高中物理,再测四探针电阻率测试仪时,电压表的分流为什么使得电流表的识数偏大,

知识要点梳理 知识点一--电表的改装 ▲知识梳理 1.电流表 小量程的电流表G是我们常说的“表头 .电流表G的主要参数有三个: ①电流表G的电阻.通常叫做电流表的内阻, ②指针偏转到最大刻度时——精英家教网——
成绩波动大?难提高?听顶级名师视频辅导,
知识要点梳理 知识点一--电表的改装 ▲知识梳理 1.电流表 小量程的电流表G是我们常说的“表头 .电流表G的主要参数有三个: ①电流表G的电阻.通常叫做电流表的内阻, ②指针偏转到最大刻度时的电流.叫做电流表G的满偏电流.也叫电流表G的量程, ③电流表G通过满偏电流时加在它两端的电压叫做满偏电压.也叫电压量程.由欧姆定律可知.电流表G的满偏电流和满偏电压一般都比较小. 2.电压表的改装 电流表G的电压量程.当改装成量程为U的电压表时.应串联一个电阻R.因为串联电阻有分压作用.因此叫做分压电阻.如图所示. 电压扩大量程的倍数 由串联电路的特点得 解得 即电压扩大量程的倍数为n时.需要串联的分压电阻 电压表的总电阻. 3.电流表的改装 电流表G的量程为.当改装成量程为I的电流表时.应并联一个电阻R.因为并联电阻R可以起到分流作用.因此叫做分流电阻.已知电流表G满偏电流为.扩大量程的电流表满偏电流为I.如图所示. 扩大量程的倍数 由并联电路的特点得 所以 即电流扩大量程的倍数为n时.需并联的分流电压为 电流表的总电阻. 说明: ①加在电压表两端的电压等于加在表头两端的电压和加在分压电阻两端的电压之和,通过电流表的电流和流过表头G的电流不一样. ②电压表的量程是指通过表头的电流达到时加在电压表两端的总电压U,电流表的量程是指通过表头的电流达到满偏时.通过表头和分流电阻的电流之和. ③由串联分压原理可知:串联的分压电阻越大.电压表的量程越大.由并联分流原理可知.并联的分流电阻越小.电流表的量程越大. ④实际的电压表内阻不是“ .电流表内阻不是零.它们接入电路进行测量时必对原来的电路有影响.这是今后我们要注意的.有时不考虑电表内阻对电路的影响.这是为了研究的方便.认为电压表的内阻是无限大.电流表的内阻为零.这时它们叫做理想电表.是理想化模型. 4.电表的校对 按如图所示的电路对改装成的电表进行校对.校对时注意搞清楚改装后电表刻度盘每一小格表示多大的数值. ▲疑难导析 1.理想电表和非理想电表 (1)中学阶段.大多数情况下.电压表和电流表都可看作是理想的.即电压表内阻为无穷大.电流表的内阻为零.这种理想电表连入电路对整个电路是没有影响的.但是在有些情况下.电表并不能看作是理想的(特别是一些实验测量问题).这时的电表既是一个测量的仪表.又是连接在电路中的一个电阻.就好像电流表变成了一个小电阻.只不过这个电阻能显示出流过它的电流,电压表变成了一个大的电阻.它同时可显示出自己两端的电压. (2)非理想电表对电路的影响: 当电路中存在非理想电压表时.起分流作用.故测量值比真实值偏小,当电路中接入非理想电流表时.起分压作用.故测量值偏小. 2.电表的读数方法 在实验中.测量时要按照有效数字的规律来读数. 测量仪器的读数规则为:测量误差出现在哪一位.读数就相应读到哪一位.在中学阶段一般可根据测量仪器的最小分度来确定读数误差出现的位置.对于常用的仪器可按下述方法读数. (1)最小分度是“1 的仪器.测量误差出现在下一位.下一位按十分之一估读.如最小刻度是1 mm的刻度尺.测量误差出现在毫米的十分位上.估读到十分之几毫米. (2)最小分度是“2 或“5 的仪器.测量误差出现在同一位上.同一位分别按二分之一或五分之一估读.如学生用的电流表0.6 A量程.最小分度为0. 02 A.误差出现在安培的百分位.只读到安培的百分位.估读半小格.不足半小格的舍去.超过半小格的按半小格估读.以安培为单位读数时.百分位上的数字可能为0.1.2.-.9,学生用的电压表15 V量程.最小分度为0.5 V.测量误差出现在伏特的十分位上.只读到伏特的十分位.估读五分之几小格.以电压为单位读数时.十分位上的数字可能为0.1.2.-.9. (3)对欧姆表的读数:待测电阻的阻值应为表盘读数乘上倍数.为减小读数误差.指针应指表盘到的部分.否则需换挡.换挡后.需要重新进行欧姆调零. :两个定值电阻串联后接在输出电压U恒为12 V的直流电源上.有人把一个内阻不是远大于的电压表接在两端.电压表的示数为8V.如果他把此电压表改接在两端.则电压表的示数将( ) A.小于4V B.等于4V C.大于4V小于8V D.等于或大于8V 解析:与并联时.上的电压是4 V.与并联后的电阻比小.此时与分压.显然此时电压表的示数比4V小.答案A正确. 知识点二--电阻的测量--伏安法 ▲知识梳理 1.原理 部分电路欧姆定律. 2.两种接法 如图甲所示.电流表接在电压表两接线柱外侧.通常称“外接法 ,如图乙所示.电流表接在电压表两接线柱内侧.通常称“内接法 . 3.误差分析 采用图甲的接法时.由于电压表分流.电流表测出的电流值要比通过电阻R的电流大.因而求出的阻值等于待测电阻和电压表内阻的并联值.所以测量值比真实值小.电压表内阻比待测电阻大得越多.测量误差越小.因此测量小电阻时应采取这种接法. 采用图乙的接法时.由于电流表的分压.电压表测出的电压值要比电阻R两端的电压大.因而求出的是待测电阻与电流表内阻的串联值.所以测量的电阻值比真实值大.待测电阻越大.相对误差越小.因此测量大电阻时应采取这种接法. 4.伏安法的选择 为减小伏安法测电阻的系统误差.应对电流表外接法和内接法作出选择.其方法是: (1)阻值比较法:将待测电阻的阻值与电压表.电流表内阻进行比较.若.宜采用电流表外接法,若.宜采用电流表内接法. (2)临界值法:令.当时.内接法,时.外接法. (3)实验试探法:按如图接好电路.让电压表的一根接线P先后与B.C处接触一下.如果电流表的示数变化不大.则可采用电流表外接法,如果电流表的示数有较大的变化.而电压表的示数变化不大.则可采用电流表内接法. ▲疑难导析 一.测量电阻的若干方法 1.安安法测电阻 若电流表内阻已知.则可当作电流表.电压表以及定值电阻来使用. (1)如图所示.当两表所能测得的最大电压接近时.如果已知的内阻. 则可测得的内阻. (2)如图所示.当两电表的满偏电压时.串联一定值电阻后. 同样可测得的内阻. 2.伏伏法测电阻 电压表内阻已知.则可当作电流表.电压表和定值电阻来使用. (1)如图所示.两电表的满偏电流接近时.若已知的内阻.则可测出的内阻. (2)如图所示.两电表的满偏电流时.并联一定值电阻后. 同样可测得的内阻. 3.电阻箱当电表使用 (1)电阻箱当作电压表使用 如图所示.可测得电流表的内阻 图中电阻箱R可测得表两端的电压为.起到了测电压的作用. (2)电阻箱当作电流表使用 如图所示.若已知R及.则测得干路电流为. 图中电阻箱与电压表配合使用起到了测电流的作用. 4.比较法测电阻 如图所示.测得电阻箱的阻值及表.表示数.可得. 如果考虑电表内阻的影响.则. 5.替代法测电阻 如图所示: (1)S接1.调节.读出A表示数为I, (2)S接2.不变.调节电阻箱.使A表示数仍为I, (3)由上述可得. 该方法优点是消除了A表内阻对测量的影响.缺点是电阻箱的电阻不能连续变化. 6.半偏法测电流表内阻 (1)找出电流表的三个参数.和.可直接从表头上读出. 可采用半偏法测出.. (2)半偏法测电流表内阻: ①测量原理:电路如图所示: 第一步.闭合.调节使G指针满偏,第二步.再闭合.调节.使G指针半偏.读出的值.则.实验中.要注意满足G能满偏的前提下使. ②误差分析 设电源电动势为E.内阻忽略.在闭合断开.G满偏时有 ① 当也闭合.G半偏时有 ② 由①②可得 故.测量值比偏小.要减小误差.应使. (3)熟悉把改装的电表跟标准电压表核对的电路及方法. 二.电学实验仪器的选择 电学实验仪器的选择应注意以下几个方面: 1.原则 (1)安全性原则:①不超过量程.②在允许通过的最大电流以内,③电表.电源不接反, (2)方便性原则:①便于调节,②便于读数, (3)经济性原则:以损耗能量最小为原则. 2.滑动变阻器两种接法的选择方法 (1)两种接法比较 限流式 分压式 电路组成 变阻器接入 电路特点 连接变阻器的导线分别接金属杆一端和电阻线圈一端的接线柱(图中变阻器Pa部分被短路不起作用) 连接变阻器的导线分别接金属杆一端和电阻线圈的两端接线柱(图中变阻器Pa.Pb都起作用).即从变阻器分出一部分电压加到待测电阻上 调压范围 (2)限流电路.分压电路的选择原则: 限流式适合测量阻值小的电阻(跟滑动变阻器的总电阻相比相差不多或比滑动变阻器的总电阻还小).分压式适合测量阻值较大的电阻(一般比滑动变阻器的总电阻要大).因为越小.限流式中滑动变阻器分得电压越大.调节范围越大.越大.分压式中几乎不影响电压的分配.滑片移动时.电压变化接近线性关系.便于调节. 限流式好处是电路简单.耗能低.通常变阻器以限流接法为主.但在下列三种情况下.必须选择分压连接方式: ①若采用限流式不能控制电流满足实验要求.即若滑动变阻器阻值调到最大时.待测电阻上的电流仍超过电流表的量程.或超过待测电阻的额定电流.则必须选用分压式. ②若待测电阻的阻值比滑动变阻器总电阻大得多.以致在限流电路中.滑动变阻器的滑片从一端滑到另一端时.待测电阻上的电流或电压变化范围不够大.此时.应改用分压电路. ③若实验中要求电压从零开始连接可调.则必须采用分压式电路. :如图所示.用伏安法测时.不知大约数值.为了选择正确电路减小误差.先将仪器接好.只空出电压表的一个接头K.然后将K和a.b分别接触一下.则( ) A.若A示数有明显变化.K应接a B.若A示数有明显变化.K应接b C.若V示数有明显变化.K应接a D.若V示数有明显变化.K应接b 答案:BC 解析:K接a为电流表“外接法 .电流表会出现误差.K接b为电流表“内接法 .电压表会出现误差. 典型例题透析 题型一--电表的改装 (1)改装电表.首先要了解电流表表头的三个基本参量:.改装时必须至少知道其中两个参量. (2)注意改装后表头的满偏电流仍保持不变. (3)注意实验基本原理.基本方法的灵活运用和迁移.提高对实验数据的处理能力. 1.将一个电阻为60Ω.满偏电流为500的电流表表头改成如图所示的两个量程的电压表.量程分别为3V和15 V.试求和的阻值. 思路点拨:本题考查电表的改装问题.3 V电压档的分压电阻为.而15 V电压档的分压电阻为.可以先求出和的值.再求的值. 解析: 分压电阻 分压电阻 解得. 总结升华:表头G的满偏电压和满偏电流一般都比较小.测量较大的电压时要串联一个电阻把它改装成电压表.测量较大的电流时则要并联一个电阻.把小量程的电流表改装成大量程的电流表. 举一反三 [变式]有一只电流表的满偏电流=100.内阻.现在要把它改装成一量程为=3V的电压表. (1)在虚线框中画出改装电路原理图.并计算出所用电阻的阻值. (2)某同学完成改装后.把这只电压表接在如图所示电路中进行测量:已知电阻R=1Ω.断开电键S时电压表读数=1. 50 V,闭合电键S时电压表读数=1.00 V.试根据他所测出的数据近似计算出这只干电池的电动势E和内电阻r.并说明你所作计算的近似的依据. 解析: (1)由串联电路特点 解得:R=29.99kΩ (2)当S断开时.由.得1. 50 V 当S闭合时. 解得r=0. 5Ω 近似的依据:根据闭合电路欧姆定律.S断开时..由于. 近似认为. 题型二--电流表.电压表对电路的影响 (1)如果电流表.电压表是理想的.理想电流表内阻是零.理想电压表内阻可看作无穷大.当把电表接入电路中.它们的作用是显示电流.电压的仪器. (2)在有些电路中.电表的内阻对电路的影响很大.不能忽略.这时电表在电路中的作用是能显示电流.电压的电阻. 2.如图所示.已知=3 kΩ.=6 kΩ.电压表的内阻为9 kΩ.当电压表接在两端时.读数为2V.而当电压表接在两端时.读数为3.6 V.试求电路两端的电压和电阻R的阻值. 思路点拨:由于电压表的内阻与电阻和的值均在一个数量级(kΩ)上.因此不能按理想电表讨论. 解析:当电压表接在两端时.电路的总电流为 所以有 ① 当电压表接在两端时.电路总电流为 所以有 ② 将I和代入①②两式可解得:AB间的电压:U=13.2 V.电阻R=6.6 kΩ. 总结升华:通过电压表的读数.可以间接地知道电路中的电流.在这里.电压表实际上充当了双重角色.流入电压表的电流不可忽略. 举一反三 [变式]在如图所示.电路中.=6Ω.=3Ω.=1Ω.电流表内阻=2Ω.电池组的电动势E=12.5V.内阻r=1.5Ω.求: (1)当开关接通.断开时.电流表的示数是多少? (2)当开关.同时接通时.电流表的示数是多少? 解析:本题中电路由于开关.的闭合.断开组成不同形式的电路.应注意的是电流表内阻不可忽略.当开关断开.开关接通时.组成如图甲所示电路.由电阻的串.并联和全电路欧姆定律.部分电路欧姆定律可求出流过电流表的电流. 当开关.同时接通时.组成如图乙所示电路.依电阻并.串联的总电阻规律.全电路欧姆定律和部分电路欧姆定律.可求出电流表的示数. (1)断开.闭合后电路如图甲所示. =+=2Ω+6Ω=8ΩW =+=3Ω+1Ω=4ΩW 外电阻 电路中干路电流I 路端电压U.U=E-Ir=12.5V-3×1.5V=8V 流过电流表的电流即电流表示数. (2).接通.电路简化如图乙. 电路的外电阻R. 电路中干路电流I. 电流表两端电压. 流过电流表电流 . 题型三--测量电流表或电压表内阻 测量电流表或电压表内阻的测量原理仍然是伏安法.只不过要注意这时电表在电路中的作用是能显示电流.电压的电阻. 3.(1)用游标为50分度的卡尺测定某圆柱的直径时.卡尺上的示数如图.可读出圆柱的直径为 mm. (2)利用图1所示的电路测量电流表mA的内阻.图中.为定值电阻..为电键.B是电源. ①根据图1所给出的电路原理图.在图2的实物图上连线. ②已知=140Ω.=60Ω.当电键闭合.断开时.电流表读数为6.4mA,当.均闭合时.电流表读数为8.5mA.由此可以求出= Ω. 思路点拨:本题第(2)问是由闭合电路的知识确定未知电阻.原理类似于“测电源的电动势和内电阻 . 解析: (1)游标卡尺的读数方法:先读主尺.再看游尺上哪条线与主尺对齐.数清对齐线前游尺上的格数.则卡尺读数=主尺读数+精确度×游尺上对齐线前的格数.此题中主尺读数为42.精确度为0.02.游尺上对齐线前格数为6.则读数为42.12.注意单位为毫米. (2)由闭合电路的欧姆定律及题给条件.设电源电动势为E.电流表两次读数为.列方程组: 代入数值.解得:43Ω. 连线如图所示: 总结升华:实物连线题应注意的问题:(1)严格按电路中的走向连接实物,(2)电表.电源正负极不要反接,(3)连线尽量不交叉.且连线尽量光滑. 举一反三 [变式]利用图中给定的器材测量电压表V的内阻.其中B为电源, R为电阻箱.K为电键. (1)将图中实物连接为测量所用的电路. (2)写出实验中必须记录的数据.并指出各符号的意义: . 中记录的数据表示的公式为= . 解析: (1)连线如图所示.将各元件接线柱依次连接即可.唯一一个注意的地方是不要将电压表正负接线柱接反. (2)改变电阻箱的阻值可以得到不同的读数.分别记下两次电阻箱的阻值和对应的电压表的读数. (3)电源内阻不计.设电源电动势为E.有 解得 【】
题目列表(包括答案和解析)
第二部分 &牛顿运动定律第一讲 牛顿三定律一、牛顿第一定律1、定律。惯性的量度2、观念意义,突破“初态困惑”二、牛顿第二定律1、定律2、理解要点a、矢量性b、独立作用性:ΣF&→&a&,ΣFx&→&ax&…c、瞬时性。合力可突变,故加速度可突变(与之对比:速度和位移不可突变);牛顿第二定律展示了加速度的决定式(加速度的定义式仅仅展示了加速度的“测量手段”)。3、适用条件a、宏观、低速b、惯性系对于非惯性系的定律修正——引入惯性力、参与受力分析三、牛顿第三定律1、定律2、理解要点a、同性质(但不同物体)b、等时效(同增同减)c、无条件(与运动状态、空间选择无关)第二讲 牛顿定律的应用一、牛顿第一、第二定律的应用单独应用牛顿第一定律的物理问题比较少,一般是需要用其解决物理问题中的某一个环节。应用要点:合力为零时,物体靠惯性维持原有运动状态;只有物体有加速度时才需要合力。有质量的物体才有惯性。a可以突变而v、s不可突变。1、如图1所示,在马达的驱动下,皮带运输机上方的皮带以恒定的速度向右运动。现将一工件(大小不计)在皮带左端A点轻轻放下,则在此后的过程中(& & &&)A、一段时间内,工件将在滑动摩擦力作用下,对地做加速运动B、当工件的速度等于v时,它与皮带之间的摩擦力变为静摩擦力C、当工件相对皮带静止时,它位于皮带上A点右侧的某一点D、工件在皮带上有可能不存在与皮带相对静止的状态解说:B选项需要用到牛顿第一定律,A、C、D选项用到牛顿第二定律。较难突破的是A选项,在为什么不会“立即跟上皮带”的问题上,建议使用反证法(t&→&0&,a&→&∞&,则ΣFx&→&∞&,必然会出现“供不应求”的局面)和比较法(为什么人跳上速度不大的物体可以不发生相对滑动?因为人是可以形变、重心可以调节的特殊“物体”)此外,本题的D选项还要用到匀变速运动规律。用匀变速运动规律和牛顿第二定律不难得出只有当L&>&时(其中μ为工件与皮带之间的动摩擦因素),才有相对静止的过程,否则没有。答案:A、D思考:令L = 10m ,v = 2 m/s ,μ= 0.2 ,g取10 m/s2&,试求工件到达皮带右端的时间t(过程略,答案为5.5s)进阶练习:在上面“思考”题中,将工件给予一水平向右的初速v0&,其它条件不变,再求t(学生分以下三组进行)——① v0&= 1m/s &(答:0.5 + 37/8 = 5.13s)② v0&= 4m/s &(答:1.0 + 3.5 = 4.5s)③ v0&= 1m/s &(答:1.55s)2、质量均为m的两只钩码A和B,用轻弹簧和轻绳连接,然后挂在天花板上,如图2所示。试问:① 如果在P处剪断细绳,在剪断瞬时,B的加速度是多少?② 如果在Q处剪断弹簧,在剪断瞬时,B的加速度又是多少?解说:第①问是常规处理。由于“弹簧不会立即发生形变”,故剪断瞬间弹簧弹力维持原值,所以此时B钩码的加速度为零(A的加速度则为2g)。第②问需要我们反省这样一个问题:“弹簧不会立即发生形变”的原因是什么?是A、B两物的惯性,且速度v和位移s不能突变。但在Q点剪断弹簧时,弹簧却是没有惯性的(没有质量),遵从理想模型的条件,弹簧应在一瞬间恢复原长!即弹簧弹力突变为零。答案:0 ;g 。二、牛顿第二定律的应用应用要点:受力较少时,直接应用牛顿第二定律的“矢量性”解题。受力比较多时,结合正交分解与“独立作用性”解题。在难度方面,“瞬时性”问题相对较大。1、滑块在固定、光滑、倾角为θ的斜面上下滑,试求其加速度。解说:受力分析 →&根据“矢量性”定合力方向&→&牛顿第二定律应用答案:gsinθ。思考:如果斜面解除固定,上表仍光滑,倾角仍为θ,要求滑块与斜面相对静止,斜面应具备一个多大的水平加速度?(解题思路完全相同,研究对象仍为滑块。但在第二环节上应注意区别。答:gtgθ。)进阶练习1:在一向右运动的车厢中,用细绳悬挂的小球呈现如图3所示的稳定状态,试求车厢的加速度。(和“思考”题同理,答:gtgθ。)进阶练习2、如图4所示,小车在倾角为α的斜面上匀加速运动,车厢顶用细绳悬挂一小球,发现悬绳与竖直方向形成一个稳定的夹角β。试求小车的加速度。解:继续贯彻“矢量性”的应用,但数学处理复杂了一些(正弦定理解三角形)。分析小球受力后,根据“矢量性”我们可以做如图5所示的平行四边形,并找到相应的夹角。设张力T与斜面方向的夹角为θ,则θ=(90°+ α)- β= 90°-(β-α) & & & & & & & & (1)对灰色三角形用正弦定理,有&=&& & & & & & & & & & & & & & & & & & & &(2)解(1)(2)两式得:ΣF =&最后运用牛顿第二定律即可求小球加速度(即小车加速度)答:&。2、如图6所示,光滑斜面倾角为θ,在水平地面上加速运动。斜面上用一条与斜面平行的细绳系一质量为m的小球,当斜面加速度为a时(a<ctgθ),小球能够保持相对斜面静止。试求此时绳子的张力T 。解说:当力的个数较多,不能直接用平行四边形寻求合力时,宜用正交分解处理受力,在对应牛顿第二定律的“独立作用性”列方程。正交坐标的选择,视解题方便程度而定。解法一:先介绍一般的思路。沿加速度a方向建x轴,与a垂直的方向上建y轴,如图7所示(N为斜面支持力)。于是可得两方程ΣFx&= ma&,即Tx&-&Nx&= maΣFy&= 0&,&即Ty&+ Ny&= mg代入方位角θ,以上两式成为T cosθ-N sinθ = ma & & & & & & & & & && &(1)T sinθ + Ncosθ = mg& & & & & & & & & & & &(2)这是一个关于T和N的方程组,解(1)(2)两式得:T = mgsinθ&+ ma&cosθ解法二:下面尝试一下能否独立地解张力T 。将正交分解的坐标选择为:x——斜面方向,y——和斜面垂直的方向。这时,在分解受力时,只分解重力G就行了,但值得注意,加速度a不在任何一个坐标轴上,是需要分解的。矢量分解后,如图8所示。根据独立作用性原理,ΣFx&= max即:T&-&Gx&= max即:T&-&mg&sinθ&= m acosθ显然,独立解T值是成功的。结果与解法一相同。答案:mgsinθ&+ ma&cosθ思考:当a>ctgθ时,张力T的结果会变化吗?(从支持力的结果N&= mgcosθ-ma sinθ看小球脱离斜面的条件,求脱离斜面后,θ条件已没有意义。答:T = m&。)学生活动:用正交分解法解本节第2题“进阶练习2”进阶练习:如图9所示,自动扶梯与地面的夹角为30°,但扶梯的台阶是水平的。当扶梯以a = 4m/s2的加速度向上运动时,站在扶梯上质量为60kg的人相对扶梯静止。重力加速度g = 10 m/s2,试求扶梯对人的静摩擦力f 。解:这是一个展示独立作用性原理的经典例题,建议学生选择两种坐标(一种是沿a方向和垂直a方向,另一种是水平和竖直方向),对比解题过程,进而充分领会用牛顿第二定律解题的灵活性。答:208N 。3、如图10所示,甲图系着小球的是两根轻绳,乙图系着小球的是一根轻弹簧和轻绳,方位角θ已知。现将它们的水平绳剪断,试求:在剪断瞬间,两种情形下小球的瞬时加速度。解说:第一步,阐明绳子弹力和弹簧弹力的区别。(学生活动)思考:用竖直的绳和弹簧悬吊小球,并用竖直向下的力拉住小球静止,然后同时释放,会有什么现象?原因是什么?结论——绳子的弹力可以突变而弹簧的弹力不能突变(胡克定律)。第二步,在本例中,突破“绳子的拉力如何瞬时调节”这一难点(从即将开始的运动来反推)。知识点,牛顿第二定律的瞬时性。答案:a甲&= gsinθ ;a乙&= gtgθ 。应用:如图11所示,吊篮P挂在天花板上,与吊篮质量相等的物体Q被固定在吊篮中的轻弹簧托住,当悬挂吊篮的细绳被烧断瞬间,P、Q的加速度分别是多少?解:略。答:2g ;0 。三、牛顿第二、第三定律的应用要点:在动力学问题中,如果遇到几个研究对象时,就会面临如何处理对象之间的力和对象与外界之间的力问题,这时有必要引进“系统”、“内力”和“外力”等概念,并适时地运用牛顿第三定律。在方法的选择方面,则有“隔离法”和“整体法”。前者是根本,后者有局限,也有难度,但常常使解题过程简化,使过程的物理意义更加明晰。对N个对象,有N个隔离方程和一个(可能的)整体方程,这(N + 1)个方程中必有一个是通解方程,如何取舍,视解题方便程度而定。补充:当多个对象不具有共同的加速度时,一般来讲,整体法不可用,但也有一种特殊的“整体方程”,可以不受这个局限(可以介绍推导过程)——Σ= m1&+ m2&+ m3&+ … + mn其中Σ只能是系统外力的矢量和,等式右边也是矢量相加。1、如图12所示,光滑水平面上放着一个长为L的均质直棒,现给棒一个沿棒方向的、大小为F的水平恒力作用,则棒中各部位的张力T随图中x的关系怎样?解说:截取隔离对象,列整体方程和隔离方程(隔离右段较好)。答案:N =&x 。思考:如果水平面粗糙,结论又如何?解:分两种情况,(1)能拉动;(2)不能拉动。第(1)情况的计算和原题基本相同,只是多了一个摩擦力的处理,结论的化简也麻烦一些。第(2)情况可设棒的总质量为M ,和水平面的摩擦因素为μ,而F = μMg ,其中l<L ,则x<(L-l)的右段没有张力,x>(L-l)的左端才有张力。答:若棒仍能被拉动,结论不变。若棒不能被拉动,且F = μMg时(μ为棒与平面的摩擦因素,l为小于L的某一值,M为棒的总质量),当x<(L-l),N≡0 ;当x>(L-l),N =&〔x -〈L-l〉〕。应用:如图13所示,在倾角为θ的固定斜面上,叠放着两个长方体滑块,它们的质量分别为m1和m2&,它们之间的摩擦因素、和斜面的摩擦因素分别为μ1和μ2&,系统释放后能够一起加速下滑,则它们之间的摩擦力大小为:A、μ1&m1gcosθ ; & &B、μ2&m1gcosθ ;C、μ1&m2gcosθ ; & &D、μ1&m2gcosθ ;解:略。答:B 。(方向沿斜面向上。)思考:(1)如果两滑块不是下滑,而是以初速度v0一起上冲,以上结论会变吗?(2)如果斜面光滑,两滑块之间有没有摩擦力?(3)如果将下面的滑块换成如图14所示的盒子,上面的滑块换成小球,它们以初速度v0一起上冲,球应对盒子的哪一侧内壁有压力?解:略。答:(1)不会;(2)没有;(3)若斜面光滑,对两内壁均无压力,若斜面粗糙,对斜面上方的内壁有压力。2、如图15所示,三个物体质量分别为m1&、m2和m3&,带滑轮的物体放在光滑水平面上,滑轮和所有接触面的摩擦均不计,绳子的质量也不计,为使三个物体无相对滑动,水平推力F应为多少?解说:此题对象虽然有三个,但难度不大。隔离m2&,竖直方向有一个平衡方程;隔离m1&,水平方向有一个动力学方程;整体有一个动力学方程。就足以解题了。答案:F =&&。思考:若将质量为m3物体右边挖成凹形,让m2可以自由摆动(而不与m3相碰),如图16所示,其它条件不变。是否可以选择一个恰当的F′,使三者无相对运动?如果没有,说明理由;如果有,求出这个F′的值。解:此时,m2的隔离方程将较为复杂。设绳子张力为T ,m2的受力情况如图,隔离方程为:&= m2a隔离m1&,仍有:T = m1a解以上两式,可得:a =&g最后用整体法解F即可。答:当m1&≤ m2时,没有适应题意的F′;当m1&> m2时,适应题意的F′=&&。3、一根质量为M的木棒,上端用细绳系在天花板上,棒上有一质量为m的猫,如图17所示。现将系木棒的绳子剪断,同时猫相对棒往上爬,但要求猫对地的高度不变,则棒的加速度将是多少?解说:法一,隔离法。需要设出猫爪抓棒的力f ,然后列猫的平衡方程和棒的动力学方程,解方程组即可。法二,“新整体法”。据Σ= m1&+ m2&+ m3&+ … + mn&,猫和棒的系统外力只有两者的重力,竖直向下,而猫的加速度a1&= 0 ,所以:( M + m )g = m·0 + M a1&解棒的加速度a1十分容易。答案:g 。四、特殊的连接体当系统中各个体的加速度不相等时,经典的整体法不可用。如果各个体的加速度不在一条直线上,“新整体法”也将有一定的困难(矢量求和不易)。此时,我们回到隔离法,且要更加注意找各参量之间的联系。解题思想:抓某个方向上加速度关系。方法:“微元法”先看位移关系,再推加速度关系。、1、如图18所示,一质量为M 、倾角为θ的光滑斜面,放置在光滑的水平面上,另一个质量为m的滑块从斜面顶端释放,试求斜面的加速度。解说:本题涉及两个物体,它们的加速度关系复杂,但在垂直斜面方向上,大小是相等的。对两者列隔离方程时,务必在这个方向上进行突破。(学生活动)定型判断斜面的运动情况、滑块的运动情况。位移矢量示意图如图19所示。根据运动学规律,加速度矢量a1和a2也具有这样的关系。(学生活动)这两个加速度矢量有什么关系?沿斜面方向、垂直斜面方向建x 、y坐标,可得:a1y&= a2y& & & & & & &①且:a1y&= a2sinθ & & ②隔离滑块和斜面,受力图如图20所示。对滑块,列y方向隔离方程,有:mgcosθ- N = ma1y& & &③对斜面,仍沿合加速度a2方向列方程,有:Nsinθ= Ma2& & & & & ④解①②③④式即可得a2&。答案:a2&=&&。(学生活动)思考:如何求a1的值?解:a1y已可以通过解上面的方程组求出;a1x只要看滑块的受力图,列x方向的隔离方程即可,显然有mgsinθ= ma1x&,得:a1x&= gsinθ 。最后据a1&=&求a1&。答:a1&=&&。2、如图21所示,与水平面成θ角的AB棒上有一滑套C ,可以无摩擦地在棒上滑动,开始时与棒的A端相距b ,相对棒静止。当棒保持倾角θ不变地沿水平面匀加速运动,加速度为a(且a>gtgθ)时,求滑套C从棒的A端滑出所经历的时间。解说:这是一个比较特殊的“连接体问题”,寻求运动学参量的关系似乎比动力学分析更加重要。动力学方面,只需要隔离滑套C就行了。(学生活动)思考:为什么题意要求a>gtgθ?(联系本讲第二节第1题之“思考题”)定性绘出符合题意的运动过程图,如图22所示:S表示棒的位移,S1表示滑套的位移。沿棒与垂直棒建直角坐标后,S1x表示S1在x方向上的分量。不难看出:S1x&+ b = S cosθ & & & & & & & & & ①设全程时间为t ,则有:S =&at2& & & & & & & & & & & & & ②S1x&=&a1xt2& & & & & & & & & & & & ③而隔离滑套,受力图如图23所示,显然:mgsinθ= ma1x& & & & & & & & & & & &④解①②③④式即可。答案:t =&另解:如果引进动力学在非惯性系中的修正式 Σ+&*&= m&(注:*为惯性力),此题极简单。过程如下——以棒为参照,隔离滑套,分析受力,如图24所示。注意,滑套相对棒的加速度a相是沿棒向上的,故动力学方程为:F*cosθ- mgsinθ= ma相& & & & & & (1)其中F*&= ma & & & & & & & & & & &(2)而且,以棒为参照,滑套的相对位移S相就是b ,即:b = S相&=&a相&t2& & & & & & & & &(3)解(1)(2)(3)式就可以了。第二讲 配套例题选讲教材范本:龚霞玲主编《奥林匹克物理思维训练教材》,知识出版社,2002年8月第一版。例题选讲针对“教材”第三章的部分例题和习题。
学习了内能及能量的转化和守恒后,同学们在一起梳理知识时交流了以下想法,你认为其中不正确的是(  )A、做功改变物体的内能是不同形式的能的相互转化B、物体放出热量,发生了能量的转移,其温度一定降低C、燃气推动“嫦娥三号”探测器调姿发生了能量的转化D、能量在转化和转移的过程中总会有损耗,但能量的总量保持不变
分享到QQ空间新浪微博百度搜藏人人网腾讯微博开心网腾讯朋友百度空间豆瓣网搜狐微博MSNQQ收藏我的淘宝百度贴吧搜狐白社会更多...百度分享一个有一定厚度的圆盘,可以绕通过中心垂直于盘面的水平轴转动,用下面的方法测量它匀速转动时的角速度。实验器材:电磁打点计时器、米尺、纸带、复写纸片。实验步骤:(1)如图1所示,将电磁打点计时器固定在桌面上,将纸带的一端穿过打点计时器的限位孔后,固定在待测圆盘的侧面上,使得圆盘转动时,纸带可以卷在圆盘侧面上。(2)启动控制装置使圆盘转动,同时接通电源,打点计时器开始打点。(3)经过一段时间,停止转动和打点,取下纸带,进行测量。① 由已知量和测得量表示的角速度的表达式为ω=            。式中各量的意义是:                                                               .② 某次实验测得圆盘半径r=5.50×10-2m,得到纸带的一段如图2所示,求得角速度为          。
(1),T为电磁打点计时器打点的时间间隔,r为圆盘的半径,x2、x1是纸带上选定的两点分别对应的米尺的刻度值,n为选定的两点间的打点数(含两点)。(2)6.8/s。难度:
题型: 知识点:
  一个实验小组在“探究弹力和弹簧伸长的关系”的实验中,使用两根不同的轻质弹簧a和b,得到弹力与弹簧长度的图象如图所示。下列表述正确的是 (  )A.a的原长比b的长  B.a的劲度系数比b的大  C.a的劲度系数比b的小D.测得的弹力与弹簧的长度成正比
题型: 知识点:
  在“验证力的平行四边形定则”实验中,需要将橡皮条的一端固定在水平木板上,另一端系上两根细绳,细绳的另一端都有绳套(如图)。实验中需用两个弹簧秤分别勾住绳套,并互成角度地拉橡皮条。某同学认为在此过程中必须注意以下几项:A. 两根细绳必须等长。B.橡皮条应与两绳夹角的平分线在同一直线上。C. 在使用弹簧秤时要注意使弹簧秤与木板平面平行。其中正确的是    。(填入相应的字母) 
题型: 知识点:
  在做“验证机械能守恒定律”实验时,用打点计时器打出纸带如图所示,其中A点为打下的第一个点,0、1、2……为连续的相邻计数点。现测得两相邻计数点之间的距离分别为s1、s2、s3、s4、s5、s6,已知计数点间的时间间隔为T。根据纸带测量出的数据可以求出此实验过程中重锤下落运动的加速度大小的表达式为       ,打下第5号计数点时,纸带运动的瞬时速度大小的表达式为      。要验证机械能守恒定律,为减小实验误差,应选择打下第  号和第   号计数点之间的过程为研究对象。
或……;(s5+s6)/2T;1,5乙 甲
题型: 知识点:
  如图4所示为某同学用多用电表欧姆档测量一个电阻阻值的示数和档位情况,则这个电阻的阻值约为    Ω。如果想测量的更精确些,应怎样调节多用电表后再进行测量?答:                                。
答案:2.0×102,换用×10Ω档并调零难度:
题型: 知识点:
  下图为一正在测量中的多用电表表盘。(1)如果是用直流10V档测量电压,则读数为    V。(2)如果是用×100Ω档测量电阻,则读数为  Ω。(3)如果是用直流5mA档测量电流,则读数为   mA。
6.5;8.0×102;3.25难度:
题型: 知识点:
  已知太阳到地球与地球到月球的距离的比值约为390,月球绕地球旋转的周期约为27天。利用上述数据以及日常的天文知识,可估算出太阳对月球与地球对月球的万有引力的比值约为(  )A.0.2        B.2      C.20      D.200 
题型: 知识点:
  土星周围有美丽壮观的“光环”,组成环的颗粒是大小不等、线度从1μm到10m的岩石、尘埃,类似于卫星,它们与土星中心的距离从7.3×104km延伸到1.4×105km。已知环的外缘颗粒绕土星做圆周运动的周期约为14h,引力常量为6.67×10-11N?m2/kg2,则土星的质量约为(估算时不考虑环中颗粒间的相互作用) (  )A.9.0×1016kg    B.6.4×1017kg  C.9.0×1025kg    D.6.4×1026kg
题型: 知识点:
  在中子衍射技术中,常利用热中子研究晶体的结构,因为热中子的德布罗意波长与晶体中原子间距相近。已知中子质量m=1.67×10-27kg,普朗克常量h=6.63×10-34J·s,可以估算德布罗意波长λ=1.82×10-10m的热中子动能的数量级为 (   )(A)10-17J  (B)10-19J  (C)10-21J  (D)10-24 J
题型: 知识点:
  人眼对绿光最为敏感。正常人的眼睛接收到波长为530nm的绿光时,只要每秒有6个绿光的光子射入瞳孔,眼睛就能察觉。普朗克常量为6.63×10-34J×s,光速为3.0×108m/s,则人眼能察觉到绿光时所接收到的最小功率是  A. 2.3×10-18W                   B. 3.8×10-19WC. 7.0×10-48W                   D.1.2×10-48W
题型: 知识点:
  在如图所示的四个图象中,能够正确反映一种元素的同位素原子核的质量数M与其中子数N之间的关系的是 (   )
题型: 知识点:
  一个小孩在蹦床上作游戏,他从高处落到蹦床上后又被弹起到原高度。小孩从高处开始下落到弹回的整个过程中,他的运动速度随时间变化的图象如图所示,图中oa段和cd段为直线。则根据此图象可知,小孩和蹦床相接触的时间为            (   )A.t2 ~ t4    B.t1 ~ t4C.t1 ~ t5    D.t2 ~ t5
题型: 知识点:
  一根质量为M的直木棒,悬挂在O点,有一只质量为m的猴子抓着木棒,如图甲所示。剪断悬挂木棒的细绳,木棒开始下落,同时猴子开始沿棒向上爬,设在一段时间内木棒沿竖直方向下落,猴子对地的高度保持不变。忽略空气阻力。则图乙的四个图象中能正确反映在这段时间内猴子对木棒作功的功率随时间变化的关系的是:  (   )
题型: 知识点:
  如图所示,是一个说明示波管工作原理的示意图,电子经电压U1加速后以速度v0垂直进入偏转电场,离开电场时的偏转量是h,两平行板间距离为d,电势差是U2,板长是l,每单位电压引起的偏转量(h/U)叫做示波管的灵敏度,那么要提高示波管的灵敏度,可以采取下列哪些方法 (  )A.增大两板间电势差U2     B.尽可能使板长l短一些C.尽可能使板距d小一些    D.使加速电压U1升高一些
题型: 知识点:
  如图甲为电视机显像管的整体结构示意图,其左端尾部是电子枪,被灯丝K加热的阴极能发射大量的“热电子”,“热电子”经过加速电压U加速后形成电子束,高速向右射出。在显像管的颈部装有两组相互垂直的磁偏转线圈L,图乙是其中一组“纵向”偏转线圈从右侧向左看去的示意图,当在磁偏转线圈中通入图示方向的电流时,在显像管颈部形成水平向左(即甲图中垂直纸面向外)的磁场,使自里向外(即甲图中自左向右)射出的电子束向上偏转;若该线圈通入相反方向的电流,电子束则向下偏转。改变线圈中电流的大小,可调节偏转线圈磁场的强弱,电子束的纵向偏转量也随之改变。这样,通过控制加在“纵向”偏转线圈上的交变电压,就可以控制电子束进行“纵向”(竖直方向)扫描。同理,与它垂直放置在颈部的另一组“横向”偏转线圈,通入适当的交变电流时,能控制电子束进行“横向”(水平方向)扫描。两组磁偏转线圈同时通入适当的交变电流时,可控制电子束反复地在荧光屏上自上而下、自左而右的逐行扫描,从而恰好能将整个荧光屏“打亮”。如果发现荧光屏上亮的区域比正常时偏小,则可能是下列哪些原因引起的 (  )A.阴极发射电子的能力不足,单位时间内发射的电子数偏少B.偏转线圈在显像管的位置过于偏右C.加速电场电压过低,使得电子速率偏小D.通过偏转线圈的交变电流的最大值偏小,使得偏转磁场的最大磁感强度偏小
题型: 知识点:
  在无线电仪器中,常需要在距离较近处安装两个线圈,并要求当一个线圈中有电流变化时,对另一个线圈中的电流的影响尽量小。则图中两个线圈的相对安装位置最符合该要求的是 (   )
题型: 知识点:
  如图所示是进行训练用的“跑步机”示意图,质量为m运动员踩在与水平面成α角的传送皮带上,传送皮带运动过程中受到的阻力恒为f。当运动员用力蹬传送皮带,使其以速度v匀速向后运动,则在这一过程中,下列说法中正确的是 (  )A.人脚对传送皮带的摩擦力是传送皮带所受的阻力B.人对传送皮带不做功C.人对传送皮带做功的功率为mgvD.人对传送皮带做功的功率为fv
题型: 知识点:
  如图所示,A、B两质点以相同的水平速度v0沿x轴正方向抛出,A在竖直平面内运动,落地点为P1,B沿光滑斜面运动,落地点为P2。P1和P2在同一水平面上,不计空气阻力。则下面说法中正确的是  (   )A.A、B的运动时间相同B.A、B沿x轴方向的位移相同C.A、B落地时的动量相同D.A、B落地时的动能相同
题型: 知识点:
  如图所示,一个小球从斜面上被抛出,抛出时初速度v0的方向与斜面垂直,它最后落到斜面上的某点。不计空气阻力,下面关于小球在空中的运动的说法中正确的是(  )  A.小球的运动可以看作是沿水平方向的匀速运动和竖直向下的自由落体运动的叠加  B.小球的运动可以看作是沿垂直斜面方向的匀速运动和平行斜面向下的自由落体运动的叠加  C.小球的运动可以看作是沿垂直斜面方向的匀速运动和沿斜面向下的匀加速运动的叠加  D.小球的运动可以看作是沿水平方向的匀速运动和沿竖直方向的匀变速运动的叠加
题型: 知识点:
  在一根软铁棒上绕有一组线圈,a、c是线圈的两端,b为中心抽头。把a端和b抽头分别接到两条平行金属导轨上,导轨间有匀强磁场,方向垂直于导轨所在平面并指向纸内,如图所示。金属棒PQ在外力作用下以图示位置为平衡位置左右作简谐运动,运动过程中保持与导轨垂直,且两端与导轨始终接触良好。下面的哪些过程中a、c点的电势都比b点的电势高?  ( )A.PQ从平衡位置向左边运动的过程中B.PQ从左边向平衡位置运动的过程中C.PQ从平衡位置向右边运动的过程中D.PQ从右边向平衡位置运动的过程中
第五部分 动量和能量第一讲 基本知识介绍一、冲量和动量1、冲力(F—t图象特征)→&冲量。冲量定义、物理意义冲量在F—t图象中的意义→从定义角度求变力冲量(F对t的平均作用力)2、动量的定义动量矢量性与运算二、动量定理1、定理的基本形式与表达2、分方向的表达式:ΣIx&=ΔPx&,ΣIy&=ΔPy&…3、定理推论:动量变化率等于物体所受的合外力。即=ΣF外&三、动量守恒定律1、定律、矢量性2、条件a、原始条件与等效b、近似条件c、某个方向上满足a或b,可在此方向应用动量守恒定律四、功和能1、功的定义、标量性,功在F—S图象中的意义2、功率,定义求法和推论求法3、能的概念、能的转化和守恒定律4、功的求法a、恒力的功:W = FScosα= FSF&= FS&Sb、变力的功:基本原则——过程分割与代数累积;利用F—S图象(或先寻求F对S的平均作用力)c、解决功的“疑难杂症”时,把握“功是能量转化的量度”这一要点五、动能、动能定理1、动能(平动动能)2、动能定理a、ΣW的两种理解b、动能定理的广泛适用性六、机械能守恒1、势能a、保守力与耗散力(非保守力)→&势能(定义:ΔEp&=&-W保)b、力学领域的三种势能(重力势能、引力势能、弹性势能)及定量表达2、机械能3、机械能守恒定律a、定律内容b、条件与拓展条件(注意系统划分)c、功能原理:系统机械能的增量等于外力与耗散内力做功的代数和。七、碰撞与恢复系数1、碰撞的概念、分类(按碰撞方向分类、按碰撞过程机械能损失分类)碰撞的基本特征:a、动量守恒;b、位置不超越;c、动能不膨胀。2、三种典型的碰撞a、弹性碰撞:碰撞全程完全没有机械能损失。满足——m1v10&+ m2v20&= m1v1&+ m2v2&m1&+&&m2&=&&m1&+&&m2解以上两式(注意技巧和“不合题意”解的舍弃)可得:v1&=&,& v2&=&对于结果的讨论:①当m1&= m2&时,v1&= v20&,v2&= v10&,称为“交换速度”;②当m1&<<&m2&,且v20&= 0时,v1&≈&-v10&,v2&≈&0&,小物碰大物,原速率返回;③当m1&>>&m2&,且v20&= 0时,v1&≈&v10&,v2&≈&2v10&,b、非(完全)弹性碰撞:机械能有损失(机械能损失的内部机制简介),只满足动量守恒定律c、完全非弹性碰撞:机械能的损失达到最大限度;外部特征:碰撞后两物体连为一个整体,故有v1&= v2&=&3、恢复系数:碰后分离速度(v2&-&v1)与碰前接近速度(v10&-&v20)的比值,即:e =&&。根据“碰撞的基本特征”,0&≤&e&≤&1&。当e = 0&,碰撞为完全非弹性;当0&<&e&<&1&,碰撞为非弹性;当e = 1&,碰撞为弹性。八、“广义碰撞”——物体的相互作用1、当物体之间的相互作用时间不是很短,作用不是很强烈,但系统动量仍然守恒时,碰撞的部分规律仍然适用,但已不符合“碰撞的基本特征”(如:位置可能超越、机械能可能膨胀)。此时,碰撞中“不合题意”的解可能已经有意义,如弹性碰撞中v1&= v10&,v2&= v20的解。2、物体之间有相对滑动时,机械能损失的重要定势:-ΔE =&ΔE内&= f滑·S相&,其中S相指相对路程。第二讲 重要模型与专题一、动量定理还是动能定理?物理情形:太空飞船在宇宙飞行时,和其它天体的万有引力可以忽略,但是,飞船会定时遇到太空垃圾的碰撞而受到阻碍作用。设单位体积的太空均匀分布垃圾n颗,每颗的平均质量为m ,垃圾的运行速度可以忽略。飞船维持恒定的速率v飞行,垂直速度方向的横截面积为S ,与太空垃圾的碰撞后,将垃圾完全粘附住。试求飞船引擎所应提供的平均推力F 。模型分析:太空垃圾的分布并不是连续的,对飞船的撞击也不连续,如何正确选取研究对象,是本题的前提。建议充分理解“平均”的含义,这样才能相对模糊地处理垃圾与飞船的作用过程、淡化“作用时间”和所考查的“物理过程时间”的差异。物理过程需要人为截取,对象是太空垃圾。先用动量定理推论解题。取一段时间Δt&,在这段时间内,飞船要穿过体积ΔV = S·vΔt的空间,遭遇nΔV颗太空垃圾,使它们获得动量ΔP&,其动量变化率即是飞船应给予那部分垃圾的推力,也即飞船引擎的推力。&=&&=&&=&&=&&= nmSv2如果用动能定理,能不能解题呢?同样针对上面的物理过程,由于飞船要前进x = vΔt的位移,引擎推力须做功W =&x ,它对应飞船和被粘附的垃圾的动能增量,而飞船的ΔEk为零,所以:W =&ΔMv2即:vΔt =&(n m S·vΔt)v2得到:&=&nmSv2两个结果不一致,不可能都是正确的。分析动能定理的解题,我们不能发现,垃圾与飞船的碰撞是完全非弹性的,需要消耗大量的机械能,因此,认为“引擎做功就等于垃圾动能增加”的观点是错误的。但在动量定理的解题中,由于I =&t&,由此推出的&=&必然是飞船对垃圾的平均推力,再对飞船用平衡条件,的大小就是引擎推力大小了。这个解没有毛病可挑,是正确的。(学生活动)思考:如图1所示,全长L、总质量为M的柔软绳子,盘在一根光滑的直杆上,现用手握住绳子的一端,以恒定的水平速度v将绳子拉直。忽略地面阻力,试求手的拉力F 。解:解题思路和上面完全相同。答:二、动量定理的分方向应用物理情形:三个质点A、B和C ,质量分别为m1&、m2和m3&,用拉直且不可伸长的绳子AB和BC相连,静止在水平面上,如图2所示,AB和BC之间的夹角为(π-α)。现对质点C施加以冲量I ,方向沿BC ,试求质点A开始运动的速度。模型分析:首先,注意“开始运动”的理解,它指绳子恰被拉直,有作用力和冲量产生,但是绳子的方位尚未发生变化。其二,对三个质点均可用动量定理,但是,B质点受冲量不在一条直线上,故最为复杂,可采用分方向的形式表达。其三,由于两段绳子不可伸长,故三质点的瞬时速度可以寻求到两个约束关系。下面具体看解题过程——绳拉直瞬间,AB绳对A、B两质点的冲量大小相等(方向相反),设为I1&,BC绳对B、C两质点的冲量大小相等(方向相反),设为I2&;设A获得速度v1(由于A受合冲量只有I1&,方向沿AB ,故v1的反向沿AB),设B获得速度v2(由于B受合冲量为+,矢量和既不沿AB ,也不沿BC方向,可设v2与AB绳夹角为〈π-β〉,如图3所示),设C获得速度v3(合冲量+沿BC方向,故v3沿BC方向)。对A用动量定理,有:I1&= m1&v1& & & & & & & & & & & & & & & & &①B的动量定理是一个矢量方程:+= m2&,可化为两个分方向的标量式,即:I2cosα-I1&= m2&v2cosβ & & & & & & & & &②I2sinα= m2&v2sinβ & & & & & & & & & & & ③质点C的动量定理方程为:I - I2&= m3&v3& & & & & & & & & & & & & &④AB绳不可伸长,必有v1&= v2cosβ & & & & & ⑤BC绳不可伸长,必有v2cos(β-α) = v3& & &⑥六个方程解六个未知量(I1&、I2&、v1&、v2&、v3&、β)是可能的,但繁复程度非同一般。解方程要注意条理性,否则易造成混乱。建议采取如下步骤——1、先用⑤⑥式消掉v2&、v3&,使六个一级式变成四个二级式:I1&= m1&v1& & & & & & & & & & & & & & & & & & & & &⑴I2cosα-I1&= m2&v1& & & & & & & & & & & & & & & & ⑵I2sinα= m2&v1&tgβ & & & & & & & & & & & & & & & &⑶I - I2&= m3&v1(cosα+ sinαtgβ) & & & & & & & & &⑷2、解⑶⑷式消掉β,使四个二级式变成三个三级式:I1&= m1&v1& & & & & & & & & & & & & & & & & & & & & & & & &㈠I2cosα-I1&= m2&v1& & & & & & & & & & & & & & & & & & & & ㈡I = m3&v1&cosα+ I2& & & & & & & & & & && & & & & & &&&㈢3、最后对㈠㈡㈢式消I1&、I2&,解v1就方便多了。结果为:v1&=&(学生活动:训练解方程的条理和耐心)思考:v2的方位角β等于多少?解:解“二级式”的⑴⑵⑶即可。⑴代入⑵消I1&,得I2的表达式,将I2的表达式代入⑶就行了。答:β= arc tg()。三、动量守恒中的相对运动问题物理情形:在光滑的水平地面上,有一辆车,车内有一个人和N个铅球,系统原来处于静止状态。现车内的人以一定的水平速度将铅球一个一个地向车外抛出,车子和人将获得反冲速度。第一过程,保持每次相对地面抛球速率均为v ,直到将球抛完;第二过程,保持每次相对车子抛球速率均为v ,直到将球抛完。试问:哪一过程使车子获得的速度更大?模型分析:动量守恒定律必须选取研究对象之外的第三方(或第四、第五方)为参照物,这意味着,本问题不能选车子为参照。一般选地面为参照系,这样对“第二过程”的铅球动量表达,就形成了难点,必须引进相对速度与绝对速度的关系。至于“第一过程”,比较简单:N次抛球和将N个球一次性抛出是完全等效的。设车和人的质量为M ,每个铅球的质量为m 。由于矢量的方向落在一条直线上,可以假定一个正方向后,将矢量运算化为代数运算。设车速方向为正,且第一过程获得的速度大小为V1&第二过程获得的速度大小为V2&。第一过程,由于铅球每次的动量都相同,可将多次抛球看成一次抛出。车子、人和N个球动量守恒。0 = Nm(-v) + MV1&得:V1&=&v & & & & & & & & & & & & & & & & & &①第二过程,必须逐次考查铅球与车子(人)的作用。第一个球与(N–1)个球、人、车系统作用,完毕后,设“系统”速度为u1&。值得注意的是,根据运动合成法则,铅球对地的速度并不是(-v),而是(-v + u1)。它们动量守恒方程为:0 = m(-v + u1) +〔M +(N-1)m〕u1得:u1&=第二个球与(N -2)个球、人、车系统作用,完毕后,设“系统”速度为u2&。它们动量守恒方程为:〔M+(N-1)m〕u1&= m(-v + u2) +〔M+(N-2)m〕u2&得:u2&=&&+&第三个球与(N -2)个球、人、车系统作用,完毕后,设“系统”速度为u3&。铅球对地的速度是(-v + u3)。它们动量守恒方程为:〔M+(N-2)m〕u2&= m(-v + u3) +〔M+(N-3)m〕u3得:u3&=&+&&+&以此类推(过程注意:先找uN和uN-1关系,再看uN和v的关系,不要急于化简通分)……,uN的通式已经可以找出:V2&= uN&=&&+&&+&&+ … +&即:V2&=&& & & & & & & & & & & & & & & &②我们再将①式改写成:V1&=&& & & & & & & & & & & & & & & & & & & & ①′不难发现,①′式和②式都有N项,每项的分子都相同,但①′式中每项的分母都比②式中的分母小,所以有:V1&> V2&。结论:第一过程使车子获得的速度较大。(学生活动)思考:质量为M的车上,有n个质量均为m的人,它们静止在光滑的水平地面上。现在车上的人以相对车大小恒为v、方向水平向后的初速往车下跳。第一过程,N个人同时跳下;第二过程,N个人依次跳下。试问:哪一次车子获得的速度较大?解:第二过程结论和上面的模型完全相同,第一过程结论为V1&=&&。答:第二过程获得速度大。四、反冲运动中的一个重要定式物理情形:如图4所示,长度为L、质量为M的船停止在静水中(但未抛锚),船头上有一个质量为m的人,也是静止的。现在令人在船上开始向船尾走动,忽略水的阻力,试问:当人走到船尾时,船将会移动多远?(学生活动)思考:人可不可能匀速(或匀加速)走动?当人中途停下休息,船有速度吗?人的全程位移大小是L吗?本系统选船为参照,动量守恒吗?模型分析:动量守恒展示了已知质量情况下的速度关系,要过渡到位移关系,需要引进运动学的相关规律。根据实际情况(人必须停在船尾),人的运动不可能是匀速的,也不可能是匀加速的,运动学的规律应选择S =&t 。为寻求时间t ,则要抓人和船的位移约束关系。对人、船系统,针对“开始走动→中间任意时刻”过程,应用动量守恒(设末态人的速率为v ,船的速率为V),令指向船头方向为正向,则矢量关系可以化为代数运算,有:0 = MV + m(-v)&即:mv = MV&由于过程的末态是任意选取的,此式展示了人和船在任一时刻的瞬时速度大小关系。而且不难推知,对中间的任一过程,两者的平均速度也有这种关系。即:m&= M& & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & ①设全程的时间为t ,乘入①式两边,得:mt = Mt设s和S分别为人和船的全程位移大小,根据平均速度公式,得:m s = M S & & & & ②受船长L的约束,s和S具有关系:s + S = L & & & & & & & & & & & & & & & & & ③解②、③可得:船的移动距离 S =L(应用动量守恒解题时,也可以全部都用矢量关系,但这时“位移关系”表达起来难度大一些——必须用到运动合成与分解的定式。时间允许的话,可以做一个对比介绍。)另解:质心运动定律人、船系统水平方向没有外力,故系统质心无加速度→系统质心无位移。先求出初态系统质心(用它到船的质心的水平距离x表达。根据力矩平衡知识,得:x =&),又根据,末态的质量分布与初态比较,相对整体质心是左右对称的。弄清了这一点后,求解船的质心位移易如反掌。(学生活动)思考:如图5所示,在无风的天空,人抓住气球下面的绳索,和气球恰能静止平衡,人和气球地质量分别为m和M ,此时人离地面高h 。现在人欲沿悬索下降到地面,试问:要人充分安全地着地,绳索至少要多长?解:和模型几乎完全相同,此处的绳长对应模型中的“船的长度”(“充分安全着地”的含义是不允许人脱离绳索跳跃着地)。答:h 。(学生活动)思考:如图6所示,两个倾角相同的斜面,互相倒扣着放在光滑的水平地面上,小斜面在大斜面的顶端。将它们无初速释放后,小斜面下滑,大斜面后退。已知大、小斜面的质量分别为M和m ,底边长分别为a和b ,试求:小斜面滑到底端时,大斜面后退的距离。解:水平方向动量守恒。解题过程从略。答:(a-b)。进阶应用:如图7所示,一个质量为M ,半径为R的光滑均质半球,静置于光滑水平桌面上,在球顶有一个质量为m的质点,由静止开始沿球面下滑。试求:质点离开球面以前的轨迹。解说:质点下滑,半球后退,这个物理情形和上面的双斜面问题十分相似,仔细分析,由于同样满足水平方向动量守恒,故我们介绍的“定式”是适用的。定式解决了水平位移(位置)的问题,竖直坐标则需要从数学的角度想一些办法。为寻求轨迹方程,我们需要建立一个坐标:以半球球心O为原点,沿质点滑下一侧的水平轴为x坐标、竖直轴为y坐标。由于质点相对半球总是做圆周运动的(离开球面前),有必要引入相对运动中半球球心O′的方位角θ来表达质点的瞬时位置,如图8所示。由“定式”,易得:x =&Rsinθ & & & & & & & & & ①而由图知:y = Rcosθ & & & & & & & &②不难看出,①、②两式实际上已经是一个轨迹的参数方程。为了明确轨迹的性质,我们可以将参数θ消掉,使它们成为:&+&&= 1这样,特征就明显了:质点的轨迹是一个长、短半轴分别为R和R的椭圆。五、功的定义式中S怎么取值?在求解功的问题时,有时遇到力的作用点位移与受力物体的(质心)位移不等,S是取力的作用点的位移,还是取物体(质心)的位移呢?我们先看下面一些事例。1、如图9所示,人用双手压在台面上推讲台,结果双手前进了一段位移而讲台未移动。试问:人是否做了功?2、在本“部分”第3页图1的模型中,求拉力做功时,S是否可以取绳子质心的位移?3、人登静止的楼梯,从一楼到二楼。楼梯是否做功?4、如图10所示,双手用等大反向的力F压固定汽缸两边的活塞,活塞移动相同距离S,汽缸中封闭气体被压缩。施力者(人)是否做功?在以上四个事例中,S若取作用点位移,只有第1、2、4例是做功的(注意第3例,楼梯支持力的作用点并未移动,而只是在不停地交换作用点),S若取物体(受力者)质心位移,只有第2、3例是做功的,而且,尽管第2例都做了功,数字并不相同。所以,用不同的判据得出的结论出现了本质的分歧。面对这些似是而非的“疑难杂症”,我们先回到“做功是物体能量转化的量度”这一根本点。第1例,手和讲台面摩擦生了热,内能的生成必然是由人的生物能转化而来,人肯定做了功。S宜取作用点的位移;第2例,求拉力的功,在前面已经阐述,S取作用点位移为佳;第3例,楼梯不需要输出任何能量,不做功,S取作用点位移;第4例,气体内能的增加必然是由人输出的,压力做功,S取作用点位移。但是,如果分别以上四例中的受力者用动能定理,第1例,人对讲台不做功,S取物体质心位移;第2例,动能增量对应S取L/2时的值——物体质心位移;第4例,气体宏观动能无增量,S取质心位移。(第3例的分析暂时延后。)以上分析在援引理论知识方面都没有错,如何使它们统一?原来,功的概念有广义和狭义之分。在力学中,功的狭义概念仅指机械能转换的量度;而在物理学中功的广义概念指除热传递外的一切能量转换的量度。所以功也可定义为能量转换的量度。一个系统总能量的变化,常以系统对外做功的多少来量度。能量可以是机械能、电能、热能、化学能等各种形式,也可以多种形式的能量同时发生转化。由此可见,上面分析中,第一个理论对应的广义的功,第二个理论对应的则是狭义的功,它们都没有错误,只是在现阶段的教材中还没有将它们及时地区分开来而已。而且,我们不难归纳:求广义的功,S取作用点的位移;求狭义的功,S取物体(质心)位移。那么我们在解题中如何处理呢?这里给大家几点建议:&1、抽象地讲“某某力做的功”一般指广义的功;2、讲“力对某物体做的功”常常指狭义的功;3、动能定理中的功肯定是指狭义的功。当然,求解功地问题时,还要注意具体问题具体分析。如上面的第3例,就相对复杂一些。如果认为所求为狭义的功,S取质心位移,是做了功,但结论仍然是难以令人接受的。下面我们来这样一个处理:将复杂的形变物体(人)看成这样一个相对理想的组合:刚性物体下面连接一压缩的弹簧(如图11所示),人每一次蹬梯,腿伸直将躯体重心上举,等效为弹簧将刚性物体举起。这样,我们就不难发现,做功的是人的双腿而非地面,人既是输出能量(生物能)的机构,也是得到能量(机械能)的机构——这里的物理情形更象是一种生物情形。本题所求的功应理解为广义功为宜。以上四例有一些共同的特点:要么,受力物体情形比较复杂(形变,不能简单地看成一个质点。如第2、第3、第4例),要么,施力者和受力者之间的能量转化不是封闭的(涉及到第三方,或机械能以外的形式。如第1例)。以后,当遇到这样的问题时,需要我们慎重对待。(学生活动)思考:足够长的水平传送带维持匀速v运转。将一袋货物无初速地放上去,在货物达到速度v之前,与传送带的摩擦力大小为f ,对地的位移为S 。试问:求摩擦力的功时,是否可以用W = fS ?解:按一般的理解,这里应指广义的功(对应传送带引擎输出的能量),所以“位移”取作用点的位移。注意,在此处有一个隐含的“交换作用点”的问题,仔细分析,不难发现,每一个(相对皮带不动的)作用点的位移为2S&。(另解:求货物动能的增加和与皮带摩擦生热的总和。)答:否。(学生活动)思考:如图12所示,人站在船上,通过拉一根固定在铁桩的缆绳使船靠岸。试问:缆绳是否对船和人的系统做功?解:分析同上面的“第3例”。答:否。六、机械能守恒与运动合成(分解)的综合物理情形:如图13所示,直角形的刚性杆被固定,水平和竖直部分均足够长。质量分别为m1和m2的A、B两个有孔小球,串在杆上,且被长为L的轻绳相连。忽略两球的大小,初态时,认为它们的位置在同一高度,且绳处于拉直状态。现无初速地将系统释放,忽略一切摩擦,试求B球运动L/2时的速度v2&。模型分析:A、B系统机械能守恒。A、B两球的瞬时速度不等,其关系可据“第三部分”知识介绍的定式(滑轮小船)去寻求。(学生活动)A球的机械能是否守恒?B球的机械能是否守恒?系统机械能守恒的理由是什么(两法分析:a、“微元法”判断两个WT的代数和为零;b、无非弹性碰撞,无摩擦,没有其它形式能的生成)?由“拓展条件”可以判断,A、B系统机械能守恒,(设末态A球的瞬时速率为v1&)过程的方程为:m2g&=&&+&& & & & & & ①在末态,绳与水平杆的瞬时夹角为30°,设绳子的瞬时迁移速率为v ,根据“第三部分”知识介绍的定式,有:v1&= v/cos30°, v2&= v/sin30°两式合并成:v1&= v2&tg30°= v2/& & &②解①、②两式,得:v2&=&七、动量和能量的综合(一)物理情形:如图14所示,两根长度均为L的刚性轻杆,一端通过质量为m的球形铰链连接,另一端分别与质量为m和2m的小球相连。将此装置的两杆合拢,铰链在上、竖直地放在水平桌面上,然后轻敲一下,使两小球向两边滑动,但两杆始终保持在竖直平面内。忽略一切摩擦,试求:两杆夹角为90°时,质量为2m的小球的速度v2&。模型分析:三球系统机械能守恒、水平方向动量守恒,并注意约束关系——两杆不可伸长。(学生活动)初步判断:左边小球和球形铰链的速度方向会怎样?设末态(杆夹角90°)左边小球的速度为v1(方向:水平向左),球形铰链的速度为v(方向:和竖直方向夹θ角斜向左),对题设过程,三球系统机械能守恒,有:mg( L-L) =&m&+&mv2&+&2m& & &①三球系统水平方向动量守恒,有:mv1&+ mvsinθ= 2mv2& & & & & & & & ②左边杆子不形变,有:v1cos45°= vcos(45°-θ) & & & & &③右边杆子不形变,有:vcos(45°+θ) = v2cos45° & & & & ④四个方程,解四个未知量(v1&、v2&、v和θ),是可行的。推荐解方程的步骤如下——1、③、④两式用v2替代v1和v ,代入②式,解θ值,得:tgθ= 1/4&2、在回到③、④两式,得:v1&=&v2&, & v =&v2&3、将v1&、v的替代式代入①式解v2即可。结果:v2&=&(学生活动)思考:球形铰链触地前一瞬,左球、铰链和右球的速度分别是多少?解:由两杆不可形变,知三球的水平速度均为零,θ为零。一个能量方程足以解题。答:0 、&、0 。(学生活动)思考:当两杆夹角为90°时,右边小球的位移是多少?解:水平方向用“反冲位移定式”,或水平方向用质心运动定律。答:&。进阶应用:在本讲模型“四、反冲……”的“进阶应用”(见图8)中,当质点m滑到方位角θ时(未脱离半球),质点的速度v的大小、方向怎样?解说:此例综合应用运动合成、动量守恒、机械能守恒知识,数学运算比较繁复,是一道考查学生各种能力和素质的难题。据运动的合成,有:&=&&+&&=&&-&其中必然是沿地面向左的,为了书写方便,我们设其大小为v2&;必然是沿半球瞬时位置切线方向(垂直瞬时半径)的,设大小为v相&。根据矢量减法的三角形法则,可以得到(设大小为v1)的示意图,如图16所示。同时,我们将v1的x、y分量v1x和v1y也描绘在图中。由图可得:v1y&=(v2&+ v1x)tgθ & & & & & & & & & & & & & & & & ①质点和半球系统水平方向动量守恒,有:Mv2&= mv1x& & & & & & & & &②对题设过程,质点和半球系统机械能守恒,有:mgR(1-cosθ) =&M&+&m&,即:mgR(1-cosθ) =&M&+&m(&+&) & & & & & & & & & & ③三个方程,解三个未知量(v2&、v1x&、v1y)是可行的,但数学运算繁复,推荐步骤如下——1、由①、②式得:v1x&=&v2&, & & & &v1y&= (tgθ) v2&&2、代入③式解v2&,得:v2&=3、由&=&&+&解v1&,得:v1&=v1的方向:和水平方向成α角,α= arctg&= arctg()这就是最后的解。〔一个附属结果:质点相对半球的瞬时角速度 ω =&&=&&。〕八、动量和能量的综合(二)物理情形:如图17所示,在光滑的水平面上,质量为M = 1 kg的平板车左端放有质量为m = 2 kg的铁块,铁块与车之间的摩擦因素μ= 0.5 。开始时,车和铁块以共同速度v = 6 m/s向右运动,车与右边的墙壁发生正碰,且碰撞是弹性的。车身足够长,使铁块不能和墙相碰。重力加速度g = 10 m/s2&,试求:1、铁块相对车运动的总路程;2、平板车第一次碰墙后所走的总路程。模型分析:本模型介绍有两对相互作用时的处理常规。能量关系介绍摩擦生热定式的应用。由于过程比较复杂,动量分析还要辅助以动力学分析,综合程度较高。由于车与墙壁的作用时短促而激烈的,而铁块和车的作用是舒缓而柔和的,当两对作用同时发生时,通常处理成“让短时作用完毕后,长时作用才开始”(这样可以使问题简化)。在此处,车与墙壁碰撞时,可以认为铁块与车的作用尚未发生,而是在车与墙作用完了之后,才开始与铁块作用。规定向右为正向,将矢量运算化为代数运算。车第一次碰墙后,车速变为-v ,然后与速度仍为v的铁块作用,动量守恒,作用完毕后,共同速度v1&=&&=&&,因方向为正,必朝墙运动。(学生活动)车会不会达共同速度之前碰墙?动力学分析:车离墙的最大位移S =&,反向加速的位移S′=&,其中a = a1&=&,故S′< S ,所以,车碰墙之前,必然已和铁块达到共同速度v1&。车第二次碰墙后,车速变为-v1&,然后与速度仍为v1的铁块作用,动量守恒,作用完毕后,共同速度v2&=&&=&&=&,因方向为正,必朝墙运动。车第三次碰墙,……共同速度v3&=&&=&,朝墙运动。……以此类推,我们可以概括铁块和车的运动情况——铁块:匀减速向右→匀速向右→匀减速向右→匀速向右……平板车:匀减速向左→匀加速向右→匀速向右→匀减速向左→匀加速向右→匀速向右……显然,只要车和铁块还有共同速度,它们总是要碰墙,所以最后的稳定状态是:它们一起停在墙角(总的末动能为零)。1、全程能量关系:对铁块和车系统,-ΔEk&=ΔE内&,且,ΔE内&= f滑&S相&,即:(m + M)v2&= μmg·S相&代入数字得:S相&= 5.4 m2、平板车向右运动时比较复杂,只要去每次向左运动的路程的两倍即可。而向左是匀减速的,故第一次:S1&=&第二次:S2&=&&=&第三次:S3&=&&=&……n次碰墙的总路程是:ΣS = 2( S1&+ S2&+ S3&+ … + Sn&)=&( 1 +&&+&&+ … +&&)& =&( 1 +&&+&&+ … +&&)碰墙次数n→∞,代入其它数字,得:ΣS = 4.05 m(学生活动)质量为M 、程度为L的木板固定在光滑水平面上,另一个质量为m的滑块以水平初速v0冲上木板,恰好能从木板的另一端滑下。现解除木板的固定(但无初速),让相同的滑块再次冲上木板,要求它仍能从另一端滑下,其初速度应为多少?解:由第一过程,得滑动摩擦力f =&&。第二过程应综合动量和能量关系(“恰滑下”的临界是:滑块达木板的另一端,和木板具有共同速度,设为v ),设新的初速度为m&=( m + M )vm&-&( m + M )v2&= fL解以上三式即可。答:=&v0&。第三讲 典型例题解析教材范本:龚霞玲主编《奥林匹克物理思维训练教材》,知识出版社,2002年8月第一版。例题选讲针对“教材”第七、第八章的部分例题和习题。
第七部分 热学热学知识在奥赛中的要求不以深度见长,但知识点却非常地多(考纲中罗列的知识点几乎和整个力学——前五部分——的知识点数目相等)。而且,由于高考要求对热学的要求逐年降低(本届尤其低得“离谱”,连理想气体状态方程都没有了),这就客观上给奥赛培训增加了负担。因此,本部分只能采新授课的培训模式,将知识点和例题讲解及时地结合,争取让学员学一点,就领会一点、巩固一点,然后再层叠式地往前推进。一、分子动理论1、物质是由大量分子组成的(注意分子体积和分子所占据空间的区别)对于分子(单原子分子)间距的计算,气体和液体可直接用,对固体,则与分子的空间排列(晶体的点阵)有关。【例题1】如图6-1所示,食盐(NaCl)的晶体是由钠离子(图中的白色圆点表示)和氯离子(图中的黑色圆点表示)组成的,离子键两两垂直且键长相等。已知食盐的摩尔质量为58.5×10-3kg/mol,密度为2.2×103kg/m3,阿伏加德罗常数为6.0×1023mol-1,求食盐晶体中两个距离最近的钠离子中心之间的距离。【解说】题意所求即图中任意一个小立方块的变长(设为a)的倍,所以求a成为本题的焦点。由于一摩尔的氯化钠含有NA个氯化钠分子,事实上也含有2NA个钠离子(或氯离子),所以每个钠离子占据空间为 v =&而由图不难看出,一个离子占据的空间就是小立方体的体积a3&,即 a3&=&&=&,最后,邻近钠离子之间的距离l =&a【答案】3.97×10-10m 。〖思考〗本题还有没有其它思路?〖答案〗每个离子都被八个小立方体均分,故一个小立方体含有×8个离子 =&分子,所以…(此法普遍适用于空间点阵比较复杂的晶体结构。)2、物质内的分子永不停息地作无规则运动固体分子在平衡位置附近做微小振动(振幅数量级为0.1),少数可以脱离平衡位置运动。液体分子的运动则可以用“长时间的定居(振动)和短时间的迁移”来概括,这是由于液体分子间距较固体大的结果。气体分子基本“居无定所”,不停地迁移(常温下,速率数量级为102m/s)。无论是振动还是迁移,都具备两个特点:a、偶然无序(杂乱无章)和统计有序(分子数比率和速率对应一定的规律——如麦克斯韦速率分布函数,如图6-2所示);b、剧烈程度和温度相关。气体分子的三种速率。最可几速率vP&:f(v) =&(其中ΔN表示v到v +Δv内分子数,N表示分子总数)极大时的速率,vP&==&;平均速率:所有分子速率的算术平均值,&==;方均根速率:与分子平均动能密切相关的一个速率,==〔其中R为普适气体恒量,R = 8.31J/(mol.K)。k为玻耳兹曼常量,k =&&= 1.38×10-23J/K 〕【例题2】证明理想气体的压强P =&n,其中n为分子数密度,为气体分子平均动能。【证明】气体的压强即单位面积容器壁所承受的分子的撞击力,这里可以设理想气体被封闭在一个边长为a的立方体容器中,如图6-3所示。考查yoz平面的一个容器壁,P =&& & & & & &①设想在Δt时间内,有Nx个分子(设质量为m)沿x方向以恒定的速率vx碰撞该容器壁,且碰后原速率弹回,则根据动量定理,容器壁承受的压力&F ==& & & & & & & & & & & & & & ②在气体的实际状况中,如何寻求Nx和vx呢?考查某一个分子的运动,设它的速度为v ,它沿x、y、z三个方向分解后,满足v2&=&&+&&+&分子运动虽然是杂乱无章的,但仍具有“偶然无序和统计有序”的规律,即&=&&+&&+&&= 3& & & & & & & & & & ③这就解决了vx的问题。另外,从速度的分解不难理解,每一个分子都有机会均等的碰撞3个容器壁的可能。设Δt =&,则&Nx&=&·3N总&=&na3& & & & & & & & & & & & &④注意,这里的是指有6个容器壁需要碰撞,而它们被碰的几率是均等的。结合①②③④式不难证明题设结论。〖思考〗此题有没有更简便的处理方法?〖答案〗有。“命令”所有分子以相同的速率v沿+x、?x、+y、?y、+z、?z这6个方向运动(这样造成的宏观效果和“杂乱无章”地运动时是一样的),则 Nx&=N总&=&na3&;而且vx&= v所以,P =&&=&==nm&=&n3、分子间存在相互作用力(注意分子斥力和气体分子碰撞作用力的区别),而且引力和斥力同时存在,宏观上感受到的是其合效果。分子力是保守力,分子间距改变时,分子力做的功可以用分子势能的变化表示,分子势能EP随分子间距的变化关系如图6-4所示。分子势能和动能的总和称为物体的内能。二、热现象和基本热力学定律1、平衡态、状态参量a、凡是与温度有关的现象均称为热现象,热学是研究热现象的科学。热学研究的对象都是有大量分子组成的宏观物体,通称为热力学系统(简称系统)。当系统的宏观性质不再随时间变化时,这样的状态称为平衡态。b、系统处于平衡态时,所有宏观量都具有确定的值,这些确定的值称为状态参量(描述气体的状态参量就是P、V和T)。c、热力学第零定律(温度存在定律):若两个热力学系统中的任何一个系统都和第三个热力学系统处于热平衡状态,那么,这两个热力学系统也必定处于热平衡。这个定律反映出:处在同一热平衡状态的所有的热力学系统都具有一个共同的宏观特征,这一特征是由这些互为热平衡系统的状态所决定的一个数值相等的状态函数,这个状态函数被定义为温度。2、温度a、温度即物体的冷热程度,温度的数值表示法称为温标。典型的温标有摄氏温标t、华氏温标F(F =&t + 32)和热力学温标T(T = t + 273.15)。b、(理想)气体温度的微观解释:&=&kT&(i为分子的自由度 = 平动自由度t + 转动自由度r + 振动自由度s 。对单原子分子i = 3 ,“刚性”〈忽略振动,s = 0,但r = 2〉双原子分子i = 5 。对于三个或三个以上的多原子分子,i = 6 。能量按自由度是均分的),所以说温度是物质分子平均动能的标志。c、热力学第三定律:热力学零度不可能达到。(结合分子动理论的观点2和温度的微观解释很好理解。)3、热力学过程a、热传递。热传递有三种方式:传导(对长L、横截面积S的柱体,Q = KSΔ
精英家教网新版app上线啦!用app只需扫描书本条形码就能找到作业,家长给孩子检查作业更省心,同学们作业对答案更方便,扫描上方二维码立刻安装!
请输入姓名
请输入手机号

我要回帖

更多关于 四探针电阻率测试仪 的文章

 

随机推荐