & & & & & & & ②左边杆子不形变,有:v1cos45°= vcos(45°-θ) & & & & &③右边杆子不形变,有:vcos(45°+θ) = v2cos45° & & & & ④四个方程,解四个未知量(v1&、v2&、v和θ),是可行的。推荐解方程的步骤如下——1、③、④两式用v2替代v1和v ,代入②式,解θ值,得:tgθ= 1/4&2、在回到③、④两式,得:v1&=&v2&, & v =&v2&3、将v1&、v的替代式代入①式解v2即可。结果:v2&=&(学生活动)思考:球形铰链触地前一瞬,左球、铰链和右球的速度分别是多少?解:由两杆不可形变,知三球的水平速度均为零,θ为零。一个能量方程足以解题。答:0 、&、0 。(学生活动)思考:当两杆夹角为90°时,右边小球的位移是多少?解:水平方向用“反冲位移定式”,或水平方向用质心运动定律。答:&。进阶应用:在本讲模型“四、反冲……”的“进阶应用”(见图8)中,当质点m滑到方位角θ时(未脱离半球),质点的速度v的大小、方向怎样?解说:此例综合应用运动合成、动量守恒、机械能守恒知识,数学运算比较繁复,是一道考查学生各种能力和素质的难题。据运动的合成,有:&=&&+&&=&&-&其中必然是沿地面向左的,为了书写方便,我们设其大小为v2&;必然是沿半球瞬时位置切线方向(垂直瞬时半径)的,设大小为v相&。根据矢量减法的三角形法则,可以得到(设大小为v1)的示意图,如图16所示。同时,我们将v1的x、y分量v1x和v1y也描绘在图中。由图可得:v1y&=(v2&+ v1x)tgθ & & & & & & & & & & & & & & & & ①质点和半球系统水平方向动量守恒,有:Mv2&= mv1x& & & & & & & & &②对题设过程,质点和半球系统机械能守恒,有:mgR(1-cosθ) =&M&+&m&,即:mgR(1-cosθ) =&M&+&m(&+&) & & & & & & & & & & ③三个方程,解三个未知量(v2&、v1x&、v1y)是可行的,但数学运算繁复,推荐步骤如下——1、由①、②式得:v1x&=&v2&, & & & &v1y&= (tgθ) v2&&2、代入③式解v2&,得:v2&=3、由&=&&+&解v1&,得:v1&=v1的方向:和水平方向成α角,α= arctg&= arctg()这就是最后的解。〔一个附属结果:质点相对半球的瞬时角速度 ω =&&=&&。〕八、动量和能量的综合(二)物理情形:如图17所示,在光滑的水平面上,质量为M = 1 kg的平板车左端放有质量为m = 2 kg的铁块,铁块与车之间的摩擦因素μ= 0.5 。开始时,车和铁块以共同速度v = 6 m/s向右运动,车与右边的墙壁发生正碰,且碰撞是弹性的。车身足够长,使铁块不能和墙相碰。重力加速度g = 10 m/s2&,试求:1、铁块相对车运动的总路程;2、平板车第一次碰墙后所走的总路程。模型分析:本模型介绍有两对相互作用时的处理常规。能量关系介绍摩擦生热定式的应用。由于过程比较复杂,动量分析还要辅助以动力学分析,综合程度较高。由于车与墙壁的作用时短促而激烈的,而铁块和车的作用是舒缓而柔和的,当两对作用同时发生时,通常处理成“让短时作用完毕后,长时作用才开始”(这样可以使问题简化)。在此处,车与墙壁碰撞时,可以认为铁块与

我要回帖

更多关于 静摩擦力 的文章

 

随机推荐