、常见的滤波器有哪些?简述资金成本的用途其用途。 2、电容滤波是将电容器与负载( )联,电感滤波是将电感线圈与负载( )

电源滤波器是由电容、电感和电阻组成的滤波电路_天涯人的博客_天涯博客_天涯社区
天涯人的博客
今日访问:[$DayVisitCount$]
总访问量:42673
开博时间:
博客排名:27387
(164)(59)(10)(83)(123)(189)(155)(47)(117)
  电源滤波器是由电容、电感和电阻组成的滤波电路,一种无源双向网络,它的一端是电源,另一端是负载。上海上恒电子电源滤波器的原理就是一种&&阻抗适配网络:电源滤波器输入、输出侧与电源和负载侧的阻抗适配越大,对电磁干扰的衰减就越有效。称滤波器可以对电源线中特定频率的频点或该频点以外的频率进行有效滤除,得到一个特定频率的电源信号,或消除一个特定频率后的电源信号。
  滤波器是一种对信号有处理作用的器件或电路。有源滤波器称随着电子市场的不断发展也越来越被广泛生产和使用。滤波器主要分为有源滤波器和无源滤波器。主要作用是让有用信号尽可能无衰减的通过,对无用信号尽可能大的反射。滤波器一般有两个端口,一个输入信号、一个输出信号,利用这个特性可以选通通过滤波器的一个方波群或复合噪波,而得到一个特定频率的正弦波。滤波器的功能就是允许某一部分频率的信号顺利的通过,而另外一部分频率的信号则受到较大的抑制,它实质上是一个选频电路。
  滤波器中,把信号能够通过的频率范围,称为通频带或通带;反之,信号受到很大衰减或完全被抑制的频率范围称为阻带;通带和阻带之间的分界频率称为截止频率;滤波器是由电感器和电容器构成的网路,可使混合的交直流电流分开。有源滤波器称电源整流器中,即借助此网路滤净脉动直流中的涟波,而获得比较纯净的直流输出。最基本的滤波器,是由一个电容器和一个电感器构成,称为L型滤波。所有各型的滤波器,都是集合L型单节滤波器而成。基本单节式滤波器由一个串联臂及一个并联臂所组成,串联臂为电感器,并联臂为电容器。在电源及声频电路中之滤波器,最通用者为L型及&型两种。就L型单节滤波器而言,其电感抗XL与电容抗XC,对任一频率为一常数,其关系为XL&XC=K2。
  故 L型滤波器又称为K常数滤波器。有源滤波器称倘若一滤波器的构成部分,较K常数型具有较尖锐的截止频率(即对频率范围选择性强),而同时对此截止频率以外的其他频率只有较小的衰减率者,称为m常数滤波器。所谓截止频率,亦即与滤波器有尖锐谐振的频率。分类: |2016第三届物联网大会
智能后视镜产品方案对接会
中国LED智能照明高峰论坛
第三届·无线通信技术研讨会
第二届·中国IoT大会
ETFo智能安防技术论坛
移入鼠标可放大二维码
LC滤波电路分析,LC滤波电路原理及其时间常数的计算
来源:网络整理 作者:日 09:06
[导读] LC滤波器具有结构简单、设备投资少、运行可靠性较高、运行费用较低等优点,应用很广泛。 LC滤波器又分为单调谐滤波器、高通滤波器、双调谐滤波器及三调谐滤波器等几种。
  LC滤波器具有结构简单、设备投资少、运行可靠性较高、运行费用较低等优点,应用很广泛。 LC滤波器又分为单调谐滤波器、高通滤波器、双调谐滤波器及三调谐滤波器等几种。
  LC滤波主要是电感的电阻小,直流损耗小。对交流电的感抗大,滤波效果好。缺点是体积大,笨重。成本高。用在要求高的电源电路中。 RC滤波中的电阻要消耗一部分直流电压,R不能取得很大,用在电流小要求不高的电路中.RC体积小,成本低。滤波效果不如LC电路
  常用的滤波电路有无源滤波和有源滤波两大类。若滤波电路元件仅由无源元件(电阻、电容、电感)组成,则称为无源滤波电路。无源滤波的主要形式有电容滤波、电感滤波和复式滤波(包括倒L型、LC滤波、LC&型滤波和RC&型滤波等)。若滤波电路不仅由无源元件,还由有源元件(双极型管、单极型管、集成运放)组成,则称为有源滤波电路。有源滤波的主要形式是有源RC滤波,也被称作电子滤波器。
  无源滤波电路的结构简单,易于设计,但它的通带放大倍数及其截止频率都随负载而变化,因而不适用于信号处理要求高的场合。无源滤波电路通常用在功率电路中,比如直流电源整流后的滤波,或者大电流负载时采用LC(电感、电容)电路滤波。
  有源滤波电路的负载不影响滤波特性,因此常用于信号处理要求高的场合。有源滤波电路一般由RC网络和集成运放组成,因而必须在合适的直流电源供电的情况下才能使用,同时还可以进行放大。但电路的组成和设计也较复杂。有源滤波电路不适用于高电压大电流的场合,只适用于信号处理。 根据滤波器的特点可知,它的电压放大倍数的幅频特性可以准确地描述该电路属于低通、高通、带通还是带阻滤波器,因而如果能定性分析出通带和阻带在哪一个频段,就可以确定滤波器的类型。 识别滤波器的方法是:若信号频率趋于零时有确定的电压放大倍数,且信号频率趋于无穷大时电压放大倍数趋于零,则为低通滤波器;反之,若信号频率趋于无穷大时有确定的电压放大倍数,且信号频率趋于零时电压放大倍数趋于零,则为高通滤波器;若信号频率趋于零和无穷大时电压放大倍数均趋于零,则为带通滤波器;反之,若信号频率趋于零和无穷大时电压放大倍数具有相同的确定值,且在某一频率范围内电压放大倍数趋于零,则为带阻滤波器。
  LC滤波电路的组成:
  LC滤波器一般是由滤波电抗器、电容器和电阻器适当组合而成,与谐波源并联,除起滤波作用外,还兼顾无功补偿的需要;
  LC滤波电路的原理:
  LC滤波器也称为无源滤波器,是传统的谐波补偿装置。LC滤波器之所以称为无源滤波器,顾名思义,就是该装置不需要额外提供电源。LC滤波器一般是由滤波电容器、电抗器和电阻器适当组合而成,与谐波源并联,除起滤波作用外,还兼顾无功补偿的需要; LC滤波器按照功能分为LC低通滤波器、LC带通滤波器、高通滤波器、LC全通滤波器、LC带阻滤波器; 按调谐又分为单调谐滤波器、双调谐滤波器及三调谐滤波器等几种。 LC滤波器设计流程主要考虑其谐振频率及电容器耐压,电抗器耐流。
  在电子线路中,电感线圈对交流有限流作用,由电感的感抗公式XL=2&fL 可知,电感L越大,频率f越高,感抗就越大。因此电感线圈有通低频,阻高频的作用,这就是电感的滤波原理 下面是LC滤波电路实例 电感在电路最常见的作用就是与电容一起,组成LC滤波电路。我们已经知道,电容具有&阻直流,通交流&的本领,而电感则有&通直流,阻交流,通低频,阻高频&的功能。如果把伴有许多干扰信号的直流电通过LC滤波电路(如图),那么,交流干扰信号大部分将被电感阻止吸收变成磁感和热能,剩下的大部分被电容旁路到地,这就可以抑制干扰信号的作用,在输出端就获得比较纯净的直流电流。
  在线路板电源部分的电感一般是由线径非常粗的漆包线环绕在涂有各种颜色的圆形磁芯上。而且附近一般有几个高大的滤波铝电解电容,这二者组成的就是上述的 LC滤波电路。另外,线路板还大量采用&蛇行线+贴片钽电容&来组成LC电路,因为蛇行线在电路板上来回折行,也可以看作一个小电感。
  滤波电路的原理实际是L、c元件基本特性的组合利用。因为电容器的容抗xc=2nfc又1会随信号频率升高而变小,而电感器的感抗xl=2f会随信号频率升高而增大,如果把电容、电感进行串联、并联或混联应用,它们组合的阻抗也会随信号频率不同而发生很人变化口这表明,不同滤波电路会对某种频率信号呈现很小或很大的电抗,以致能让该频率信号顺利通过或阻碍它通过,从而起到选取某种频率信号和滤除某种频率信号的作用。
  以图9&3(a)所示的滤波电路来说,当有信号从左至右传输时,L对低频信号阻碍小,对高频信号阻碍大;C则对低频信号衰减小,对高频信号衰减大。因此该滤波电路容易通过低频信号,称为低通滤波电路。其特点可用图中的幅一频(UF特性f}}I线表示。 对于图9&3(b)所示的滤波电路来说,容易通过高频信号,所以称为高通滤波电路。 对于图9&3(c)所示的滤波电路,它利用C l和L1串联对谐振信号阻抗小、C2和L7并联对谐 振信号阻抗大的特性,能让谐振信号f容易通过,而阻碍其他频率信号通过,所以称为带通滤波电路。该电路的这种特点可用图中的幅一频(U-F特性曲线概括。 对于图9&3(d)所示的滤波电路,它利用Cl和Ll并联对谐振信号阻抗大、C,和L,,串联对谐振信号阻抗小的特点,容易让谐振频率以外的信号通过,而抑制谐振信号厂F通过,所以称为带阻滤波电路。该电路的特点可用图中的幅一频(U-F性曲线来概括。
  LC滤波电路时间常数的计算:
  (1)rc振荡回路电容器的电压有:
  电压=U*exp(-t/rc)
  U表示电压初值,rc表示电阻电容,t为经过的时间,exp(-t/rc)表示e的-t/rc次方。
  时间常数& =rc
  即电容电阻的乘积,引入时间常数后电压=U*exp(-t/&)
  因此,零输入响应的电压变化是一个指数衰减的过程,理论上是无穷时间,但一般是到3~5个时间常数就认为衰减结束了。
  因此放电时间取决于时间常数& =rc
  (2)对于lc振荡回路,情况比较复杂,你只记得于LC的乘积有关就可以了。
  详细的来说,对一般的LRC回路按
  R》2*sqr(L/R)
  R=2*sqr(L/R)
  R《2*sqr(L/R)
  sqr(X)表示根号下(X)
  分为三种情况,大致地说,放电时间取决于电路中R,L,C的值,U不等于0而I=0时,电容通过L,R放电
  解二阶偏微分方程可以得到两个特征值如:
  p1=-(R/2L)+spr[(R/2L)*(R/2L)-1/LC]
  p1=-(R/2L)-spr[(R/2L)*(R/2L)-1/LC]
  电容电压=[U/(p2-p1)]*[p2exp(p1*t)-p1exp(p2*t)]
  据此可以分析电容放电时间与LRC的关系.
时间常数相关文章
时间常数相关下载
同伟总结,物联网将创造巨大的市场商机,只是物联网的市场属性过于分散,而且有太多标准规范。因此要了解物联网的市场潜力,就必须通过创新来驱动...
MathWorks中国有限公司资深应用工程师陈建平表示:“2015年80%的公司开始认识到大数据对公司未来发展的重要性,38%的公司认为非常重要,而2014年的比例分...
创新实用技术专题
版权所有 & 深圳华强聚丰电子科技有限公司
电信与信息服务业务经营许可证:粤B2-& & 一、中的正确选择
& &   滤波在开关中起着非常重要的作用,如何正确选择滤波电容,尤其是输出滤波电容的选择则是每个工程技术人员都十分关心的问题。
& &   50工频中使用的普通电解电容器,其脉动仅为100Hz,充放电时间是毫秒数量级。为获得更小的脉动系数,所需的电容量高达数十万&F,因此普通低频铝电解电容器的目标是以提高电容量为主,电容器的电容量、损耗角正切值以及漏是鉴别其优劣的主要参数。而开关电源中的输出滤波电解电容器,其锯齿波电压频率高达数十kHz,甚至是数十MHz,这时电容量并不是其主要指标,衡量高频铝电解电容优劣的标准是&-频率&特性,要求在开关电源的工作频率内要有较低的等效阻抗,同时对于半导体器件工作时产生的高频尖峰信号具有良好的滤波作用。
& &   普通的低频电解电容器在10kHz左右便开始呈现感性,无法满足开关电源的使用要求。而开关电源专用的高频铝电解电容器有四个端子,正极铝片的两端分别引出作为电容器的正极,负极铝片的两端也分别引出作为负极。电流从四端电容的一个正端流入,经过电容内部,再从另一个正端流向;从负载返回的电流也从电容的一个负端流入,再从另一个负端流向电源负端。
& &   由于四端电容具有良好的高频特性,为减小电压的脉动分量以及抑制开关尖峰提供了极为有利的手段。高频铝电解电容器还有多芯的形式,即将铝箔分成较短的若干段,用多引出片并联连接以减小中的阻抗成份。并且采用低的材料作为引出端子,提高了电容器承受大电流的能力。
& &   二、桥式整流滤波电路图
& &   桥式整流滤波电路图
& &   单相桥式整流&型滤波电路
& &   三、滤波电路的设计
& &   滤波电路的设计
& &   交流电经过整流之后,方向单一了,但是大小(电流强度)还是处在不断地变化之中。这种脉动直流一般是不能直接用来给无线电装供电的。要把脉动直流变成波形平滑的直流,还需要再做一番&填平取齐&的工作,这便是滤波。换句话说,滤波的任务,就是把输出电压中的波动成分尽可能地减小,改造成接近恒稳的直流电。
& &   电容滤波
& &   电容器是一个储存电能的仓库。在电路中,当有电压加到电容器两端的时候,便对电容器充电,把电能储存在电容器中;当外加电压失去(或降低)之后,电容器将把储存的电能再放出来。充电的时候,电容器两端的电压逐渐升高,直到接近充电电压;放电的时候,电容器两端的电压逐渐降低,直到完全消失。电容器的容量越
& &   大,负载值越大,充电和放电所需要的时间越长。这种电容带两端电压不能突变的特性,正好可以用来承担滤波的任务。
& &   图5-9是最简单的电容滤波电路,电容器与负载电阻并联,接在整流器后面,下面以图5-9(a)所示半波整施情况说明电容滤波的工作过程。在二极管导通期间,e2 向负载电阻Rfz 提供电流的同时,向电容器C充电,一直充到最大值。e2 达到最大值以后逐渐下降;而电容器两端电压不能突然变化,仍然保持较高电压。这时,D 受反向电压,不能导通,于是Uc便通过负载电阻Rfz 放电。由于C和Rfz 较大,放电速度很慢,在e2 下降期间里,电容器C上的电压降得不多。当e2 下一个来到并升高到大于Uc时,又再次对电容器充电。如此重复,电容器C两端(即负载电阻Rfz :两端)便保持了一个较平稳的电压,在波形图上呈现出比较平滑的波形。图5-10(a)(b)中分别示出半波整流和全波整流时电容滤波前后的输出波形。
& &   显然,电容量越大,滤波效果越好,输出波形越趋于平滑,输出电压也越高。但是,电容量达到一定值以后,再加大电容量对提高滤波效果已无明显作用。通常应根据负载电用和输出电说的大小选择最佳电容量。表5-2 中所列滤波电容器容量和输出电流的关系,可供参考。 电容器的耐压值一般取 的1.5倍。
& &   表5-3中列出带有的中各电压的关系。 表一、
& &   输出电流2A左右1A左右0.5-1A左右0.1-0.5A100-50mA50mA以下
& &   滤波电容00u500u200u-500u200u
& &   采用电容滤波的整流电路,输出电压随时出电流变化较大,这对于变化负载(如推挽电路)来说是很不利的。
& &   二、滤波
& &   利用电感对交流阻抗大而对直流用抗小的特点,可以用带铁芯的线圈做成。电磁滤波输出电压较低,相输出电压波动小,随负载变化也很小,适用于负载电流较大的场合。
& &   三、复式滤波器。
& &   把电容按在负载并联支路,把电感或电阻接在串联支路,可以组成复式滤波器,达到更佳的滤波效果口这种电路的形状很象字母&,所以又叫&型滤波器。
& &   图5-12所示是由电磁与电容组成的LC滤波器,其滤波效能很高,几乎没有直流电压损失,适用于负载电流较大、要求纹波很小的场合。但是,这种滤波器由于电感体积和重量大(高频时可减小),比较笨重,成本也较高,一般情况下使用得不多。
& &   由电阻与电容组成的RC滤波器示于图5-13中。这种复式滤波器结构简单,能兼起降压、限流作用,滤波效能也较高,是最后用的一种滤波器。上述两种复式滤波器,由于接有电容,带负载能力都较差。
& &   四、RC滤波电路的计算及公式
& &   RC滤波电路的计算及公式
& &   对于无源RC一阶低通滤波电路,其传递函数为G(s)=1/(RCs+1)。转换为信号经过它的衰减的计算方法为:
& &   Uo=Ui/[(2*Pi*f*R*C)^2+1]^0.5
& &   式中:Uo为输出电压;Ui为输入电压;Pi为圆周率;f为信号频率。
& &   对于无源RC二阶(以上)低通滤波电路,由于此处用文字行不大好表达,所以就不写出了。
& &   五、电容滤波电路
& &   滤波电路
& &   整流电路虽然可将交流电变成直流电,但其脉动成分较大,在一些要求直流滑的场合是不适用的,需加上滤波电路,以减小整流后直流电中的脉动成分。
& &   一般直流电中的脉动成分的大小用脉动系数来表示:
& &   脉动系数(S)=
   GS0712
& &   例如,全波整流输出电压uL可用付氏级数展开为:
& &        GS0713
& &   其中基波最大值为0.6U2,直流分量()为0.9 U2,故脉动系数S&0.67 。同理可求得半波整流输出电压的脉动系数为S=1.57,可见其脉动系数是比较大的。一般电子设备所需直流电源的脉动系数小于0.01,故整流输出的电压必须采取一定的措施,一方面尽量降低输出电压中的脉动成分,另一方面尽量保存输出电压中的直流成分,使输出电压接近于较理想的直流电源的输出电压。这一措施就是滤波。
& &   最基本的滤波元件是电感、电容。其滤波原理是:利用这些电抗元件在整流二极管导通期间储存能量、在截止期间释放能量的作用,使输出电压变得比较平滑;或从另一角度来看,电容、电感对交、直流成分反映出来的阻抗不同,把它们合理地安排在电路中,即可达到降低交流成分而保留直流成分的目的,体现出滤波作用。
& &   常用的滤波电路有无源滤波和有源滤波两大类。其中无源滤波的主要形式有电容滤波,电感滤波和复式滤波(包括倒L型LC滤波,&型LC滤波和&型RC滤波等)。有源滤波的主要形式是有源RC滤波。
& &   电容滤波
& &   半波整流电容滤波电路如图Z0710所示。其滤波原理如下:
& &   电容C并联于负载 RL的两端,uL=uC。在没有并入电容C之前,整流二极管在u2的正半周导通,负半周截止,输出电压uL的波形如图中红线所示。并入电容之后,设在 &t=0时接通电源,则当u2由零逐渐增大时,二极管D导通,除有一电流iL流向负载以外还有一电流向电容C充电,充电电压uC的极性为上正下负。如忽略二极管的内阻,则uC 可充到接近u2的峰值u2m。在u2 达到最大值以后开始下降,此时电容器上的电压uc也将由于放电而逐渐下降。当u2<uc时,D因反偏而截止,于是C以一定的时间常数通过RL 按指数规律放电,uc下降。直到下一个正半周,当u2 >uc时,D又导通。如此下去,使输出电压的波形如图中蓝线所示。显然比未并电容C前平滑多了。
& &   全波或桥式整流电容滤波的原理与半波整波电容滤波基本相同,滤波波形如图Z0711 所示。
& &   从以上分析可以看出:
& &   1. 加了电容滤波之后,输出电压的直流成分提高了,而脉动成分降低了。这都是由于电容的储能作用造成的。电容在二极管导通时充电(储能),截止时放电(将能量释放给负载),不但使输出电压的平均值增大,而且使其变得比较平滑了。
& &   2.电容的放电时间常数(&=RLC)愈大,放电愈慢,输出电压愈高,脉动成分也愈少,即滤波效果愈好。故一般C取值较大,RL也要求较大。实际中常按下式来选取C的值:
& &   RLC&(3~5>T(半波) GS0714
& &   RLC&(3~5)T/2(全波、桥式) GS0715
& &   3.电容滤波电路中整流二极管的导电时间缩短了,即导通角小于180&。而且,放电时间常数越大,导通角越小。因此,整流二极管流过的是一个很大的冲击电流,对管子的寿命不利,选择二极管时,必须留有较大余量。
& &    4. 电容滤波电路的外特性(指UL与IL之间的关系)和脉动特性(指S与IL 之间的关系)比较差,如图Z0712 所示。可以看出输出电压UL和脉动系数S随着输出电流IL 的变化而变化。当IL=0(即RL= & )时,UL = U2(电容充电到最大值后不再放电),S = 0。当IL增大(即RL减小)时,由于电容放电程度加快而使UL下降,UL 的变化范围在 U2 ~0.9 U2之间(指全波或桥式),S变大。所以,电容滤波一般适用于负载电流变化不大的场合。
& &   5.电容滤波电路输出电压的佑算。如果电容滤波电路的放电时间常数按式GS0714或GS0715 取值的话,则输出电压分别为:
& &   UL=(0.9~1.0)U2 (半波) GS0716
& &   UL=(1.1~1.2)U2 (全波) GS0717
& &   电容滤波电路结构简单、使用方便、应用较广。
本网站试开通微、小企业商家广告业务;维修点推荐项目。收费实惠有效果!欢迎在QQ或邮箱联系!
试试再找找您想看的资料
资料搜索:
查看相关资料 & & &
   同意评论声明
   发表
尊重网上道德,遵守中华人民共和国的各项有关法律法规
承担一切因您的行为而直接或间接导致的民事或刑事法律责任
本站管理人员有权保留或删除其管辖留言中的任意内容
本站有权在网站内转载或引用您的评论
参与本评论即表明您已经阅读并接受上述条款
copyright & &广电电器(中国梧州) -all right reserved& 若您有什么意见或建议请mail: & &
地址: 电话:(86)774-2826670& & &&)RC电路经验值选取
交流电经过二极管整流之后,方向单一了,但是大小(电流强度)还是处在不断地变化之中。这种脉动直流一般是不能直接用来给无线电装供电的。要把脉动直流变成波形平滑的直流,还需要再做一番“填平取齐”的工作,这便是滤波。换句话说,滤波的任务,就是把整流器输出电压中的波动成分尽可能地减小,改造成接近恒稳的直流电。
一、电容滤波
  电容器是一个储存电能的仓库。在电路中,当有电压加到电容器两端的时候,便对电容器充电,把电能储存在电容器中;当外加电压失去(或降低)之后,电容器将把储存的电能再放出来。充电的时候,电容器两端的电压逐渐升高,直到接近充电电压;放电的时候,电容器两端的电压逐渐降低,直到完全消失。电容器的容量越
大,负载电阻值越大,充电和放电所需要的时间越长。这种电容带两端电压不能突变的特性,正好可以用来承担滤波的任务。
  图5-9是最简单的电容滤波电路,电容器与负载电阻并联,接在整流器后面,下面以图5-9(a)所示半波整施情况说明电容滤波的工作过程。在二极管导通期间,e2向负载电阻Rfz提供电流的同时,向电容器C充电,一直充到最大值。e2达到最大值以后逐渐下降;而电容器两端电压不能突然变化,仍然保持较高电压。这时,D受反向电压,不能导通,于是Uc便通过负载电阻Rfz放电。由于C和Rfz较大,放电速度很慢,在e2下降期间里,电容器C上的电压降得不多。当e2下一个周期来到并升高到大于Uc时,又再次对电容器充电。如此重复,电容器C两端(即负载电阻Rfz:两端)便保持了一个较平稳的电压,在波形图上呈现出比较平滑的波形。图5-10(a)(b)中分别示出半波整流和全波整流时电容滤波前后的输出波形。
显然,电容量越大,滤波效果越好,输出波形越趋于平滑,输出电压也越高。但是,电容量达到一定值以后,再加大电容量对提高滤波效果已无明显作用。通常应根据负载电用和输出电说的大小选择最佳电容量。表5-2中所列滤波电容器容量和输出电流的关系,可供参考。电容器的耐压值一般取的1.5倍。
表5-3中列出带有滤波器的整流电路中各电压的关系。表一、
<font STYLE="FonT-siZe: 12px" COLOR="#A左右
<font STYLE="FonT-siZe: 12px" COLOR="#A左右
<font STYLE="FonT-siZe: 12px" COLOR="#.5-1A左右
<font STYLE="FonT-siZe: 12px" COLOR="#.1-0.5A
<font STYLE="FonT-siZe: 12px" COLOR="#0-50mA
<font STYLE="FonT-siZe: 12px" COLOR="#mA以下
<font STYLE="FonT-siZe: 12px" COLOR="#00u
<font STYLE="FonT-siZe: 12px" COLOR="#00u
<font STYLE="FonT-siZe: 12px" COLOR="#00u
<font STYLE="FonT-siZe: 12px" COLOR="#0u
<font STYLE="FonT-siZe: 12px" COLOR="#0u-500u
<font STYLE="FonT-siZe: 12px" COLOR="#0u
输入交流电压
负载开路时的
带负载时的
每管承受的最
大反向电压
半 波 整 流
全 波 整 流
桥 式 整 流[/td][td=1,1,120]E2
  采用电容滤波的整流电路,输出电压随时出电流变化较大,这对于变化负载(如乙类推挽电路)来说是很不利的。
二、电感滤波
  利用电感对交流阻抗大而对直流用抗小的特点,可以用带铁芯的线圈做成滤波器。电磁滤波输出电压较低,相输出电压波动小,随负载变化也很小,适用于负载电流较大的场合。
三、复式滤波器。
  把电容按在负载并联支路,把电感或电阻接在串联支路,可以组成复式滤波器,达到更佳的滤波效果口这种电路的形状很象字母π,所以又叫π型滤波器。
  图5-12所示是由电感与电容组成的LC滤波器,其滤波效能很高,几乎没有直流电压损失,适用于负载电流较大、要求纹波很小的场合。但是,这种滤波器由于电感体积和重量大(高频时可减小),比较笨重,成本也较高,一般情况下使用得不多。
由电阻与电容组成的RC滤波器示于图5-13中。这种复式滤波器结构简单,能兼起降压、限流作用,滤波效能也较高,是最常用的一种滤波器。上述两种复式滤波器,由于接有电阻,带负载能力都较差.
已投稿到:
以上网友发言只代表其个人观点,不代表新浪网的观点或立场。

我要回帖

更多关于 滤波器用途 的文章

 

随机推荐