激光表面微造型的应用改性技术应用于哪些方面

滚动新闻:
您所在的位置:&>&&>&
表面改性技术分类
12:48:00&&&&
  表面改性技术能使材料表面的耐磨性、耐腐蚀性、弯曲疲劳强度、表面精度、防水性以及粗糙度有很大的提高,所以各工业发达国家都深入地开展了这方面的研究。&
  目前,对材料表面抛光主要方法有以下几种:表面淬火、化学表面改性、激光表面改性、热喷涂和电子束加工技术等。&
  1、表面淬火&
  表面淬火是指利用快速加热使钢在短时间内达到淬火温度,不等热量传至工件中心即迅速冷却,仅使表层得到马氏体从而起到强化表面的作用。&
  其主要用于单件、小批量和有局部淬火要求的工件,且淬火之后的质量并不稳定。&
  2、化学表面改性&
  化学表面改性是通过原子扩散、化学反应等方法使被处理材料表面的成分、组织、形貌发生改变,从而获得不同于基体材料性能的工艺方法。&
  化学表面改性中渗碳和渗氮处理是目前表面改性常用的技术,但生产过程中会产生有毒有害物质,不利于工人操作和可持续化发展。&
  3、激光表面改性技术&
  激光表面改性技术是采用大功率密度的激光束以非接触式方式加热工件表面。&
  激光处理前需要对工件进行涂层或其他预处理以减小材料的反射率。&
  4、热喷涂&
  热喷涂是用专门设备把某种固体材料熔化并加速喷射到工件表面上以提高工件耐蚀、耐磨、耐高温等性能的技术。&
  5、电子束加工技术&
  电子束加工技术是随着电子束的发展而出现的一种新型材料表面处理技术,它是用一定能量密度的电子束轰击材料表面,使其表面一层物质熔化或蒸发而提高材料表面质量的加工技术。&
  电子束表面改性可用于传统技术很难或根本不可能改性的、具有非常复杂形貌的表面,并且提供了自动加工的可能性,因此是一种很有使用前景的新型材料加工技术。&
编辑:王明军&&&&
来源:冶金信息网
【1】 凡本网注明&来源:中国冶金报&中国钢铁新闻网&的所有作品,版权均属于中国钢铁新闻网。媒体转载、摘编本网所刊
作品时,请注明来源于《中国冶金报&中国钢铁新闻网》及作者姓名。违反上述声明者,本网将追究其相关法律责任。
【2】 凡本网注明&来源:XXX(非中国钢铁新闻网)&的作品,均转载自其它媒体,转载目的在于传递更多信息,并不代表本网
赞同其观点,不构成投资建议。
【3】 如果您对新闻发表评论,请遵守国家相关法律、法规,尊重网上道德,并承担一切因您的行为而直接或间接引起的法律
【4】 如因作品内容、版权和其它问题需要同本网联系的。电话:010&010-
地址:北京市朝阳区安贞里三区26楼 邮编:100029 电话:(010)0) 传真:(010) 电子邮箱:
中国冶金报/中国钢铁新闻网法律顾问:大成律师事务所 杨贵生律师 电话:010- Email:guisheng.
中国钢铁新闻网版权所有,未经书面授权禁止使用 京ICP备 上传我的文档
 下载
 收藏
该文档贡献者很忙,什么也没留下。
 下载此文档
正在努力加载中...
激光表面改性技术的研究与发展
下载积分:1000
内容提示:激光表面改性技术的研究与发展
文档格式:PDF|
浏览次数:9|
上传日期: 19:28:33|
文档星级:
全文阅读已结束,如果下载本文需要使用
 1000 积分
下载此文档
该用户还上传了这些文档
激光表面改性技术的研究与发展
官方公共微信您的位置: &
激光表面改性技术在有色金属中的应用
优质期刊推荐刀具材料激光表面改性国内外研究概况
核心提示:一、引言切削加工是基本而又常用的精密加工手段,在机械、电机、电子等各种产业部分中都起着重要的作用,决定切削加工效率的因素很多如机床、刀具、工件等,其中刀具是最活跃的因素。而刀具耐用度的高低、刀具消耗和
切削加工是基本而又常用的精密加工手段,在、、电子等各种产业部分中都起着重要的作用,决定切削加工效率的因素很多如、、工件等,其中刀具是最活跃的因素。而刀具耐用度的高低、刀具消耗和加工成本的多少、加工精度和表面质量的优劣等等,在很大程度上取决于刀具材料的机械性能和加工性能,因此人们不断地研究开发新的刀具材料。但新材料的开发速度常常与现代切削加工生产要求存在一定的差距,如在高速切削300~1000m/min切削钢、90~200m/min切削钛合金等要达到这样高的切削速度,就要发展具有更加优异的高温力学性能、高化学稳定性和热稳定性及高温热抗振性的刀具材料,加速刀具材料的研究与开发,合理选用刀具材料是推动高速切削技术广泛应用的重要前提。
激光加工是激光应用的首要领域,在此领域中激光对物体材料的强化处理占有很重要的位置,特别是对材料表面可进行多种强化处理。
在刀具材料改性中主要应用的是熔化处理,熔化处理是金属材料表面在激光束照射下成为溶化状态,同时迅速凝固,产生新的表面层。根据材料表面组织变化情况,可分为合金化、溶覆、重溶细化、上釉和表面复合化等。激光熔凝是用适当的参数的激光辐照材料表面,使其表面快速熔融、快速冷凝,获得较为细化均质的组织和所需性质的表面改性技术。它具有以下优点:
1.表面熔化时一般不添加任何金属元素,熔凝层与材料基体形成冶金结合。
2.在激光熔凝过程中,可以排除杂质和气体,同时急冷重结晶获得的杂志有较高的硬度、耐磨性和抗腐蚀性。
3.其熔层薄、热作用区小,对表面粗糙度和工件尺寸影响不大。有时可不再进行后续磨光而直接使用。
4.提高溶质原子在基体中固溶度极限,晶粒及第二相质点超细化,形成亚稳相可获得无扩散的单一晶体结构甚至非晶态,从而使生成的新型合金获得传统方法得不到的优良性能。
5.光束可以通过光路导向,因而可以处理零件特殊位置和形状复杂的表面。
二、刀具材料激光表面改性国内外研究概况
目前国内外与此相关的文献较多,如利用XeCl准分子激光器(波长308nm)照射Al2O3-SiC纳米复合陶瓷试样,能量密度在0.8J/cm3~6.0J/cm3范围内,照射后,表面缺陷消除,形成连续分布的光滑平整的熔化层,并出现亚稳相&-Al2O3,由于表面形貌的改善和结构的变化,使表面韧性得到提高。W18Cr 4V车刀表面经激光涂覆处理后,对于深切削、快速切削和切削特硬,耐磨性有明显的提高,若以后刀面磨钝为标准,提高近250%;若以前刀面磨钝为标准,提高200%;若以破损为标准,提高近100%。此外车刀前刀面激光处理后,后刀面的耐磨性有明显增长;后刀面激光处理后,前刀面抗月牙洼磨损能力也有一定的提高,但增长幅度不及前者。北京工业大学的宣崇武、张连宝利用激光表面合金化新技术,改变木材加工刀片的表面成分,以提高刀片韧性。激光表面合金化所得的合金化层与刀片基体之间是一种冶金结合,结合力优于各种喷涂层。最佳产品一次刃磨平均产量&20t,但刀片本身折损率&30%。激光合金化处理后的刀片,一次刃磨寿命比最佳产品平均提高3倍左右,且刀刃不崩、不卷、不折断,稍加磨刃可继续使用。无锡厂的李良福在用激光加工法提高刀具耐用度的经验证实,激光强化对改善各种刀具的工作能力有较好的效果。例如T8A、T10A、CrWMn和9Cr钢的耐用度可提高若干倍,成型模的寿命较一般热处理后的使用寿命可提高15-19倍,较氮化钴耐磨层的模具提高0.5-1倍。前苏联曾对WC85%+Co15%和WC92%+Co8%两种硬质合金粉末进行激光熔覆试验,使用35-30J的固体脉冲激光和0.1,0.5,1-3Kw的连续CO2激光器,扫描速度2.2-17mm/s,在Y8A工具钢基体上熔覆(WC92+Co8)粉末所得最高显微硬度为HV1180。KJ.Schmaxtjko利用准分子激光对陶瓷材料(Al2O3、ZnO2、Si3N4)的表面直接进行重熔改性,结果表明:陶瓷材料的表面粗糙度从激光改性前的10-15&m,下降到1-4&m,且孔隙率大大下降。A.Detitbon的重熔方式可使表面裂纹和孔隙至少下降50%。
最近几年,激光对各种刀具材料表面强化都有不同程度的报导[5,6],也有人直接研究了激光对高速刀具的表面强化,虽然激光合金化和熔覆陶瓷层已经取得了关键性的进展,但是在工业实际批量化应用较少,特别是在刀具材料改性方面。
三、目前激光强化技术在民用刀具制造的应用
民用刀具量大面广,有:厨刀、剪刀、剃须刀、粉碎刀等,目前刀具失效原因主要在刀刃,如刃口磨损、崩刃、腐蚀等,为了达到经久耐用的目的,一般制造工艺方法是:1)采用整体高性能合金材料,如高速钢等2)采用复合钢,如复合钢板刀剪等3)刃口镶焊硬质合金材料,如硬质合金、陶瓷、高速钢等。前两种方法原材料要求较高,制造成本较高;而后者由于镶焊往往为材料硬脆性材料,给制造工艺带来困难,如硬质合金与基体的镶焊强度、硬质合金镶焊长度有限等,使用寿命受到影响。
激光堆焊是继激光熔覆技术上发展起来的一项新的激光加工技术,借鉴传统的堆焊技术优点,用大功率激光为加热源,对同步送入的合金焊丝与基体表层同时快速熔化,得到和基体完全冶金结合的并具有特殊性能(耐磨、耐蚀、耐热等)的表层,形成复合层,用于制造双金属刀具。而激光合金化则是在基体的表面熔融层内加入合金元素,从而形成以基材为基础的新的合金层,达到表面改性,刃口强韧化的目的。
综合上述技术的优点,把这一技术应用于刀具材料表面强化处理,则是提高刀具耐磨性及其使用寿命的重要途径之一,尤其对于陶瓷、硬质合金刀具这种高硬度、耐热性好等优点,有利于提高加工效率和加工精度,并能对难加工材料如淬火钢在不利的加工条件下进行切削加工。由于它们强度相对较低,韧性和可$&*性较差,严重地限制了它们的应用范围,因此把激光表面强化技术应用于陶瓷、硬质合金刀具具有深刻的研究意义和广阔的应用前景。
目前,国内外提高刀具抗磨损的方法主要分为两类:一种是常规的表面处理法,如采用非常规的表面淬火方法、激光熔覆的方法(覆层的合金粉多为Ni、Co基自熔合金或添加粗颗粒的碳化钨或者采用激光厚层熔覆,这类方法比较适用于磨粒磨损很高的工况,例如,矿山、石油、农机等采掘工具)等,其存在的缺点就是易产生裂纹等缺陷。另一种是最近发展起来的涂层刀具,此类方法的缺点就是沉积涂层较薄。这两种方法都有其不同程度的缺点。前者是通过材料本身发生的显微组织转变来提高硬度及耐磨性,因而只对碳钢有效,而对硬质合金、高速钢材料的刀具材料而言则效果不明显,采用后者不仅涂层较薄,涂层沉积时间较长,而且实际使用中常常发生剥落现象。
以下为激光表面强化技术在刀具材料改性中的应用实例。
1. 家用厨刀激光熔覆表面改性
采用激光涂层在常用的不锈钢厨刀刃口进行薄层快速熔覆,得到涂覆层均匀、高耐磨的刀具刃口,代替传统的刀具生产工艺,改造其产业提高刀具(厨刀)产品的内在质量和附加值。通过对涂层材料的配比、激光涂层性能等方面的分析研究,开发出与&懒汉刀&同等水平的厨刀并将其实用化。通过优化工艺采用预置式合金粉末得到了无裂纹、一定硬度涂层的厚度、变形小、回火带窄的刃口。可以看出,熔覆层均匀覆盖在刀刃上。
对断面分析,从外向内可以明显的看出分为4个区域:熔覆层、硬化过渡区、回火区和基体材料。
1.1 熔覆区
该区以涂层材料为主要成分,硬度较高HV990-1300,厚度0.02-0.08mm,其中大量未熔的硬质颗粒,起到了弥散强化的作用。涂层过厚易形成裂纹,影响使用,通过优化工艺参数,得到了既无裂纹、硬度高、表面光洁,与基体呈良好冶金结合的涂层,而这一涂层正是提高刃口磨损性能的关键。
1.2 硬化过渡区
这一区域包含与熔覆层相接的合金化层,与回火区相接的淬火区,占硬化层的80%,硬度层硬度平缓过度,组织主要是过度细化的马氏体和碳化物。
1.3 回火区
由于扫描速度的加快,回火区变窄,组织为索氏体及碳化物。回火区的存在有利于保持刃口的韧性,在高硬度冲击情况下不至于断裂。
2. 激光熔渗纳米改性强化刀具
激光熔渗是一种结合激光熔覆工艺和激光合金化工艺的表面改性的方法。将其运用到园林刀具生产过程中,可以对不同类型的刀具进行激光表面改性强化。纳米材料较之微米级材料具有更好的力学性能,涂覆于基体表面的纳米合金粉在高密度的激光束作用下快速熔凝,以部分纳米硬质合金颗粒渗入到基体材料当中,起到了微合金化作用,而刀具表面又可以获得纳米晶的覆层,因而不仅提高了强韧性及耐磨而且还加深了刀具刃口的硬度层深,延长了刀具的使用寿命。
刀片经过激光处理后,在表层形成明显的硬化层,硬度呈现梯度变化,心部仍保持原来的组织。这样使得表层硬而耐磨,芯部保持韧性,而且运转过程有&自锐性&效果,使得刀片的使用寿命延长。该刀片的厚度为1.5mm,硬化层深度为0.18mm,表层白亮层为合金碳化物,马氏体,硬度为HV0.2 820-766,心部为回火屈氏体,硬度为HV316 。
四、激光强化技术在刀具材料改性应用的展望
目前国内外对工程陶瓷与硬质合金材料的研究有一定的进展,另一方面激光对刀具进行表面强化处理属当前领域的前沿,用强激光束对代替某些热处理是一种有效的方法,结合当前纳米技术的发展,在这三个方向的基础上找到它们的结合点,参照同类近似的研究方法,对陶瓷、硬质合金的激光强化机理及技术进行研究,提出了在以后研究工作中将通过对高耐磨/耐蚀/耐热纳米硬质粉材(陶瓷、复合材料等)的研制及配比、激光纳米强化层性能、激光厚层堆焊工艺与硬质合金材料等方面的分析研究,针对不同刀具采用相应的工艺,利用普通的刀具材料开发出提高刀具刃口强韧性、耐磨性及使用寿命的新产品,获得对各种刀具类材料激光堆焊复合、纳米合金熔渗及产品化实用化的总体工艺技术,使其能满足实际生产的复杂要求,尤其是克服陶瓷刀具材料脆性大、可靠性低等缺点,为改进硬质合金和陶瓷材料增添了一条有效的途径。热处理表面改性技术的发展,总结的很全很到位!
用微信扫描二维码分享至好友和朋友圈
表面改性技术是指用来改善表面完整性以提高材料与构件使用性能的工艺技术。由于材料和构件的失效多数是从表面发生的,所以疲劳断裂、腐蚀、摩擦磨损等性能往往与表面完整性密切相关。表面完整性是指无缺陷或表面强化的表面状态与性能,它确定了材料的使用性能,但取决于制造加工工艺技术。热处理表面改性技术主要是指采用加热和冷却的方法来使材料的组织结构发生变化以达到所期望的使用性能。
&&& 表面改性技术是指用来改善表面完整性以提高材料与构件使用性能的工艺技术。由于材料和构件的失效多数是从表面发生的,所以疲劳断裂、腐蚀、摩擦磨损等性能往往与表面完整性密切相关。表面完整性是指无缺陷或表面强化的表面状态与性能,它确定了材料的使用性能,但取决于制造加工工艺技术。热处理表面改性技术主要是指采用加热和冷却的方法来使材料的组织结构发生变化以达到所期望的使用性能。
&&& 本文主要介绍感应淬火、稀土或形变促渗、真空热处理、激光热处理、电子束热处理和离子束热处理等新技术的特点,并结合自己的一些研究成果来展望金属热处理新技术的应用前景和发展趋势,以期达到宣传新技术和推动新工艺发展的目的。
&&& 一、感应淬火
&&& 感应淬火是利用感应电流通过材料或工件所产生的热量,使材料或工件表层、局部或整体加热并快速冷却的淬火。
&&& 感应淬火的特点
&&& (1)加热速率大,热效应利用率高。
&&& (2)具有加热肌肤效应,整体不加热,变形小。
&&& (3)加热时间短,与外界的化学反应少,表面氧化脱碳少。
&&& (4)设备易于机械化,操作便于自动化,可编程控制。
&&& (5)淬火层组织、深度、硬度易于控制,表面硬度较常规淬火高、缺口敏感性小,可显著改善构件的疲劳性能和提高耐磨性,延长零件的使用寿命。
&&& 感应淬火现状
&&& 近几年国内比较重视感应淬火设备的研发和工艺技术的应用研究,已经可以生产出了工频、低频、中频、超音频、高频、超高频等几种不同的淬火感应设备,从而根据淬硬深度需要来选择适宜的感应频率设备。
&&& 一方面,目前国内对于超高频的设备研发还有一点难度,主要是转换效率高、性能稳定的绝缘栅双极晶体管(IGBT)多数是依靠进口(主要来自德国西门子)。国内最近较大的IGBT电源达到了300kW、50kHz,国外早已有了600kW、100kHz的电源商品生产。
&&& 另一方面,原有的电子管高频振荡电源也正逐渐被MOSFET(场效应晶体管)电源及SIT(静电感应晶体管)电源所替代,国产电源可达300kW、300kHz,发达国家已有500kW、300kHz的产品问世。MOSFET及SIT全固态电源与电子管高频振荡式电源相比,具有电源体积小、效率高、控制方便、使用寿命长、安全性高等突出特点,发展前景较好。最后值得一提的是设备的自动化、标准化控制技术都发展较快,国内还需要进一步开发软件和加强对感应淬火组织以及残留应力的计算机模拟分析技术研究。
&&& 未来发展趋势与应用前景
&&& 高能、高频、高效、高精控制是未来感应淬火设备的发展方向;淬火组织深度、硬度梯度分布特性、残留应力、使用性能是未来感应淬火设备和技术进一步推广应用亟待解决的问题,有待产、学、研、用等单位共同突破。
&&& 应用前景还是比较广阔的,曲轴、车轴、齿轮等关键基础的传动件都可以应用,对于不规则形状的零件,还需要好好设计,确保淬火过程中的应力集中不要太大,以免产生淬火裂纹和不均匀的组织,关键是要有好的感应淬火器设计,在科学理论的指导下,通过精确的工艺参数控制,确保淬火组织的均匀性和深度,并具有一定的硬度和适宜的硬度梯度分布。
&&& 二、稀土或形变促渗
&&& 稀土是中国的特色资源,中国的稀土资源丰富而且很多稀土元素是战略资源,因此应该充分发挥我国稀土资源的优势和特色,在国际热处理和表面改性领域占有自己的一席之地和具有自己的研究特色。
&&& 对于金属表面的改性处理,通过稀土的加入能够显著提高元素渗入速度,改善渗层组织,提高渗层性能,表现出很好的催渗效果,在钢铁热处理领域具有良好的应用前景。
&&& 稀土催渗取决因素
&&& 稀土的催渗效应除了和待渗材料密切相关外,还取决于以下因素:
&&& (1)稀土元素的化学活性。通常稀土元素与O、H及N均可发生强烈的化学反应,尤其与O的亲和力较强。因此,炉内气氛中含有稀土元素,有利于煤油等高分子断键,使炉气得到活化,对渗剂的分解过程起促进作用;加速分解动力学过程,并促使热分解更完全。
&&& (2)稀土元素渗入金属表面形成的晶格畸变。由于稀土元素的原子半径比Fe原子半径大得多,它的存在会引起它周围的原子晶格畸变。这种晶格畸变一方面由于C、N间隙原子在畸变区的偏聚导致表面C、N浓度增高,加快C、N原子的扩散;另一方面由于晶体缺陷对原子扩散的通道作用,促使间隙原子沿着位错等缺陷快速扩散。
&&& 稀土的催渗效果
&&& 稀土的催渗作用目前已在工程中应用于渗碳、渗氮、渗硼、渗钒及各种复合共渗。下面举例说明其促渗效果。
&&& (1)稀土渗碳。稀土催渗碳在汽车变速箱齿轮、减速器齿轮、内燃机活塞销、机床摩擦片等零件上已得到广泛运用,在活塞销零件的应用上也取得明显效果。稀土催渗碳的效果主要表现在:①能降低渗碳温度,缩短渗碳周期。②减少工件变形,减少工件表面积碳。③细化渗层组织晶粒,改善碳化物形态。④使渗层硬度的变化较为平缓。加稀土可提高渗碳速度20%~30%,节电70%,热处理成本下降60%。
&&& (2)稀土渗氮。稀土催渗氮可有效提高渗氮速度,在同样温度下稀土渗氮可提高渗速15%~20%;当渗氮温度高出传统温度10~20℃,则可使渗氮速度提高60%以上。稀土也可使碳氮共渗的渗速提高20%~50%。稀土催渗氮可使氮化物的分布变得细小弥散,避免氮化物沿晶界的偏聚及脉状组织的产生,能有效提高表面硬度。稀土催渗氮不仅有催渗和改善渗氮层硬度和渗层组织的效果,还有一定的离子轰击效应,使钢铁表层内的空位与位错密度增加,加快氮原子的扩散;同时,稀土原子也沿晶界、位错等特殊通道以较快速度向内部扩散,具有一定的微合金化作用。
&&& (3)稀土渗硼。加稀土的渗硼剂显示出较好的催渗效果,渗速提高幅度在20%~30%,特别是对低碳材料的效果更明显。研究表明,稀土的加入可抑制FeB的生长,有利于Fe2B的形成,所形成的Fe2B形如针齿细密直长,能减少硼化层脆性,提高渗层与基体的结合力。
&&& (4)稀土渗钒。渗钒技术所形成的碳化钒覆层在常温下具有良好的稳定性和优异的抗磨损能力,但传统的盐浴渗钒方法一直存在着设备腐蚀严重、工件变形大以及表面粘盐难以清理等技术难点。采用稀土催渗钒技术,能加速活性原子的产生,加速渗剂的分解,提高盐浴中的钒势,从而提高渗钒的速度,增加渗层厚度。
&&& 此外,除了稀土可以促进渗氮或渗碳进程外,机械形变由于引入的位错或晶粒细化所贮存的能量也可以降低扩散激活能,促进扩散过程,减少热处理时间,提高生产效率和产品质量。国内学者却力克、葛继平、戚正风等较早系统研究了室温形变对45钢、45VS钢促进渗氮的效果。此后陆续不断有人进行相关的研究,但效果比较显著的是材料表面纳米化后的促渗效果,它可以实现低温渗或深层渗。
&&& 稀土催渗工艺技术特点
&&& 充分发挥中国稀土资源优势和形变研究特色,提高了热处理生产效率和产品质量,投入少、收效大,研究具有很强的中国特色。
&&& 稀土催渗现状
&&& 稀土促渗结果多年的研究在工程上已经有所应用,尤其是在汽车行业得以推广;形变促渗虽然研究多年,但在工程上还缺少应用,而且效果也因零件形状、尺寸和热处理炉子不同而不同性能显得不稳定。
&&& 未来发展趋势与应用前景
&&& 稀土促渗工艺技术有待在组织优化和渗层深度、硬度梯度等精确控制的研究基础上,加大在工业上的推广应用;形变促渗工艺技术尚需进一步开展深入系统的研究,以挖掘工艺技术的潜力,形成成熟的形变促渗工艺特色和独特的技术优势,加强形变能与扩散激活能等应用基础理论方面的研究,实现科学理论上的重大突破,将为工程实践上的应用奠定基础。
&&& 三、真空热处理
&&& 真空热处理具有无氧化、不脱碳、工件表面光亮、变形小、无污染、节能、自动化程度高、适用范围广等优点,是近年来发展较快的热处理新技术之一,特别是在进行航空材料表面改性方面获得了很大的进展。
&&& 许多新近开发的先进热处理技术,如真空高压气淬、真空化学热处理等,也需在真空下方能实施。采用真空热处理技术可使结构材料、工模具的质量和使用寿命得到大幅度的提高,尤其适合于一些精密零件的热处理。
&&& 真空热处理发展
&&& 随着真空热处理技术的发展,真空热处理设备如真空退火炉、真空淬火炉、真空回火炉、真空渗碳炉、真空钎焊炉、真空烧结炉等在国内得以研制成功,在工业上真空炉的制备技术和装备水平不断提升,真空度也逐渐达到了国外水平,但在自动化控制和器件的精细加工上与国外还有一定差距,尤其是在超高真空炉性能的稳定上有待精密器件制备水平的提高。此外,测试技术和测量仪器的发展也对真空设备有很大的影响,尤其是自动测试与控制技术。真空设备中极限真空度、工作真空度、空炉抽空时间、压升率、炉温均匀度、空炉升温时间等参数的准确测量和性能指标是真空炉性能的主要体现。
&&& 在工业发达国家,真空热处理的比例已达到20%左右,而我国目前约有真空热处理炉1200台,占热处理炉总数的1%左右,与国外的差距很大。预计今后随着热处理行业的技术进步和对热处理工件质量要求的越来越高,真空热处理将会有较大的发展。
&&& 真空热处理特点
&&& 设备一次性投入大,但产品质量好、变形小、无污染、节能环保,对工人操作的技术水平要求略高,生产效率由于真空度要求抽真空时间比较长而略低。
&&& 真空热处理现状
&&& 真空热处理在国内发展已有十余年的历史,但目前还只是应用在高端高质量的零件上,如航空航天等军工产品的关键部件采用真空热处理,对于民用还是较少。一方面是因为设备价格高,另一方面是国内零件采用真空热处理将增加费用除非是高附加值产品,一般不愿意进行真空热处理。
&&& 未来发展趋势与应用前景
&&& 精密零部件和较高质量要求的零件未来都将采用真空热处理来确保表面质量和完整性,真空热处理具有从航空航天高端产品走向民用高端产品的趋势,并且随着环保无污染国家政策的严格要求和执行也将得以推广应用。
&&& 四、激光热处理
&&& 激光热处理功率高、加热和冷却率快、定位精确,可解决传统金属热处理不能解决或不容易解决的技术难题。同时激光热处理又是一种表面热处理技术,即利用激光加热金属材料表面实现表面热处理改性。
&&& 激光热处理原理及应用
&&& 激光加热具有极高的功率密度,即激光的照射区域的单位面积上集中极高的功率。由于功率密度极高,工件传导散热无法及时将热量传走,结果使得工件被激光照射区迅速升温到奥氏体化温度实现快速加热。当激光加热结束,因为快速加热时工件基体大体积中仍保持较低的温度,被加热区域可以通过工件本身的热传导迅速冷却,从而实现淬火等热处理效果。激光淬火技术可对各种导轨、大型齿轮、轴颈、汽缸内壁、模具、减振器、摩擦轮、轧辊、滚轮零件进行表面强化。适用材料为中、高碳钢,铸铁。激光淬火强化的铸铁发动机汽缸,其硬度提高230HBW提高到680HBW,使用寿命提高2~3倍。
&&& 激光热处理特点
&&& 激光相变硬化(或称作表面淬火、表面非晶化、表面重熔淬火)、表面合金化等表面改性处理,可产生用常规表面淬火达不到的表面成分、组织、性能的改变。经激光处理后,铸铁表面硬度可以达到60HRC以上,中碳及高碳的碳钢,表面硬度可达70HRC以上,从而提高抗磨损、抗疲劳、耐腐蚀、抗氧化等性能,延长使用寿命。激光热处理技术与其它热处理如高频淬火、渗碳、渗氮等传统工艺相比,具有以下特点:
&&& (1)无需使用外加材料,仅改变被处理材料表面的组织结构,处理后的改性层具有足够的厚度,可根据需要调整深浅一般可达0.1~0.8mm。
&&& (2)处理层和基体结合强度高。激光表面处理的改性层和基体材料之间是致密的冶金结合,而且处理层表面是致密的冶金组织,具有较高的硬度和耐磨性。
&&& (3)被处理件变形极小,由于激光功率密度高,与零件的作用时间很短(2~10s),故零件的热变形区和整体变化都很小。故适合于高精度零件处理,作为材料和零件的最后处理工序。
&&& (4)加工柔性好,适用面广。利用灵活的导光系统可随意将激光导向处理部分,从而可方便地处理深孔、内孔、盲孔和凹槽等,可进行选择性的局部处理。
&&& 其他激光表面改性技术
&&& 激光热表处理改性技术还包括激光熔覆技术、激光表面合金化技术、激光退火技术、激光冲击强化技术、激光强化电镀技术、激光上釉技术,这些技术对改变材料的力学性能、耐热性和耐腐蚀性等有重要作用。
&&& (1)激光熔覆技术是在工业中获得广泛应用的激光表面改性技术之一,具有很好的经济性,可大大提高产品的抗腐蚀性。
&&& (2)激光表面合金化技术是材料表面局部改性处理的新方法,是未来应用潜力最大的表面改性技术之一,适用于航空、航天、兵器、核工业、汽车制造业中需要改善耐磨、耐腐蚀、耐高温等性能的零件。
&&& (3)激光退火技术是半导体加工的一种新工艺,效果比常规热退火好得多。激光退火后,杂质的替位率可达到98%~99%,可使多晶硅的电阻率降到普通加热退火的1/3~1/2,还可大大提高集成电路的集成度,使电路元件间的间隔缩小到0.5&m。
&&& (4)激光冲击强化技术能改善金属材料的机械性能,可阻止裂纹的产生和扩展,提高钢、铝、钛等合金的强度和硬度,改善其抗疲劳性能。在航空发动机叶片维修上得以应用来提高其抗外来物破坏和疲劳使用性能。
&&& (5)激光强化电镀技术可提高金属的沉积速度,速度比无激光照射快1000倍,对微型开关、精密仪器零件、微电子器件和大规模集成电路的生产和修补具有重大意义。使用该技术可使电镀层的结合力大大提高。
&&& (6)激光上釉技术对于材料改性很有发展前途,其成本低,容易控制和复制,有利于发展新材料。激光上釉结合火焰喷涂、等离子喷涂、离子沉积等技术,在控制组织、提高表面耐磨、耐腐蚀性能方面有着广阔的应用前景。电子材料、电磁材料和其他电气材料经激光上釉后用于测量仪表极为理想。
&&& 激光热处理特点
&&& 高功率、高速率加热和冷却、定位精确,可获得常规热处理难以获得的组织结构、硬度和使用性能,具有很高的性能,很大的发展前景和市场潜力。
&&& 激光热处理现状
&&& 由于设备一次性投入大、操作技术要求高等问题制约了激光热处理在工程中的推广应用;由于材料对激光能量的吸收率有待提高和设备研发技术水平尚需提升,国内激光热处理工艺技术和设备装备都还处于研发阶段,只有少数成熟的工艺技术在工业上得到了应用,但也有待推广。
&&& 未来发展趋势与应用前景
&&& 需要加强材料对激光能量利用率的研究以提高激光能量的吸收率;对于铝合金、钛合金等材料制品还需要研究不同气氛保护下的热处理效果以及生产效率。此外,加大高功率、高精度、高性能的设备研发也是推动激光热处理技术在工业上应用的关键,尤其是高功率、高频率、高稳定性的固体激光器冲击强化设备的研制,已严重限制和影响了我国装备的实力水平。
&&& 五、电子束热处理
&&& 电子束照射到金属表面时,电子能深入金属表面一定深度,与基体金属的原子核及电子发生相互作用。能量传递主要是通过电子束与金属表层电子碰撞而完成的,所传递的能量立即以热的形式传与金属表层原子,从而使被处理金属的表层温度迅速升高。与激光加热有所不同,电子束加热时,其入射电子束的动能大约有75%可以直接转化为热能;而激光束仅有少量可被金属表面直接吸收而转化为热能,其余部分基本上被完全反射掉了。目前,电子束加速电压达125kV,输出功率达150kW,能量密度达103MW/m2。因此,电子束加热的深度和尺寸比激光大。
&&& 电子束热处理分类
&&& 与激光束改性相似,电子束热处理也有电子束退火、电子束相变硬化、电子束熔化/粉注、激光熔敷、电子束表面合金化、电子束非晶化和细晶化等。
&&& (1)电子束表面硬化是利用电子束轰击金属工件表面,使表面被加热到相变温度以上,高速冷却产生马氏体相变强化。电子束表面硬化比较适合于碳钢、中碳低合金钢、铸铁等材料的表面强化。
&&& (2)电子束表面熔凝是用高能量密度的电子束轰击工件表面,使表面产生局部的重新熔化,并在冷基体的作用下快速凝固,从而使组织细化,实现硬度和韧性的最佳结合。电子束表面熔凝最适用于铸铁、高碳高合金钢。
&&& (3)电子束表面合金化是预先将具有特殊性能的合金粉末涂敷在基体金属表面,再用电子束轰击加热,使特殊的合金粉末熔融在基体材料的表面上,从而在工件表面形成一层具有耐磨、耐蚀、耐热等性能的新合金表面层。
&&& (4)电子束熔敷是按需要在基体材料表面预先涂敷一层特殊性能的合金粉,并用电子束加热将其熔化,在基体表面形成具有某些特性的覆层。
&&& (5)电子束表面非晶化是利用聚焦的电子束高能量密度以及作用时间短的特点,使工件表面在极短的时间内迅速形成小熔池,并在基体与熔化的表层间产生很大的温度梯度,使表层的冷却速度高达104~108℃/s。致使表层几乎保留了熔化时液态金属的均匀性,经高速冷却,在材料的表面形成良好的非晶层。
&&& 近年来笔者开展了航空钛合金的脉冲电子束改性系统研究,获得了一系列的研究成果。主要的突破是:①采用脉冲电子束在TA2、TA15、TB6和TC4等钛合金表面进行表面纳米化处理,获得了10~50&m的纳米改性层,使得表层强度和硬度得到明显提高和耐磨性与抗疲劳性得以改善。②采用脉冲电子束使表面粗糙度得到显著改善,可以用来抛光金属零部件使之表面达到镜面效果。③脉冲电子束可净化表面,改善相结构或微观组织,提高耐蚀性。④对制备的纳米材料表层进行复合强化可进一步提高表层的硬度和韧性,这方面的研究只是刚刚开展探索,还需要深入系统开展研究。有兴趣的读者可进一步阅读笔者发表的相关文章。
&&& 电子束热处理特点
&&& (1)加热、冷却速度快。
&&& (2)设备结构简单。
&&& (3)能量控制简便。
&&& (4)电子束与金属表面作用耦合性好,能量利用率高。
&&& (5)处理中工件不被污染,质量好。
&&& (6)电子束加热的深度和尺寸范围比激光束大。
&&& (7)电子束因易激发X射线,在使用中应注意辐射防护。
&&& 电子束热处理现状
&&& 电子束具有独特的高能、高脉冲特性,而且能量的利用率高、无污染、环保,在国外工业上应用较多,国内主要用于金属的焊接和合金化,对于电子束熔敷技术和非晶化处理刚刚起步,很多高新技术方面有待投入人力、物力和财力进行基础研究,以推广电子束热处理改性技术的工程应用。
&&& 未来发展趋势与应用前景
&&& 在技术研发进步和设备装备水平提升的技术上,通过对材料与电子束相互作用机理的系统研究,开发高能高效清洁电子束热处理设备是非常必要的,也是有很大应用市场和发展空间的。
&&& 六、离子束热处理
&&& 离子束热处理改性技术近年来发展较慢,前几年主要应用于离子注入、离子束熔敷、离子束合金化和离子束淬火等。离子束改性与激光束和电子束改性基本相同,多数是利用离子束的热作用,使材料表面发生物理化学变化或冶金反应,得到组织再造、表层改性的目的。
&&& 离子束热处理特点
&&& (1)加热、冷却速度快。
&&& (2)能量控制简便。
&&& (3)离子束与金属表面作用耦合性好,能量利用率高。
&&& (4)处理中工件在保护气氛下不易被污染,表面质量高。
&&& 离子束热处理现状
&&& 离子束具有独特的高能、高脉冲特性,而且能量的利用率高,在国外工业上应用较多,国内主要用于离子注入表面改性,对于离子束热处理的研究也是刚刚起步,很多高新技术方面有待加强基础研究,以推广离子束热处理改性技术的工程应用。
&&& 未来发展趋势与应用前景
&&& 在技术研发进步和设备装备水平提升的技术上,通过对材料与离子束相互作用机理的系统研究,开发高能高效清洁离子束热处理设备是非常必要的,同样离子束热处理工艺技术在中国有很大应用市场和发展空间。
&&& 七、结语
&&& 本文在综合国内外大量文献的基础上,尤其是网络上很多新技术方面的资料,结合自己的理解,对感应淬火、稀土促渗、形变促渗、真空热处理、激光热处理、电子束热处理和离子束热处理等新技术的特点进行了简要介绍,并展望了金属热处理新技术的应用前景和发展趋势,希望达到宣传新技术和推动新工艺发展的目的,以提升中国热处理的技术水平,提高我们热处理装备的能力和产品质量。
更多关于材料方面、材料腐蚀控制、材料科普等方面的国内外最新动态,我们网站会不断更新。希望大家一直关注中国腐蚀与防护网
责任编辑:王元
投稿联系:编辑部
电话:010-
中国腐蚀与防护网官方 QQ群:
用微信扫描二维码分享至好友和朋友圈
5101次点击 10:45:08
播放数:14
播放数:21
播放数:22
播放数:23

我要回帖

更多关于 激光表面改进技术 的文章

 

随机推荐