开关电源输出电压跳动原理怎样实现宽频电压工作

拒绝访问 |
| 百度云加速
请打开cookies.
此网站 () 的管理员禁止了您的访问。原因是您的访问包含了非浏览器特征(3a87e8-ua98).
重新安装浏览器,或使用别的浏览器开关电源工作原理
> 开关电源工作原理
开关电源工作原理
  导读:记得上大学那会,特别热衷DIY电脑,配电源必用长城、航嘉等高大上品牌,这些电源都是基于一种名为“开关模式”的技术,此种电源称之为(Switching Mode Power Supplies,简称SMPS)。本文将为您解读的原理~本文引用地址:一、工作原理—简介  顾名思义,开关电源就是利用电子开关器件(如晶体管、场效应管、可控硅闸流管等),通过控制电路,使电子开关器件不停地“接通”和“关断”,让电子开关器件对输入电压进行脉冲调制,从而实现DC/AC、DC/DC电压变换,以及输出电压可调和自动稳压。  开关电源一般由脉冲宽度调制(PWM)控制IC和MOSFET构成。开关电源和线性电源相比,二者的成本都随着输出功率的增加而增长,但二者增长速率各异。线性电源成本在某一输出功率点上,反而高于开关电源,这一点称为成本反转点。随着电力电子技术的发展和创新,使得开关电源技术也在不断地创新,这一成本反转点日益向低输出电力端移动,这为开关电源提供了广阔的发展空间。二、—结构  开关电源大致由主电路、开关电源控制电路、检测电路、辅助电源四大部份组成。  1、主电路  冲击电流限幅:限制接通电源瞬间输入侧的冲击电流。  输入滤波器:其作用是过滤电网存在的杂波及阻碍本机产生的杂波反馈回电网。  整流与滤波:将电网交流电源直接整流为较平滑的直流电。  逆变:将整流后的直流电变为高频交流电,这是高频开关电源的核心部分。  输出整流与滤波:根据负载需要,提供稳定可靠的直流电源。  2、控制电路  一方面从输出端取样,与设定值进行比较,然后去控制逆变器,改变其脉宽或脉频,使输出稳定,另一方面,根据测试电路提供的数据,经保护电路鉴别,提供控制电路对电源进行各种保护措施。  3、检测电路  提供保护电路中正在运行中各种参数和各种仪表数据。  4、辅助电源  实现电源的软件(远程)启动,为保护电路和控制电路(PWM等芯片)工作供电。三、—分类  开关电源一般有三种工作模式:频率、脉冲宽度固定模式,频率固定、脉冲宽度可变模式,频率、脉冲宽度可变模式。前一种工作模式多用于DC/AC逆变电源,或DC/DC电压变换;后两种工作模式多用于开关稳压电源。另外,开关电源输出电压也有三种工作方式:直接输出电压方式、平均值输出电压方式、幅值输出电压方式。同样,前一种工作方式多用于DC/AC逆变电源,或DC/DC电压变换;后两种工作方式多用于开关稳压电源。  开关电源可分为AC/DC和DC/DC两大类,DC/DC变换器现已实现模块化,且设计技术及生产工艺在国内外均已成熟和标准化;AC/DC的模块化,因其自身的特性使得在模块化的进程中,遇到较为复杂的技术和工艺制造问题。  DC/DC变换  DC/DC变换是将固定的直流电压变换成可变的直流电压,也称为直流斩波。斩波器的工作方式有两种,一是脉宽调制方式Ts不变,改变ton(通用),二是频率调制方式,ton不变,改变Ts(易产生干扰)。其具体的电路由以下几类:  1) Buck电路——降压斩波器,其输出平均电压U0小于输入电压Ui,极性相同。  2) Boost电路——升压斩波器,其输出平均电压U0大于输入电压Ui,极性相同。  3) Buck-Boost电路——降压或升压斩波器,其输出平均电压U0大于或小于输入电压Ui,极性相反,电感传输。  4) Cuk电路——降压或升压斩波器,其输出平均电压U0大于或小于输入电压Ui,极性相反,电容传输。  当今软开关技术使得DC/DC发生了质的飞跃,美国VICOR公司设计制造的多种ECI软开关DC/DC变换器,其最大输出功率有300W、600W、800W等,相应的功率密度为(6.2、10、17)W/cm3,效率为(80~90)%。日本NemicLambda公司最新推出的一种采用软开关技术的高频开关电源模块RM系列,其开关频率为(200~300)kHz,功率密度已达到27W/cm3,采用同步整流器(MOS?FET代替肖特基二极管),使整个电路效率提高到90%。  AC/DC变换  AC/DC变换是将交流变换为直流,其功率流向可以是双向的,功率流由电源流向负载的称为“整流”,功率流由负载返回电源的称为“有源逆变”。AC/DC变换器输入为50/60Hz的交流电,因必须经整流、滤波,因此体积相对较大的滤波电容器是必不可少的,同时因遇到安全标准(如UL、CCEE等)及EMC指令的限制(如IEC、、FCC、CSA),交流输入侧必须加EMC滤波及使用符合安全标准的元件,这样就限制AC/DC电源体积的小型化,另外,由于内部的高频、高压、大电流开关动作,使得解决EMC电磁兼容问题难度加大,也就对内部高密度安装电路设计提出了很高的要求,由于同样的原因,高电压、大电流开关使得电源工作损耗增大,限制了AC/DC变换器模块化的进程,因此必须采用电源系统优化设计方法才能使其工作效率达到一定的满意程度。  AC/DC变换按电路的接线方式可分为,半波电路、全波电路。按电源相数可分为,单相、三相、多相。按电路工作象限又可分为一象限、二象限、三象限、四象限。四、—原理  开关电源的工作过程相当容易理解,在线性电源中,让功率晶体管工作在线性模式,与线性电源不同的是,PWM开关电源是让功率晶体管工作在导通和关断的状态,在这两种状态中,加在功率晶体管上的伏-安乘积是很小的(在导通时,电压低,电流大;关断时,电压高,电流小)/功率器件上的伏安乘积就是功率半导体器件上所产生的损耗。  与线性电源相比,PWM开关电源更为有效的工作过程是通过“斩波”,即把输入的直流电压斩成幅值等于输入电压幅值的脉冲电压来实现的。  解释上图:市电(交流电)入口进去的第一部分称为一级EMI,主要负责内部电路与外部电源之间的过渡,在一级EMI旁边还有二级EMI,这些一二级EMI主要起到电路保护作用,比如当外部电源有波动的时候,一二级EMI会减少内部冲突,从而保护电源内部的硬件不容易受到损坏,另外当电源内部硬件出现不稳定,一二级EMI可以抑制内部波动冲击外部电路,以免影响其他电器的正常使用,简单来说一二级EMI相当于一层滤网,防止双向冲击,对于一款合格的开关电源来说,一二级EMI都是必要的,当对于山寨低价电源来说,往往为了节省成本,省去了一二级EMI,尽管不影响电源功能,但对于电源的稳定性以及干扰外部电源还是有影响的。  一二级EMI电路过后,就到了整流部分了,这里主要有一个由四个整流二极管组建的整流桥堆,其功能是实现,将交流电转变成为直流电。其之后就是高压滤波电路了,这里会看到有一个或者两个大电容,以电感线圈等,主要负责进来的交流电进行滤波,由于外部交流电频率可能波动较大,通过电容与线圈进行滤波,可以得到比较平滑的直主流电。  再往下就是中间部分了,在电源的中间是变压器部分。由于开关电源有多路输出,包括3.3V、5V、12V等等,因此需要变压器,将前面的直流电分成几组输出电压。在变压器之后的下面,就是电源输出部分了。五、开关电源工作原理-注意事项  1、选择开关电源时应注意事项  1) 选用合适的输入电压规格;  2) 选择合适的功率。为了使电源的寿命增长,可选用多30%输出功率额定的机种。  3) 考虑负载特性。如果负载是马达、灯泡或电容性负载,当开机瞬间时电流较大,应选用合适电源以免过载。如果负载是马达时应考虑停机时电压倒灌。  4) 此外尚需考虑电源的工作环境温度,及有无额外的辅助散热设备,在过高的环温电源需减额输出。环温对输出功率的减额曲线。  5) 根据应用所需选择各项功能:  保护功能:过电压保护(OVP)、过温度保护(OTP)、过负载保护(OLP)等。  应用功能:信号功能(供电正常、供电失效)、遥控功能、遥测功能、并联功能等。  特殊功能:功因矫正(PFC)、不断电(UPS)  选择所需符合的安规及电磁兼容(EMC)认证。  2、使用开关电源之注意事项  6) 使用电源前,先确定输入输出电压规格与所用电源的标称值是否相符;  7) 通电之前,检查输入输出的引线是否连接正确,以免损坏用户设备;  8) 检查安装是否牢固,安装螺丝与电源板器件有无接触,测量外壳与输入、输出的绝缘电阻,以免触电;  9) 为保证使用的安全性和减少干扰,请确保接地端可靠接地;  10) 多路输出的电源一般分主、辅输出,主输出特性优于辅输出,一般情况下输出电流大的为主输出。为保证输出负载调整率和输出动态等指标,一般要求每路至少带10%的负载。若用辅路不用主路,主路一定加适当的假负载。具体参见相应型号的规格书;  11) 请注意:电源频繁开关将会影响其寿命;  12) 工作环境及带载程度也会影响其寿命。  拓展阅读:  1、   2、   4、  3、   4、   5、
电容器相关文章:
电路相关文章:
dc相关文章:
晶体管相关文章:
断路器相关文章:
电源滤波器相关文章:
高压真空断路器相关文章:
晶体管相关文章:
绝缘电阻测试仪相关文章:
脉冲点火器相关文章:
脉宽调制相关文章:
漏电断路器相关文章:
分享给小伙伴们:
我来说两句……
最新技术贴
微信公众号二
微信公众号一ATX开关电源工作原理与维修实例
我的图书馆
ATX开关电源工作原理与维修实例
ATX是计算机的工作电源,作用是把交流220V的电源转换为计算机内部使用的直流5V,12V,24V的电源。本文对ATX电源的组成及工作原理做了详细的讲解,最后并附上ATX电源维修实例供大家参考,希望对大家解决ATX电源故障问题有所帮助。
ATX型电源电路的组成及工作原理
ATX开关电源,电路按其组成功能分为:交流输入整流滤波电路、脉冲半桥功率变换电路、辅助电源
电路、脉宽调制控制电路、PS-ON和PW-OK产生电路、自动稳压与保护控制电路、多路直流稳压输出电路。
请参照图1和ATX电源电路原理图。
1.PS-ON和PW-OK、脉宽调制电路
PS-ON信号控制IC1的4脚死区电压,待机时,主板启闭控制电路的电子开关断开,PS-ON信号高电3.6V,IC10精密稳压电路WL431的Ur电位上升,Uk电位下降,Q7导通,稳压5V通过Q7的e、c极,R80、D25和D40送入IC1的4脚,当4脚电压超过3V时,封锁8、11脚的调制脉宽输出,使T2推动变压器、T1主电源开关变压器停振,停止提供+3.3V、±5V、±12V的输出电压。 受控启动后,PS-ON信号由主板启闭控制电路的电子开关接地,IC10的Ur为零电位,Uk电位升至+5V,Q7截止,c极为零电位,IC1的4脚低电平,允许8、11脚输出脉宽调制信号。IC1的输出方式控制端13脚接稳压5V,脉宽调制器为并联推挽式输出,8、11脚输出相位差180度的脉宽调制控制信号,输出频率为IC1的5、6脚外接定时阻容元件的振荡频率的一半,控制Q3、Q4的c极所接T2推动变压器初级绕组的激励振荡,T2次级它激振荡产生的感应电势作用于T1主电源开关变压器的一次绕组,二次绕组的感应电势经整流形成+3.3V、±5V、±12V的输出电压。 推动管Q3、Q4发射极所接的D17、D18以及C17用于抬高Q3、Q4发射极电平,使Q3、Q4基极有低电平脉冲时能可靠截止。C31用于通电瞬间封锁IC1的8、11脚输出脉冲,ATX电源带电瞬间,由于C31两端电压不能突变,IC1的4脚出现高电平,8、11脚无驱动脉冲输出。随着C31的充电,IC1的启动由PS-ON信号控制。
PW-OK产生电路由IC5电压比较器LM393、Q21、C60及其周边元件构成。 待机时IC1的反馈控制端3脚为低电平,Q21饱和导通,IC5的3脚正端输入低电位,小于2脚负端输入的固定分压比,1脚低电位,PW-OK向主机输出零电平的电源自检信号,主机停止工作处于待命休闲状态。受控启动后IC1的3脚电位上升,Q21由饱和导通进入放大状态,e极电位由稳压5V经R104对C60充电来建立,随着C60充电的逐渐进行,IC5的3脚控制电平逐渐上升,一旦IC5的3脚电位大于2脚的固定分压比,经正反馈的迟滞比较器,1脚输出高电平的PW-OK信号。该信号相当于AT电源的PG信号,在开关电源输出电压稳定后再延迟几百毫秒由零电平起跳到+5V,主机检测到PW-OK电源完好的信号后启动系统。在主机运行过程中若遇市电掉电或用户关机时,ATX开关电源+5V输出端电压必下跌,这种幅值变小的反馈信号被送到IC1组件的电压取样放大器同相端1脚后,将引起如下的连锁反应:使IC1的反馈控制端3脚电位下降,经R63耦合到Q21的基极,随着Q21基极电位下降,一旦Q21的e、b极电位达到0.7V,Q21饱和导通,IC5的3脚电位迅速下降,当3脚电位小于2脚的固定分压电平时,IC5的输出端1脚将立即从5V下跳到零电平,关机时PW-OK输出信号比ATX开关电源+5V输出电压提前几百毫秒消失,通知主机触发系统在电源断电前自动关闭,防止突然掉电时硬盘磁头来不及移至着陆区而划伤硬盘。
2.辅助电源电路
只要有交流市电输入,ATX开关电源无论是否开启,其辅助电源一直在工作,为开关电源控制电路提供工作电压。市电经高压整流、滤波,输出约300V直流脉动电压,一路经R72、R76至辅助电源开关管Q15基极,另一路经T3开关变压器的初级绕组加至Q15集电极,使Q15导通。T3反馈绕组的感应电势(上正下负)通过正反馈支路C44、R74加至Q15基极,使Q15饱和导通。反馈电流通过R74、R78、Q15的b、e极等效电阻对电容C44充电,随着C44充电电压增加,流经Q15基极电流逐渐减小,T3反馈绕组感应电势反相(上负下正),与C44电压叠加至Q15基极,Q15基极电位变负,开关管迅速截止。 Q15截止时,ZD6、D30、C41、R70组成Q15基极负偏压截止电路。反馈绕组感应电势的正端经C41、R70、D41至感应电势负端形成充电回路,C41负极负电压,Q15基极电位由于D30、ZD6的导通,被箝位在比C41负电压高约6.8V(二极管压降和稳压值)的负电位上。同时正反馈支路C44的充电电压经T3反馈绕组,R78,Q15的b、e极等效电阻,R74形成放电回路。随着C41充电电流逐渐减小,Ub电位上升,当Ub电位增加到Q15的b、e极的开启电压时,Q15再次导通,又进入下一个周期的振荡。 Q15饱和期间,T3二次绕组输出端的感应电势为负,整流管截止,流经一次绕组的导通电流以磁能的形式储存在T3辅助电源变压器中。当Q15由饱和转向截止时,二次绕组两个输出端的感应电势为正,T3储存的磁能转化为电能经BD5、BD6整流输出。其中BD5整流输出电压供Q16三端稳压器7805工作,Q16输+5VSB,若该电压丢失,主板就不会自动唤醒ATX电源启动。BD6整流输出电压供给IC1脉宽调制TL494的12脚电源输入端,该芯片14脚输出稳压5V,提供ATX开关电源控制电路所有元件的工作电压。
3.自动稳压控制电路
IC1的1、2脚电压取样放大器正、负输入端,取样电阻R31、R32、R33构成+5V、+12V自动稳压电路。
当输出电压升高时(+5V或+12V),由R31取得采样电压送到IC1的1脚和2脚基准电压相比较,输出误差电压与芯片内锯齿波产生电路的振荡脉冲在PWM比较器进行比较放大,使8、11脚输出脉冲宽度降低,输出电压回落至标准值的范围内,反之稳压控制过程相反,从而使开关电源输出电压稳定。IC1的电流取样放大器负端输入15脚接稳压5V,正端输入16脚接地,电流取样放大器在脉宽调制控制电路中没有使用。
关于+5VSB、PS-ON、PW-OK控制信号
ATX开关电源与AT电源最显著的区别是,前者取消了传统的市电开关,依靠+5VSB、PS-ON控制信号的组合来实现电源的开启和关闭。 +5VSB是供主机系统在ATX待机状态时的电源,以及开闭自动管理和远程唤醒通讯联络相关电路的工作电源,在待机及受控启动状态下,其输出电压均为5V高电平,使用紫色线由ATX插头9脚引出。 PS-ON为主机启闭电源或网络计算机远程唤醒电源的控制信号,不同型号的ATX开关电源,待机时电压值为3V、3.6V、4.6V各不相同。当按下主机面板的POWER开关或实现网络唤醒远程开机,受控启动后PS-ON由主板的电子开关接地,使用绿色线从ATX插头14脚输入。
PW-OK是供主板检测电源好坏的输出信号,使用灰色线由ATX插头8脚引出,待机状态为零电平,受控启动电压输出稳定后为5V高电平。电源输出插头如图-3所示
电源的检测
脱机带电检测ATX电源,首先测量在待机状态下的PS-ON和PW-OK信号,前者为高电平,后者为低电平,插头9脚除输出+5VSB外,不输出其它电压。其次是将ATX开关电源人为唤醒,用一根导线把ATX插头14脚PS-ON信号,与任一地端(3、5、7、13、15、16、17)中的一脚短接,这一步是检测的关键,将ATX电源由待机状态唤醒为启动受控状态,此时PS-ON信号为低电平,PW-OK、+5VSB信号为高电平,ATX插头+3.3V、±5V、±12V有输出,开关电源风扇旋转。上述操作亦可作为选购ATX开关电源脱机通电验证的方法。
电源的维修
我们已经知道计算机开关电源的工作原理。只要将交流电源(220V)接通,全桥或二极管(图-4、 图-5)
将交流电(220V)整流成为高电压的脉冲直流电,再经过电容(图6)滤波后成为300V的高压直流电压,而后进入控制电路。此时,控制电路控制大功率开关三极管将高压直流电按照一定的高频频率分批送到高频变压器(图7)的初级。在高频变压器的次级线圈输出的降压后的高频低压交流电通过整流滤波转换为能使电脑工作的低电压强电流的直流电压。其中,控制电路是必不可少的部分。
它能有效的监控输出端的电压值,并向功率开关三极管发出信号控制电压上下调整的幅度。在计算机开关电源中,由于电源输入部分工作在高电压、大电流的状态下一些电子元件,故障率最高;如限流电阻、热敏电阻(NTC)、整流桥或整流二极管,其次输出直流部分的整流二极管、保护二极管、大功率开关三极管较易损坏。
当计算机电源出故障时,怎样着手检修呢?通过对多台电源的维修,总结出了对付电源常见故障的方法。一是用万用表测量脉宽调制器TL494的4脚电压,它是保护电路的关键测试点。二是从+5VSB、PS-ON和PW-OK信号入手来定位故障区域,是快速检修中行之有效的方法。具体操作原则是:
1、在断电情况下,“望、闻、问、切”
由于检修电源要接触到220V电压,人体一旦接触36V以上的电压就有生命危险。因此,在有可能的条件下,尽量先检查一下在断电状态下有无明显的短路、元器件损坏故障。首先,打开电源的外壳,检查保险丝(图-8)是否熔断,再观察电源的内部情况,如果发现电源的PCB板上元件破裂,则应重点检查此元件,
一般来讲这是出现故障的主要原因;闻一下电源内部是否有糊味,检查是否有烧焦的元器件;问一下电源损坏的经过,是否对电源进行违规的操作,这一点对于维修任何设备都是必须的。在初步检查以后,还要对电源进行更深入地检测。
用万用表测量AC电源线两端的正反向电阻及电容器充电情况,如果电阻值过低,说明电源内部存在短路,正常时其阻值应能达到100千欧以上;电容器应能够充放电,如果损坏,则表现为AC电源线两端阻值低,呈短路状态,否则可能是开关三极管Q1、Q2击穿。 然后检查直流输出部分。脱开负载,分别测量各组输出端的对地电阻,正常时,表针应有电容器充放电摆动,最后指示的应为该路的泄放电阻的阻值。否则多数是整流二极管反向击穿所致。
2、加电检测
在通过上述检查后,就可通电测试。这时候才是关键所在,需要有一定的经验、电子基础及维修技巧。
一般来讲应重点检查一下电源的输入端、开关三极管、电源保护电路以及电源的输出电压、电流等。如果电源启动一下就停止,则该电源处于保护状态下,可直接测量TL494的4脚电压,正常值应为0.4V以下,若测得电压值为+4V以上,则说明电源的处于保护状态下,应重点检查产生保护的原因。 另外,+5VSB是供主机系统在ATX待机状态时的电源,所以当电源一加入市电220V后,+5VBS端就应有+5V电压输出的特点,可先检测这一点电压的有无,若有+5V电压说明辅助电源是好的,故障在主控电源电路中,应在主控电源电路中查明故障的原因。由于接触到高电压,建议没有电子基础的朋友要小心操作。
常见故障实例
1.保险丝熔断
一般情况下,保险丝熔断说明电源的内部线路有问题。由于电源工作在高电压、大电流的状态下,电
网电压的波动、浪涌都会引起电源内电流瞬间增大而使保险丝熔断。重点应检查电源输入端的整流二极管,高压滤波电解电容,逆变功率开关管等,检查一下这些元器件有无击穿、开路、损坏等。如果确实是保险丝熔断,应该首先查看电路板上的各个元件,看这些元件的外表有没有被烧糊,有没有电解液溢出。如果没有发现上述情况,则用万用表进行测量,如果测量出来两个大功率开关管e、 c极间的阻值小于100kΩ,说明开关管损坏。其次测量输入端的电阻值,若小于200kΩ,说明后端有局部短路现象。
2.无直流电压输出或电压输出不稳定
如果保险丝是完好的,可是在有负载情况下,各级直流电压无输出。这种情况主要是以下原因造成的:
电源中出现开路、短路现象,过压、过流保护电路出现故障,振荡电路没有工作,电源负载过重,高频整流滤波电路中整流二极管被击穿,滤波电容漏电等。这时,首先用万用表测量系统板+5V电源的对地电阻,若大于0.8Ω,则说明电路板无短路现象;然后将电脑中不必要的硬件暂时拆除,如硬盘、光盘驱动器等,只留下主板、电源、蜂鸣器,然后再测量各输出端的直流电压,如果这时输出为零,则可以肯定是电源的控制电路出了故障。
3.电源负载能力差
电源负开能力差是一个常见的故障,一般都是出现在老式或是工作时间长的电源中,主要原因是各元器件老化,开关三极管的工作不稳定,没有及时进行散热等。应重点检查稳压二极管是否发热漏电,整流二极管损坏、高压滤波电容损坏、晶体管工作点未选择好等。
4、通电无电压输出,电源内发出吱吱声。
这是电源过载或无负载的典型特征。先仔细检查各个元件,重点检查整流二极管、开关管等。经过仔
细检查,发现一个整流二极管1N4001的表面已烧黑,而且电路板也给烧黑了。找同型号的二极管换下,
用万用表一测量果然是击穿的。接上电源,可风扇不转,吱吱声依然。用万用表量+12V输出只有+0.2V,+5V只有0.1V。这说明元件被击穿时电源启动自保护。测量初级和次级开关管,发现初级开关管中有一个已损坏,用相同型号的开关管换上,故障排除,一切正常。
5、没有吱吱声,上一个保险丝就烧一个保险丝。
由于保险丝不断地熔断,搜索范围就缩小了。可能性只有4个:
  1、 整流桥击穿;
  2、 大电解电容击穿;
  3、 过压保护元件压敏电阻击穿;
  4、 初级开关管击穿。
电源的整流桥一般是分立的四个整流二极管,或是将四个二极管固化在一起。将整流桥拆下一量是正常的。大电解电容拆下测试后也正常(注意焊回时要注意正负极),过压保护元件压敏电阻也是正常的。最后的可能就只剩开关管Q1、Q2了。分别拆下测量果然击穿,找同型号开关管换上,问题解决。 其实,维修电源并不难,一般电源损坏都可以归结为保险丝熔断、整流二极管损坏、滤波电容开路或击穿、开关三极管击穿以及电源自保护等,因开关电源的电路较简单,故障类型少,很容易判断出故障位置。只要有足够的电子基础知识,多看看相关报刊,多动动手,平时注意经验的积累,电源故障是可以轻松检修的。5、 错将110V电源接入220V市电网中而烧毁
对于这类人为故障,应重点检查整流二极管或整流桥;过压保护元件压敏电阻;限流电阻;滤波电容;
开关三极管等元件。将烧毁的元件一一更换后,即可修复。
附:ATX型开关电源电路原理图
TA的最新馆藏[转]&
喜欢该文的人也喜欢后使用快捷导航没有帐号?
查看: 2861|回复: 0
经验2 分贝0 家园币5 在线时间:1 小时最后登录:帖子:精华:0注册时间:UID:256148
军衔等级:
新兵, 积分 2, 距离下一级还需 28 积分
注册时间:
第一节 技术参数一、高频开关电源系统的主要技术参数额定直流输出电压、浮充电压、均充电压、功率因数、稳压精度、效率、杂音电压(不接蓄电池组) 、电池温度补偿等。<font color="#、额定直流输出电压:指市电经整流模块变换后的额定输出电压,正选的电源电压为-48V,电压允许变动范围-40— -57V。这种“-”型基础电压是指电源正馈电线接地,作为参考电位零伏,负馈电线装接熔断器后,与机架电源连接。2、浮充电压:在市电正常时,蓄电池与整流器并联运行,蓄电池自放电引起的容量损失便在全浮充过程被补足。根据电池特性及温度所需补充损失电流的多少而设定的电压。<font color="#、均充电压:为使蓄电池快速补充容量,视需要升高浮充电压,使流入电池补充电流增加,这一过程整流器输出得电压为“均充”电压。4、功率因数:有功功率对视在功率的比叫做功率因数。由于开关电源电路的整流部分使电网的电流波形畸变,谐波含量增大,而使得功率因数降低(不采取任何措施,功率因数只有0.6~0.7),污染了电网环境。开关电源要大量进入电网,就必须提高功率因数,减轻对电网的污染,以免破坏电网的供电质量。满载状态下,功率因数不低于0.92。5、效率:开关电源模块的寿命是由模块内部工作温升所决定。温升主低主要是由模块的效率高低所决定。现在市场上大量使用的开关电源技术,主要采有的是脉宽调制技术(PWM)。模块的损耗主要由开关管的开通、关断及导通三种状态下的损耗,浪涌吸收电路损耗,整流二极管导通损耗,工和辅助电源功耗及磁心元件损耗等因素构成。减少这些损耗就会提高模块的整体效率。对此现行较好的处理方法分别是:开关管的开通、关断及导通状态的损耗采用MOSFET和IGBT并联使用,利用两种不同类型的器件的开头及导通损耗的优势互补,其综合损耗是利用单一类型开关管工作损耗的20%左右;浪涌吸收电路可采用无损耗吸收电路,这一技术的使用使得该部分损耗大幅度下降;整流二极管可采用导通电阻较小的器件,优化设计控制电路,选择集成度较高的IC器件都可减少功耗;磁心材料可选择如菲利浦的3C90等均可减少损耗。高频电容器的选择严格控制峰值电流的大小,采用这些因素将会使整流模块的工作在相当宽的功率输出范围内保持较高的效率,如VMA10、DMA12、DMA13及DMA14的工作效率均为91%以上。需要说明的是主开关管的开通、关断及导通状态中的损耗所占比例是主要的。开关状态的损耗是PWM控制技术所固有的缺点。满载状态下,效率不低于0.90。6、稳压精度:满载状态下,当输入电压由最大变到最小时,整流器输出电压调整范围不超过±1%。7、杂音电压(不接蓄电池组)①衡重杂音:电话电路以800HZ杂音电压为标准,其它频率杂音电压响度强弱,用等效杂音系数表示称为衡重杂音。系统衡重杂音的测量点视情况选择在整流器输出端,蓄电池输出端及机房机架的输入端,各测量点数值不已。②宽频杂音:它是指各次谐波均方根值,即周期连续频谱电压。③峰值杂音:指叠加在直流输出上的交流分量峰值,即指晶闸管或高频开关电路导致的针状脉冲。④离散杂音:指无线电干扰杂音或射频杂音,通常为150kHz-30MHz频率内的个别频率杂音。⑤峰-峰值杂音:只由于电源干扰或本机故障所产生的杂音。指标如下:电话衡重杂音电压≤2mV(3m~3400Hz)。宽频杂音电压≤100mV(3.4~150kHz)。宽频杂音电压≤30mV(0.15~30MHz)。离散频率杂音电压≤5mV(3.4~150kHz)。离散频率杂音电压≤3mV(150~200kHz)。离散频率杂音电压≤2mV(200~500kHz)。离散频率杂音电压≤lmV(0.5~30MHz)。峰—峰杂音电压≤200mV。<font color="#、电池温度补偿:适合阀控电池温度补偿要求的自动调节功能,既当环境温度每升高一度或降低一度直流输出电压应相应调整3mv或升高3mv。二、通信供电质量要求1、直流供电标准应符合下表2-1-1要求 &&&&标准电压(V)&&&&&&电信设备受电端子上电压变动范围(V)&&&&&&杂音电压(mv)①&&&&&&供电回路全程&&
&&&&衡重杂音&&&&&&峰-峰值&&&&&&宽频杂音(有效值)&&&&&&最大允许压降(V)&&
&&&&-48V&&&&&&-40~-57&&&&&&≤2&&&&&&<font color="#0mv&&<font color="#~300kHZ&&&&&&&100mv 3.4~150kHZ&&<font color="#mv 150kHZ~30MHZ&&&&&&<font color="#&&
&&&&±24V&&&&&&±19~±29&&&&&&≤2&&&&&& &&&&&& &&&&&&<font color="#.6&& 注:①—48V电压的离散频率杂音电压允许值:(有效值)<font color="#.4kHz ~ l50kHz,≤5mv有效值<font color="#0kHz ~ 200kHz,≤3mv有效值<font color="#0kHz ~ 500kHz,≤2mv有效值<font color="#0kHz ~ 30MHz, ≤1mv有效值2、直流供电回路接头压降(直流配电屏以外的接头)应符合下列要求,或温升不超过允许值。(1)1000A以下,每百安培≤5mv 。(2)1000A以上,每百安培≤3mv 。& &3、交流市电电源供电标准应符合下表2-1-2要求: &&&&标称电压(V)&&&&&&受电端子上电压变动范围(V)&&&&&&频率标称值(hz)&&&&&&频率变动范围(hz)&&&&&&功率因数&&
&&&&<font color="#0KVA以下&&&&&&<font color="#0KVA以上&&
&&&&<font color="#0&&&&&&<font color="#7~242&&&&&&<font color="#&&&&&&±2&&&&&&≥0.85&&&&&&≥0.90&&
&&&&<font color="#0&&&&&&<font color="#3~418&&&&&&<font color="#&&&&&&±2&&&&&&≥0.85&&&&&&≥0.90&& 4、交流油机电源供电标准应符合下表要求: &&&&标称电压(V)&&&&&&受电端子上电压变动范围(V)&&&&&&频率标称值(hz)&&&&&&频率变动范围(hz)&&&&&&功率因数&&
&&&&<font color="#0&&&&&&<font color="#9~231&&&&&&<font color="#&&&&&&±1&&&&&&<font color="#.8&&
&&&&<font color="#0&&&&&&<font color="#1~399&&&&&&<font color="#&&&&&&±1&&&&&&<font color="#.8&& <font color="#、三相供电电压不平衡度不大于4%,电压波形正弦畸变率不大于5%第二节 高频开关电源系统的维护本节重点介绍洲际、艾默生公司的高频开关电源组成及常见故障分析。一、艾默生公司PS/100(一) 系统组成和结构(1)概述PS/100电源系统是安圣集多年开发和设备网上运行经验设计的新一代大容量通信电源产品,主要适用于市话网大中型交换局、长途局、一级传输干线、GSM移动交换局和汇接局,CDMA移动交换局和汇接局等大型通信局站。该电源系统有两种基本配置系统:三柜系统和两柜系统,各系统的配置如下表2-1-3所示。PS/100标准系统配置表 &&&&配置&&&&&&三柜系统&&&&&&两柜系统&&
&&&& &&&&&&PD380/400AFH-2& &或PD380/600AFH-2&&&&&&PD48/1200BFH(交、直流合一配电柜)&&
&&&&直流配电柜&&&&&& PD48/2000DF& & 或PD48/2500DF&&&&&& &&
&&&&整流柜&&&&&&RACK1000&&&&&&RACK1000&&
&&&&整流模块&&&&&&HD48100-2&&&&&&HD48100-2&&
&&&&监控模块&&&&&&PSM-A&&&&&&PSM-A&& 实际使用中可根据用户的需求选配多个交流配电柜、直流配电柜和整流柜,系统最大可平滑扩容至6000A。(2) 系统工作原理PS/100大容量电源系统(以三柜系统为例)工作原理如图2-1-1所示,系统由交流配电柜、整流柜(包含监控模块)、直流配电柜三部分组成。在交流配电柜中,两路市电主备工作,市电Ⅰ为交流主供电回路,市电Ⅱ为交流备份供电回路,可接油机或来自另外一台交流变压器的交流电,两路市电通过刀闸开关手动切换。交流配电柜通过输出空开将交流电送入整流柜中的交流分配单元,交流分配单元通过空气开关将交流电分成10 路分别送给整流模块,整流模块满配置为10个,最大输出电流1000A。整流模块输出的-48V直流电压汇流到整流柜内的正、负母排,整流柜与直流配电柜正、负母排通过并机铜排互连,输入到直流配电柜的-48V直流电通过熔丝供给负载。直流正常情况下,系统运行在并联浮充状态,即整流模块、蓄电池并联工作,整流模块除了给通信设备供电外,还对蓄电池进行浮充充电。当市电断电时,整流模块停止工作,由蓄电池给设备供电,维持设备的正常工作。市电恢复后,整流模块重新给设备供电,并对蓄电池进行充电,补充消耗的电量。交、直流配电柜和整流模块等均有独立的监控电路,负责对各自状态进行监控和告警,同时与系统的监控模块通讯。监控模块通过RS485接收交流配电、直流配电和整流模块的运行信息并进行相应的控制。监控模块还可通过RS485、RS232方式连接本地计算机,亦可通过Modem或其它传输资源(如公务信道)连接监控中心,实现电源系统的集中监控组网。图2-1-1&&系统工作原理图(二)&&交流配电柜(1)&&配电柜命名规则(2)&&主电路工作原理PD380/400AFH-2交流配电柜主电路如图2-1-2所示。刀闸开关完成两路交流输入的手动切换。零线排为交流输入和输出零线汇接排,交流输出分路的零线直接从零线排接出,不通过输出空开。交流相线通过容量不同的空气开关,给整流柜或用户设备供电。交流配电柜采用C级防雷器作为防止浪涌及雷击的措施,正常情况下,C级防雷器的压敏电阻片的窗口为绿色,防雷空开必须保持闭合。图2-1-2& &PD380/400AFH-2交流配电柜主电路图(3) 配电监控工作原理PD380/400AFH-2交流配电柜配电监控电路工作原理如图2-1-3所示。交流配电监控电路主要由交直流配电监控CPU板(B14C3U1)、交直流信号转接板(A2V6FX1)以及交流监控变压器板(A2V4FA1)组成。其中A2V4FA1板完成两路交流电压、交流电流和交流工作频率的采样;A2V6FX1板实现交流配电所有开关量和模拟量信号到配电监控CPU板的转接;B14C3U1板完成所有配电监控信号的处理、交流告警输出、显示输出并通过RS485口将交流配电信息传送给监控模块。图2-1-3&&PD380/400AFH-2交流配电柜配电监控电路工作原理图(三) 直流配电柜(1)主电路工作原理PD48/2000DF直流配电柜主电路如图2-1-4所示。-48V直流电压由正、负母排引入,通过容量不同的24路负载熔断器输出,两路电池通过熔断器和分流器与正、负母排并联。正常情况下,系统运行在并联浮充状态,即整流模块、电池并联工作,整流模块除了给通信设备供电外,还为蓄电池提供浮充电流。当市电断电时,整流模块停止工作,由蓄电池给设备供电,维持设备的正常工作。市电恢复后,整流模块重新给设备供电,并对蓄电池进行充电,补充消耗的电量。分流器RB1、RB2用于检测蓄电池Ⅰ、Ⅱ的充放电电流,RL用于检测负载总电流。图2-1-4& &PD48/2000DF直流配电柜主电路图(2)配电监控工作原理PD48/2000DF直流配电柜配电监控工作原理如图2-1-5所示。 直流配电监控电路主要由交直流配电监控CPU板(B14C3U1)、交直流信号转接板(A2V6FX1)组成。其中A2V6FX1板实现直流配电所有开关量和模拟量信号到配电监控CPU板的转接;B14C3U1板完成所有配电监控信号的处理、直流告警输出、显示输出并通过RS485口将直流配电信息传送给监控模块。图2-1-5&&PD48/2000DF直流配电柜配电监控电路工作原理图
Copyright &
All Rights Reserved

我要回帖

更多关于 开关电源输出电压调整 的文章

 

随机推荐