根据古生物学研究,人类的人类进化过程程大致有哪4个阶段

探秘“一个人的专业”:古生物学到底学什么|古生物学|地球演化|生命演化_科学探索_新浪科技_新浪网
探秘“一个人的专业”:古生物学到底学什么
北京大学2010级古生物专业的学生薛逸凡:一个人毕业,一个人合影
  中国古生物学家在云南曲靖距今4亿多年前的地层中发现了一件迄今为止全球最古老的近乎完整的硬骨鱼化石。
南京古生物学家挖出5.3亿年前古生物化石。
  云南大学古生物学家侯先光教授领衔的国际研究团队首次发现了迄今所知最古老和最完整的节肢动物心血管循环系统。
  日前,北京大学2010级古生物专业学生薛逸凡在社交网站上发布了张“一个人的毕业照”,引发了网友关注而走红。网友纷纷留言“一个人的寂寞的谁懂?”“酷毙了!专业第一名和最后一名都占了”、“这连逃课都没法逃”……。
  据北大元培学院副院长卢晓东介绍,“这是全中国唯一的一个只有一名学生的专业。差不多是每个年级有一个人,还有的年级是零人。”
  古生物学,是曲高和寡还是无人问津?这些穿越古代星球的老师同学们,究竟是何方神圣?蝌蚪君特地整理了一份古生物学专业入门指南,为你一探究竟。
  什么是古生物学?
  古生物学是利用化石和古老生命痕迹进行生物学研究、探讨古代生命的特征和演化历史、讨论重大的生命起源和生物绝灭与复苏事件、探索地球演化历史和环境变化等方面的基础性学科。
  看不懂?没关系。通俗的说,古生物专业就是一个专家型的学科。在国外,这个专业最初其实可以说是“贵族人”的业余爱好。因为古生物化石具备观赏性和收藏性,但对它的研究工作持续时间长、投入大,并不会产生直接的经济效益,只有“有钱人”才玩得起。
  古生物学研究什么?
  现代古生物学(Paleobiology)是生命科学、地球科学和环境科学的交叉学科。该专业下主要有五个分支:古植物学、古动物学、古生态学、古生物化学和古生物地理学。研究主要侧重于实现四大目标:地史中的生物多样性研究、各生物门类的系统演化关系研究、地球演化时间格架的建立和古代环境――气候与生物界之间的协同演化关系研究。
  古生物学与不同学科交叉形成的不同的研究方向:与生物学交叉主要研究演化生物学,与地质学交叉主要研究地层学,与环境科学交叉主要研究地球生物学。
  古生物专业有什么用?
  古生物专业的服务对象主要有以下几个方面:生物学方面,它可以研究从现代到古代生物的反演过程,完善达尔文的生物进化论,一定程度上为推测提供验证;地质学方面,能够为基础地质研究提供最重要的时间和空间的尺度;其他还包括古环境学、古地理学等很多学科。一句话,古生物研究的意义在于:不仅是认知地球生命历史、探索生命演化规律的重要科学实践,而且能为探寻化石能源、沉积矿产等自然资源提供重要的基础科学证据。”
  我国古生物研究有什么成果?
  近年来,我国古生物工作者发现的澄江动物群、瓮安生物群,发现了5亿8千万年前的多细胞动物化石和5亿3千万年前的脊椎动物化石,特别是澄江动物群的发现被国际学术界誉为“20世纪最惊人的科学发现之一”,并获得了2003年国家自然科学奖一等奖。在辽宁西部热河生物群的研究中,发现了迄今世界最早的被子植物,以及带毛恐龙、鸟类、哺乳动物等一系列重要化石。这些重大发现为生命起源演化研究提供了重要科学依据。在与古生物密切相关的地层学研究中,我国古生物学者近几年先后建立了4个“金钉子”,以及3个国际年代地层单位,这些成果都已被国际地科联列入“国际地层表”和“国际地质年代表”,成为国际地质学研究的标准。
  我国古生物专业人才的培养经历了哪些波折?
  我国古生物人才培养的顶峰时期在上世纪80年代。当时,中国地质大学、北京大学、南京大学3所高校都开设有古生物的本科专业,每年培养出约100名学生。到80年代后期,很多高校的古生物专业毕业生遭遇到就业困难问题。直到90年代进行学科改革的时候,很多学校不得不停办古生物专业,不再招收该专业的学生。
  近些年来,我国古生物方面的专业人才不断流失。这与现在市场经济的发展有关,很多生产单位受经济利益的驱动,以追求直接经济效益为主要目的,不再重视古生物等基础地质工作,甚至忽视古生物工作在整个基础地质工作中的基础性作用,导致很多古生物方面的人才为了解决生活问题,不得不转行从事其他工作。而就算是从事古生物方面地质工作的职工,收入也普遍偏低,这也是这方面人才不断流失的重要原因。
  因为这个专业涉及的面太窄、人才需求量也有限,不适合大批招收研究生,大量招生只会扰乱这个专业毕业生的人才市场。而且,在古生物专业的招生过程中,研究生的研究方向会被分得很细,包括像沉积古地理学、构造古地理学、地层学等多个方向,也并不是一味都是古生物分类专业的方向。
  与矿床学这样的专业相比,古生物专业的招生规模就小得多了。因为矿床学专业所培养的人才,在社会上的需求量很大。我国经济飞速发展,对能源和资源有着强烈的依赖性,再加上现在矿产资源勘查开发方面的工作往往对应着巨大的经济利益,很多人愿意去从事这一类工作。而这一行业的壮大,也导致了对和矿产资源直接相关的专业人才需求量的增加。
  古生物专业学生毕业后去哪里?
  四个主要去向:高校,主要是开办地质类专业的高校;研究院、所,如北古所、南古所、地质所、海洋所、地科院等;公务员和其他事业单位,如国土资源部门、博物馆等;企业单位,如合资外企、能源中企、地矿部门等。主要集中于前三个方向。
  如果学生在研究生阶段才选择学习古生物专业,3年的时间能够积累专业知识的厚度吗?
  如果可以满足3个前提条件,硕士生是可以用3年时间积累一定专业知识的。首先,也是最重要的,学生对古生物专业要感兴趣,并且学习态度认真、端正,不是为了混文凭;其次,研究生的本科专业为生物学或者地质学,已经具备一定程度的基础知识;最后,学校要尽可能创造条件,为学生提供充足的实践机会。
  国外从事古生物研究的机构有哪些?他们的科研经费投入情况怎样?
  国外进行古生物专业研究的机构基本上有3类。
  第一类是博物馆,也是最主要的研究单位。因为博物馆的藏品很多,古生物化石的藏品尤其丰富,具备进行古生物专业研究的优势条件;另外,博物馆一般都有专门的研究经费,不需要研究者再煞费苦心地去拿项目、争经费,只要一心想做研究,研究经费基本不算太大的问题,研究者也不会因为做学术研究而“下岗”。第二类是高校,前提也是有人对古生物的学术研究感兴趣,很多老师在教学之余会做一些研究。第三类是国家级的研究部门,像国内的南京古生物研究所、北京古脊椎所,美国的斯密逊博物研究院等。
  近几年由于国际上经济大环境不好,对古生物科研经费的投入也有所影响,对这几个类别的研究机构都有所冲击。加之古生物专业是一个“长线专业”,短期内几乎不可能带来经济收益,也在一定程度上影响了对该专业科研经费的投入及其发展。
  我国的研究机构在古生物人才培养和研究经费审批过程中存在哪些困难?
  跟其他很多国家比起来,我国是申请到古生物研究经费相对较容易的国家之一,并且古生物专业面临的“灭顶之灾”在我国体现得还不是最明显的。近年来,古生物专业的科研经费持续增加,经费投入还是相对充裕的。
  其实现在面临的主要问题不是经费,而是年轻人的接续问题。比如南京古生物研究所,以前各个门类的化石都有人做研究工作,但随着一批老专家的去世或者退休,现在很多门类的化石已经没人接着做研究了。
  在社会大环境的影响下,如今的地质工作中普遍存在“重勘探轻基础”的现象,这是否会成为影响古生物人才培养和成长的一个阻碍因素呢?
  基础地质工作应该由国家公益性地质勘探力量来承担,不应该由商业性勘探力量来承担。因为商业性勘探以追求经济利益为主要目的,不重视基础地质研究也是可以理解的。国家可以从管理机制上着手,要求商业性地勘工作在获得利润后对基础地质工作进行反哺。
  我国幅员辽阔,基础地质工作的资金投入和工作量都很大。而且,因为基础地质工作服务的本体不具体,只能说是为国家服务,并且也不能立竿见影地带来经济效益,所以这部分工作必须由国家牵头的公益性地勘承担起来并发挥主力作用。
  打个比方,如果你让大数学家陈景润去“创收”,那他可能不但不能“摘下哥德巴赫猜想的明珠”,恐怕连解决温饱都成问题。同样,用古生物的专业知识直接去找矿,基本也不太可能实现。因此,地质事业要发展起来,首先必须要重视像古生物这样的基础研究工作,而且要理解这是获得经济效益的必要前提,并且要切实为从事这项工作的人提供基本生活保障。
  古生物专业的未来在哪里?
  其实社会对古生物专业人才的需求量并不大,而且高中生在选择本科专业的时候相对会比较盲目。学生只有通过大学阶段的学习,对地学领域的各个专业都有所了解以后,发现自己确实对古生物专业有兴趣,并且认为自己能够“守得住清贫、耐得住寂寞”,然后才可能会在研究生阶段学习这个专业。所以专家建议,最好把对古生物专业人才的培养定位在硕士起步,博士延续。
  另外,对于国家的基础地质工作,在整个项目规划中必须保证两点。一是要对古生物方面的工作提出具体要求,比如在填图过程中,整个图填下来需要采集化石的样品数、精确程度等。二是要对项目提供经费保障。上个世纪50年代那种不计成本地去采化石的工作方式放在现在不太合适,没有经费保障估计也很难有人愿意无偿去从事古生物方面的地质工作。
  再者,国家要从自然科学基金层面对这一类服务国家的基础学科给予倾斜,并可设立专门的经费予以保障。
  此外,要动员其他社会力量,吸引更多优秀的学生学习古生物专业。可以设立奖学金对该专业的学生予以资助、鼓励和引导,并对开设这类学科的高校进行适当的保护。
  最后,商业性的地质工作虽然风险大,但一旦获利,其对应的经济效益也是很高的。国家应该有相应的政策措施来引导和要求商业性地质开发从业者对基础地质工作进行反哺,让其明白,进入地质勘探行业,就有支持基础地质工作的义务和责任。
  参考资料:中国地质大学(北京)、北京大学古生物专业专家访谈
&&|&&&&|&&&&|&&
您可通过新浪首页顶部 “”, 查看所有收藏过的文章。
,推荐效果更好!
看过本文的人还看过17:24:27 本文行家:
恐龙化石古生物生存在地球历史的地质年代中、而现已大部分绝灭的生物。包括古植物(芦木、鳞木等)、古无脊椎古生物(三叶虫)动物(货币虫、三叶虫、菊石等)、古脊椎动物(恐龙、始祖鸟、猛犸等)。古生物死后,除极少数(如冻土中的猛犸,琥珀中的昆虫)由于特殊条件,仍保存原有的组织结构外,绝大多数经过钙化、碳化、硅化,或其他矿化的填充和交替石化作用,形成仅具原来硬体部分的形状、结构、印模等的化石。 古生物(三叶虫)化石经过自然界的作用,保存于地层中的古生物遗体、遗物和它们的生活遗迹。大多数是茎、叶、贝壳、骨骼等坚硬部分,经过矿物质的填充和交替作用,形成仅保持原来形状、结构以至印模的钙化、碳化、硅化、矿化的生物遗体、遗物或印模。也有少数是未经改变的完整遗体,如冻土中的猛犸、琥珀中的昆虫等。化石是古生物学的主要研究对象。自从古生物学出现后,人类就认识到曾有过大规模的生物绝灭现象。多细胞生物在6亿年的历史进程中,共经历了五次主要的大规模绝灭事件。在所有大绝灭事件中,规模最大的一次发生在二叠纪末,最引人注目的是白垩纪末恐龙的绝灭。
所有经过研究的生物,都要给予科学的名称,即学名(scientific name)。按国际命名法规,生物各级分类等级的学名,改用拉丁字或拉丁化文字。属和属级以上的名称采用单名,即用一个拉丁词命名,第一字母大写。种的名称采用双名法(binomen),即由种的本名和其从属的属名组成,属名在前,种本名在后。种、亚种及变种本名第一个字母小写。属和属以下名称,在印刷和书写时,需用斜体字,属以上名称用正体字。为了便于查阅,在各级名称之后,用正体字注以命名者的姓氏(应为拉丁字母拼缀)和命名时的公历年号,两者间以逗点分隔。若命名者不止一人,用拉丁连结词et(和)连接之。物种既是生物分类的基本单位,也是生物进化的基本单位。生物进化的实质,就是物种的起源和演变。从生物学角度来认识物种,认为物种基本结构是居群,而不是个体。生物命名法中一条重要原则是优先律(law of priority),即生物的有效学名是符合国际动物、植物命名法所规定的最早正式刊出的名称。遇到同一生物由两个或更多名称即构成异名(synonym),或不同生物共有一个名称即同名(homomym),应以优先律选取最早正式发表的名称。例如,横板珊瑚一个属Tetrapora(方管珊瑚)原为矢部长克(H.Yabe)和早坂一郎(I.hayasaka)于1915年所首创(Tetrapora Yabe et Hayasaka,1915年)。到了1940年,古生物研究者发现,该属名早在1857年用于苔藓动物一个属方管苔藓虫(Tetrapora Queenstedt,1857年)。横坂珊瑚Tetrapora 事后定的,依优先律应予废弃,而用另一新的属名Hayasakaia(早坂珊瑚)来代替。一般认为生命是由化学物质从无机到有机演化而来的。原始大气富含甲烷、氨、二氧化碳、水汽等,这些气体在外界高能(紫外线、闪电、高温)的作用下,首先合成氨基酸、脂肪酸等小分子有机化合物。这些小分子有机化合物,在适当的条件下,可以进一步结合成更复杂的蛋白质、核酸等大分子有机物质,经过进一步演化,终于产生了能够不断地进行自我更新的、结构非常复杂的多分子体系,由此产生了原始生命。当非细胞形态的原始生命在地球上出现时,由于大气中仍然缺氧,因此,它们一定是厌氧和抑氧类型。地球约形成于距今46亿年,从澳大利亚发现的距今35亿年的瓦拉翁纳群中的丝状细菌化石表明,生命的起源亦即化学演化过程,应发生在地球形成后约11亿年。生命的产生是地球演化史上的一次最大的飞跃,使得地球历史从化学演化阶段推向生物演化阶段。最初的生命应是非细胞形态的生命,为了保证有机体与外界正常的物质交换,原始生命在演化过程中,形成了细胞膜,出现了细胞结构的原核生物。细胞是生命的结构单元、功能单元和生殖单元,细胞的产生是生命史上的一次重大的飞跃。当前,地球上发现最早具细胞结构的可靠化石是瓦拉翁纳群中的丝状细菌化石。地球上最早出现的异养型原核生物细菌,经过不断地分化和发展,终于又出现了能够进行光合作用、从无机物合成有机养料的自养型原核生物蓝藻。蓝藻和细菌作为早期生物界的合成者和分解者,组成物质循环的两个基本环节,形成了一个完整的生态系统。从异养到自养是早期生物演化的另一次重大的飞跃。蓝藻是最早出现的放氧生物,使得地球上原始大气中氧气浓度不断增加,形成含氧大气层。在高空出现的臭氧层,吸收了太阳的紫外辐射,改变了整个生态环境,为喜氧生物提供了有利的生活环境。于是生物便由厌氧转入喜氧,提高了能量代谢的效能。在加拿大甘弗林组中,发现了完好的距今约20亿年的细菌和蓝藻化石。从原核到真核是生物演化从简单到复杂的转折点,最早具细胞的生物是单细胞原核生物。原核细胞没有核膜,没有细胞器,结构简单。真核细胞具有核膜,整个细胞分化为细胞核和细胞质两部分。细胞核内具有染色体,成为遗传中心,细胞质内进行蛋白质合成,成为代谢中心。由于细胞结构的复化,增强了变异性,使得真核生物能够向高级体制发展。现已发现距今约13亿年的美国加利福尼亚的贝克泉组的白云岩中的原核蓝藻和真核绿藻。绿藻还发现于距今约10亿年的澳大利亚的苦泉组,绿藻是最早具有真核的生物。随着真核生物的出现,动、植物开始分化和发展。动物的出现,形成了一个新的三极生态系统。绿色植物(真核植物和原核蓝藻)通过叶绿素光合作用制造食物,是自然界的生产者;细菌和真菌是自然界的分解者;动物是自然界的消费者。地史上最早的动物化石是距今6~7亿年澳大利亚的埃迪卡拉动物群,其中以腔肠动物的似水母类、海鳃类、环节动物和少量节肢动物为主,还有一部分分类位置未定的疑难化石,很可能
代表地史上曾短暂出现而又迅速绝灭的类群。从动物的分化水平看,伊迪卡拉动物群已是较后期的类型,不是动物的原始代表。这标志着后生动物在早已出现,并经历了一段相当长的分化演变过程。在生物演化史上称为“海洋藻类时代”和“海洋无脊椎动物时代”。起始于距今6亿年,延续了约1.7亿年。植物仍以海生藻类为主,但很难保存为完好的化石。由于植物进化速度远较动物缓慢,早古生代植物界一直停留在藻类阶段。藻类的大量繁育不仅为海洋无脊椎动物提供了丰富的食物资源,而且通过叶绿素光合作用,放出氧气,为海洋无脊椎动物的发展,准备了有利的生活环境。继元古宙末期埃迪卡拉后生裸露动物群之后,于早期,出现了地史上最早具钙质硬壳的小壳动物群,包括软舌螺、单板类、腹足类、腕足类等。这与当时海水富含钙质有关。由于发生了矿化事件,使得寒武纪保存的化石突然增多。这一时期称为“非三叶虫时代”。进入三叶虫时代后,在中国云南发现了距今5.7亿年的澄江动物群,主要由水母、三叶虫、金臂虫、非三叶虫节肢动物、蠕形动物、海绵、无铰腕足类、软舌螺和藻类等组成,是目前世界上保存最早的软体的多门类动物群,这一动物群的发现还表明后生动物在寒武纪开始前已经历了一段分化、辐射的历史过程。随后,腔肠动物、古杯类、软体动物(双壳、腹足、头足)、棘皮动物、牙形刺、笔石等相继出现。其中以三叶虫演化迅速、生态分异明显,分布遍及全球整个海域,在动物界中占绝对优势,因而称寒武纪为“三叶虫时代”。古杯类是地史上最早的造礁动物,生活于早寒武世,中寒武世早期绝灭,是生物史上第一个完全绝灭的造礁动物门类。是自然环境有利于海洋无脊椎动物继续发展的时代,层孔虫、苔藓虫等先后出现,笔石、腕足类、鹦鹉螺等显著分异。树形笔石继续发展,一部分固着在海底生活,而大部分远运洋漂浮生活,遍及全球海域。到早奥陶世中期,正笔石类兴起、演化迅速,是奥陶纪的重要分带化石。腕足类出现了分异的第一个高峰期,在数量上占重要地位。鹦鹉螺开始出现于晚寒武世,到奥陶纪分异明显,种类繁多,个体较大,是营游泳生活的凶猛食肉动物。珊瑚最早出现于寒武纪,至中、晚奥陶世大量繁育,同层孔虫、苔藓虫等一起,是温暖浅海的重要造礁动物。海洋无脊椎动物新类群的出现和多样化,加剧了浅海陆棚区的生存竞争。延续时间较短,生物界来源于奥陶纪,但有新的发展。其中最重要的生物事件是,三叶虫显著衰退,笔石向简化方向演变,单笔石兴起并大量发展。珊瑚以床板珊瑚和日射珊瑚为主,出现了特有的链珊瑚。腕足类出现了内部构造更为复杂的五房贝和展翼状外壳的石燕贝。鹦鹉螺显著减少但仍有代表。节肢动物中形体最大的板足鲎类最早出现于奥陶纪,到志留纪大量繁育,志留纪末,由于受加里东运动的影响,海水逐渐退去。部分生物为了适应新的生活环境,由海洋向陆地生活转变。由于志留纪末期大规模海退,陆地面积逐渐扩大,从滨海浅滩绿藻植物演化而来的陆生裸蕨植物最早出现于晚志留世,到早泥盆世开始大量生活在滨海沼泽低地,中泥盆世后期出现根、茎和叶分化的原始石松类和有节类,到晚泥盆世在自然选择的作用下,裸蕨迅速绝灭了。一般称志留纪末到中泥盆世为“裸蕨植物时代”。到石炭、二叠纪陆生植物进一步发展,出现了石松、节蕨、真蕨和原始裸子植物的种子蕨和科达类,这一时期被称为“蕨类植物时代”。从晚石炭世到二叠纪各类植物极度繁茂,由于适应不同的气候条件,逐渐形成明显的植物地理分区。陆生植物发展之后,与植物存在着密切关系的昆虫大量繁育,它们相互依存,相互制约,平行发展。最早的昆虫类是最原始的无翅类型,最早的无翅类化石出现于。出现了现知最早的有翅昆虫,当时最繁盛的昆虫是现已绝灭的古网翅类。昆虫区系发生显著的变化,直翅类明显缩小,许多现代类型开始出现。鱼类包括有颌类和无颌类。无颌类包括头甲鱼形类和鳍甲鱼形类。头甲鱼形类包括现生的七鳃鳗和盲鳗以及古生代有甲胄的种类;鳍甲鱼形类包括已绝灭的异甲鱼和花麟鱼。无颌类最早的类群是异甲类。发现于北美落基山区中奥陶统的异甲鱼,是脊椎动物最早的化石代表。晚志留世出现了从无颌类分化出来的最早具颌的棘鱼类和盾皮鱼类。有了上下颌,就不仅是被动摄食微小有机物,而可主动追捕大的食物了。硬骨鱼类包括总鳍鱼类、肺鱼类和辐鳍鱼类,最早出现于晚志留世晚期,与棘鱼类有共同的祖先。盾皮鱼类最早出现于晚志留世,一直生存到早石炭世,以泥盆纪最繁盛。软骨鱼类出现于早泥盆世晚期,可能与盾皮鱼类有共同的祖先。泥盆纪时鱼类极为繁盛,故被称为“鱼类时代”。硬骨鱼类在现代鱼类中占绝对优势,被称为“水中的主人”。从侏罗纪起,软骨鱼类出现了,如鲨鱼和鳐,还有生活在深海里的银鲛。总鳍鱼在晚泥盆世时登陆,是陆生脊椎动物的最早类型。脊椎动物在登上陆地的过程中首先要解决呼吸和行动问题总鳍鱼已具有原始肺的构造,肉质偶鳍可以在地上爬行。最早的两栖类代表是发现于格陵兰和北美晚泥盆世的迷齿类鱼石螈(Ichthyostega),具明显的从总鳍鱼类向两栖类过渡的中间类型性质。石炭——二叠纪是两栖类最繁盛的时期,被称为“两栖动物时代”。残存下来的现代两栖类有蝾螈、青蛙等。裸子植物虽在石炭——二叠纪时已开始出现,但最繁盛的时期是,故中生代被称为“裸子植物时代”。这一时期的植物群以苏铁、本内苏铁和松柏类为主。北半球还有较多的银杏类,南半球则以松柏类占优势。从蕨类植物演化到裸子植物,标志着从孢子繁植转化为种子繁殖。裸子植物用种子繁殖适于陆上生活和传播,扩大了生存空间,形成了地球上的广大森林,为爬行动物的发展,提供了有利的生活环境。石炭——二叠纪时,从两栖动物迷齿类演化出来的蜥螈形类,坚持陆生方向,很可能是爬行动物的祖先。经过长期演化,产生了能够适应干旱陆地环境的羊膜卵。于是,爬行动物诞生了。从两栖类水中产卵、水中受精发展到爬行动物的体内受精和产生羊膜卵,是脊椎动物演化史上的一次重大飞跃。陆生爬行动物中以恐龙(Dinosaur)为主要代表。恐龙最早出现于中三叠世,分蜥臀类和鸟臀类两大支系,是中生代占绝对优势的陆地脊椎动物。由于爬行动物大量繁殖,除绝大部分在陆地上生活外,有的重返水域成为水生爬行动物,如开始的鱼龙类、和的蛇颈龙类。有的向空中发展成为飞翔的爬行动物,叫翼龙类,如德国侏罗系中发现的喙嘴龙(Rhamphorhyn-chus),靠前肢的两张翼膜飞翔。由喙嘴龙分化出另一类飞翔爬行动物叫翼指龙(Ptercdactylus),主要生活在晚侏罗世到白垩纪。爬行动物是中生代地球上占绝对优势的脊椎动物,故称中生代为“爬行动物时代”或“龙的时代”。到白垩纪末期,全球出现了显著的地质事件,使地表自然环境发生巨大变化。由于恐龙不能适应当时迅速变化的环境,随同整个爬行动物的大衰退,无论陆生的、水生的或飞翔的恐龙,到白垩纪末都相继绝灭了。爬行动物中残留并延续至今天的,仅有喙头蜥类、鳄类、龟鳖类和有鳞类(蛇和蜥蜴)。对恐龙的绝灭尚有不同的解释。不少人认为恐龙的集群绝灭与地外成因的灾变事件有关,如超新星爆发、小天体撞击地球等。鸟类是从爬行动物分化出来的一个旁支。鸟类的脑和神经系统发达,心脏分隔完全,是恒温的脊椎动物。从变温的爬行动物转化为恒温的鸟类,是脊椎动物演化史上的一次重大飞跃。恒温动物(鸟类和哺乳动物)的体温相对稳定,不受外界气温的影响,增强了对气候环境的适应性,扩大了地理分布范围。鸟类最早的化石代表是德国晚侏罗世的始祖鸟(Ar-chaeopteryx),它是由爬行动物向鸟类过渡的中间类型,是鸟类的最早代表。此外,1986年在美国得克萨斯州发现一新的鸟化石,命名为Protoavis,意为“原始的鸟”。其时代为三叠纪,比始祖鸟早,但比始祖鸟更接近现代鸟类。因此有人认为始祖鸟可能是鸟类系统演化中的一个旁支。有关鸟类的起源和早期发展有待深入研究。早白垩世晚期出现了被子植物,中、晚白垩世很快繁育起来,新生代时极为繁盛,代替了裸子植物,成为植物界中最高级的类群,开创了被子植物时代。关于被子植物的起源迄今尚无定论。被子植物有比裸子植物更进步的内部构造和完善的生殖器官。被子植物的迅速发展和更广泛的地理分布,为依赖植物为生的动物界提供了丰富的食物资源,促进了昆虫、鸟类和哺乳动物的大发展。人类生活也与被子植物的发展密切相关。最早的哺乳动物是从三叠纪的似哺乳爬行动物中分化出来的。进入新生代,由于板块的分离或聚合,气候的分化,被子植物的迅速发展和广泛分布,促使哺乳动物迅速分化、辐射,得到了空前发展,取代了爬行动物,在地球上居于优势。从而脊椎动物的演化又进入了一个更高级的阶段──哺乳动物时代。从爬行动物的变温、卵生发展为哺乳动物的恒温、胎生和哺乳,以及高度发达的神经系统和感觉器官,是脊椎动物演化史上的一次重大飞跃。一般认为中生代的古兽类是白垩纪和新生代有袋类和有胎盘类的共同祖先。白垩纪时,有袋类广泛分布于世界各大陆,第三纪繁盛于南美,而现代仅生活在澳大利亚。有胎盘类是比有袋类更高等的哺乳动物。最早的有胎盘类是白垩纪出现的小型食虫类。新生代后得到空前发展,分化、辐射出许多分支。其中一支为适合于飞行生活的翼手类和蝙蝠,是从古新世一类树栖生活的食虫类演化而来的。另一支是适应于海洋生活的鲸类,保留了从陆生祖先继承来的肺呼吸,是一种进化趋同的现象。啮齿类包括现生的松鼠、河狸、家鼠等,是兽类中演化最成功的一类,无论在种类、数量、分布地区,在兽类中都占优势地位。食肉类又分为古食肉类、新食肉类和鳍脚类。古食肉类大量辐射发生在古新世和始新世。始新世末期新食肉类繁盛起来,如现生的猫、虎、狗等。新食肉类出现不久,海生鳍脚类(海狮、海豹、海象)开始出现。最原始的哺乳动物主要是食虫的。古老的有蹄动物踝节类也是从原始食虫类演化而来的,是由食虫发展到食草过程中最原始的一个分支,是后来大多数有蹄动物,包括马、貘、犀等奇蹄类和猪、牛、羊等偶蹄类的共同祖先。象的祖先可能由早期的踝节类演化而来。最早的象是发现于北非晚始新世到早渐新世的始祖象(Moerither-ium),体形大小如猪,第二对门齿还没有形成象类特有的大门牙。古乳齿象(Palaeomastodon)是始祖象的直接后裔,它的身体比始祖象增大了约一倍,上门牙伸长,第四纪开始多数绝灭,少数生活到早更新世。真象类是从乳齿象演化出来的,又分为剑齿象类和真象类。中国象类化石很多,如甘肃早更新世的剑齿象化石被命名为黄河古象,真象化石有广泛分布于华北和东北晚更新世的猛犸象。象类演化趋势是个体增大、鼻长和大象牙的不断增长。今天残存的仅有非洲象和印度象。奇蹄类中以马的演化研究的最清楚。马的最早代表是始新世早期的始马(Hyracotherium),大小如现代的狐狸,前足有4个脚趾,后足有5个脚趾。渐新世出现了中马(Mesohippus),前、后足只有3个脚趾,都着地。始马和中马都生活在森林里。中新世出现了草原古马(Mery-chippus),前、后足都只有3个脚趾,只中间1个趾着地,两侧的已经退化。从草原古马开始,马类才进化到草原奔驰生活。到上新世,开始出现单趾马,命名为上新马(Pliohippus)。到第四纪出现了现代马(Equus)。马类的演化趋势是,个体增大,腿和脚伸长,侧趾退化,中趾加强,前臼齿臼齿化,颊齿齿冠增高。偶蹄类从始新世开始出现,经过渐新世、中新世和上新世大量发展,从更新世到现在,在食草动物中无论在种类上和数量上都占优势地位。偶蹄类分为猪形类、骆驼类和反刍类。猪形类出现于始新世早期,都是些小形偶蹄类,如始新世的双锥齿兽,戈壁猪形兽等。从渐新世到上新世体形变大。更新世出现了与现代野猪相似的猪。骆驼出现于始新世晚期,也是小形的偶蹄类。从始新世的始驼,经过渐新世的鹿驼,到中新世和上新世的原驼,一直发展到现代亚洲的真驼和南美的羊驼。反刍类包括鼷鹿、鹿、长颈鹿、牛、羊、羚羊等。这一类的主要特征是消化系统复杂,能很好地加工和消化粗糙的草类。鼷鹿是最原始的反刍类。在中国发现的鹿化石很多,有中新世的皇冠鹿、上新世的上新鹿、更新世的四不象鹿和大角鹿等。人类在动物界中的近亲是类人猿(简称猿)。现代的类人猿有长臂猿、猩猩、大猩猩和黑猩猩。类人猿无论在外貌和面部表情上,还是身体内部的结构上都与人相似。类人猿中又以黑猩猩与人最接近。根据化石资料,从猿到人经过森林古猿(Dryopithe-cus)、腊玛古猿(Ramapithecus)、南方古猿(Australo-pithecus)、人(Homo)4个阶段。森林古猿在渐新世晚期中新世中期繁荣于欧、亚、非洲大陆,是现生各种猿类的祖先。腊玛古猿大约在1500万年前由一种森林古猿演化而来, 生存在距今万年前。这种化石最早(1932)发现于印度西瓦立克山,以后在非洲、欧洲和中国云南均有发现。一般认为腊玛古猿是从猿到人过渡阶段的早期代表,是最早的人科成员。但近年来新发现的化石却增加了腊玛古猿是人科的怀疑,有人认为是一种进步的猿类。南方古猿化石最早(1924)发现于南非,南方古猿大约生存于距今300~100万年前,它的原始类型可能是从猿到人的过渡阶段晚期的代表。由南方古猿再进一步发展成现代人。从猿到人的演化过程中,劳动起着重要的作用。由于劳动使身体的姿势由半直立变为直立。劳动和语言又促进了脑的发展,而脑的发展又加速了从猿到人的转变。人类发展的过程一般分为4个阶段:早期猿人阶段、晚期猿人阶段、早期智人阶段和晚期智人阶段。早期猿人阶段。出现于更新世早期,以坦桑尼亚距今175万年的“能人”(Homo habilis)为代表。这一阶段的人类已具人的基本特点,但还有许多原始性。能直立行走,还能制造简单的砾石工具。外貌像猿,但脑量达700毫升,比现代猿大。晚期猿人(直立人)阶段。出现于更新世中期,以北京猿人(Homo erectus pekinensis)和爪哇猿人(Homo ercetus Java)为代表。与北京猿人大致同时的还有蓝田猿人(Homo erectus lantianensis)和海德堡人(Homo erectus heidelber ensis)等。这一时期的猿人,身体形态已有明显的进步性,身体像人,脑颅像猿,但脑量较大,在715~1225毫升之间,直立行走的姿势已与现代人接近。在文化上已能制造较进步的石器,并开始用天然火。比早期猿人分布范围更广泛。早期智人(古人)阶段。古人生存于距今10~20万年至5万年前,广泛分布于亚、非、欧洲的许多地区,以德国的尼安德特人(Homo sapiens neanderthalensis)为代表。中国发现的古人化石有广东的马坝人、湖北的长阳人、山西的丁村人。古人的脑量已达现代人的水平,制造石器,靠渔猎生活,能人工取火。丁村人在石器打制技术上比北京猿人有了显著提高,加工更加精细。晚期智人(新人)阶段。出现于近5万年内,以法国的克罗马侬人(Homo sapiens sapiens)为代表。在中国有北京周口店的山顶洞人,内蒙的河套人,广西的柳江人,四川的资阳人。新人在形态上已非常像现代人,在文化上已有雕刻与绘画的艺术,并出现了装饰品。新人分布范围比古人更广泛。新人化石不仅发现于亚、欧、非洲的广大地区,在大洋洲和美洲也有发现。在新人阶段,现代人种包括黄种、白种、黑种和棕种,开始分化和形成,广泛分布于世界各地。柳江人是现代黄种人的祖先,克罗马侬人是现代欧洲白种人的祖先。古生物化石是指人类史前地质历史时期形成并赋存于地层遗迹,包括植中的生物遗体和活动物、无脊椎动物、脊椎动物等化石及其遗迹化石。它是地球历史的见证,是研究生物起源和进化等的科学依据。古生物化石不同于文物,它是重要的地质遗迹,是中国宝贵的、不可再生的自然遗产。化石为国内乃至国际研究动植物生活习性、繁殖方式及当时的生态环境,提供十分珍贵的实物证据;化石对研究地质时期古地理、古气候、地球的演变、生物的进化等具有不可估量的价值;化石为探索地球上生物的大批死亡、灭绝事件研究,提供罕见的实体;有些特殊、特形化石其本身或经加工具有极高的美学欣赏价值和收藏价值,因此,在一定意义上,它也是一种重要的地质旅游资源和旅游商品资源。通过研究化石,科学家可以逐渐认识遥远的过去生物的形态、结构、类别,可以推测出亿万年来生物起源、演化、发展的过程,还可以恢复漫长的地质历史时期各个阶段地球的生态环境。地质历史时期的古生物遗体或遗迹在被沉积埋藏后可以随着漫长地质年代里沉积物的成岩过程石化成化石。但是,并不是所有的史前生物都能够形成化石。化石的形成过程及其后期的保存都要求一定的特殊条件。化石的形成及保存首先需要一定的生物自身条件。具有硬体的生物保存为化石的可能性较大。无脊椎动物中的各种贝壳、脊椎动物的骨骼等主要由矿物质构成,能够较为持久地抵御各种破坏作用。此外,具有角质层、纤维质和几丁质薄膜的生物,例如植物的叶子和笔石的体壁等,虽然容易遭受破坏,但是不容易溶解,在高温下能够炭化而成为化石。而动物的内脏和肌肉等软体容易被氧化和腐蚀,除了在极特殊的条件下就很难保存为化石。化石的形成和保存还需要一定的埋藏条件。生物死亡后如果能够被迅速埋藏则保存为化石的机会就多。如果生物遗体长期暴露在地表或者长久留在水底不被泥沙掩埋,它们就很容易遭到活动物的吞食或细菌的腐蚀,还容易遭受风化、水动力作用等破坏。不同的掩埋的沉积物也会使生物形成化石并被保存的可能性及状况产生差别。如果生物遗体被化学沉积物、生物成因的沉积物和细碎屑沉积物(指颗粒较细的沉积物)所埋藏,它们在埋藏期就不容易遭到破坏。但是如果被粗碎屑沉积物(指颗粒较粗的沉积物)所埋藏,它们在埋藏期间就容易因机械运动(粗碎屑的滚动和摩擦)而被破坏。在特殊的条件下,松脂的包裹和冻土的掩埋甚至可以保存完好的古生物软体,为科学家提供更为全面丰富的科学研究材料,琥珀里的蜘蛛和第四纪冻土中的猛犸象就是这样被保存下来的。时间因素在化石的形成中也是必不可少的。生物遗体或是其硬体部分必须经历长期的埋藏,才能够随着周围沉积物的成岩过程而石化成化石。有时虽然生物死后被迅速埋藏了,但是不久又因冲刷等各种自然营力的作用而重新暴露出来,这样它依然不能形成化石。沉积物的成岩作用对化石的形成和保存也很有影响。一般来说,沉积物在固结成岩过程中的压实作用和结晶作用都会影响化石的形成和保存。其中,碎屑沉积物的压实作用比较显著,所以在碎屑沉积岩中的化石很少能够保持原始的立体状态。化学沉积物在成岩中的结晶作用则常常使生物遗体的微细结构遭受破坏,尤其是深部成岩、高温高压的变质作用和重结晶作用可以使化石严重损坏,甚至完全消失。&
百科的文章(含所附图片)系由网友上传,如果涉嫌侵权,请与客服联系,我们将按照法律之相关规定及时进行处理。如需转载,请注明来源于。

我要回帖

更多关于 人类进化过程顺序 的文章

 

随机推荐