正负5v电源电路图矩形波怎么变成正负1v矩形波

矩形波信号发生器仿真
基于Multisim 10的矩形波信号发生器仿真与实现
摘要:实现了一种全集成可变带宽中频宽带低通滤波器,讨论分析了跨导放大器-电容(OTA—C)连续时间型滤波器的结构、设计和具体实现,使用外部可编程电路对所设计滤波器带宽进行控制,并利用ADS软件进行电路设计和仿真验证。仿真结果表明,该滤波器带宽的可调范围为1~26
MHz,阻带抑制率大于35 dB,带内波纹小于0.5 dB,采用1.8 V电源,TSMC 0.18μm
CMOS工艺库仿真,功耗小于21 mW,频响曲线接近理想状态。关键词:Butte
矩形波" title="矩形波"&矩形波"
title="矩形波"&矩形波等非正弦波发生电路。矩形波发生电路只有高电平、低电平两个暂态,而且两个暂态自动地相互转换,从而产生自激振荡。矩形波信号发生器通常用作数字电路的信号源或模拟电子开关的控制信号,亦是其他非正弦波发生器的基础。本文对占空比、频率及幅值可调的矩形波信号发生器进行了电路设计及仿真、应用电路测试、理论参数分析3方面
的研究工作。
1 电路设计
&&&矩形波发生器电路有多种方案,本设计以运算放大器为核心,由矩形波振荡电路、幅值调节电路两部分组成。电路设计方案和元器件选择的原则是:工作稳定可靠、结构简单合理、安装调试方便、性能参数达标。
1.1 矩形波振荡电路
&&&矩形波振荡电路(又称多谐振荡器)由反相输入的滞回比较器和RC电路组成。滞回比较器起开关作用,RC电路的作用是产生暂态过程。RC回路既是延迟环节,亦是反馈网络,通过RC充、放电过程实现输出状态的自动转换。在运放的输出端引入限流电阻和两个背靠背的稳压管就组成了如图1所示的双向限幅矩形波发生器。
图1中滞回比较器的阈值电压
假设接通电源时,电容C两端电压uc=O,输出电压uo=+Uz,则运放同相输入端电压up=+UT,二极管VD2导通,VD1截止,uo通过电阻R3和R6给电容C充电,忽略二极管的动态电阻,充电时间常数近似为(R3+R6)C,使运放反相输入端电压uN由0逐渐上升,在uNup时,uo=-Uz保持不变。当uN≤up时,uo又从-Uz跃变为+Uz,电容C又开始充电,运放输出状态再次翻转。如此周而复始,电路产生了自激振荡,输出端输出矩形波信号。
通常将矩形波输出高电平的持续时间与振荡周期的比定义为占空比。图1所示电路利用二极管的单向导电性使电容充、放电的通路不同,从而使它们的时间常数不同,实现了输出电压占空比的调节。
图1矩形波发生器的输出电压幅值等于稳压管的稳压值,电路输出电压正、负幅度对称。
由上述分析可知,调节电位器R5或R6可改变矩形波发生器的振荡频率及占空比。如果在图1中电容C处通过一只多路开关投入不同数值的电容,则可实现输出信号的频段控制。
&&& 在低频范围(如10
kHz)以内,对于固定频率来说,图1所示电路是一种较好的振荡电路。当振荡频率较高时,为了获得前后边沿较陡的矩形波,宜选择转换速率较高的运放。
1.2 幅值调节电路
&&&图1中稳压管双向限幅电路结构简单,选用不同稳压值的稳压管可改变输出电压,但限幅特性受稳压管参数影响大,而且输出限幅电压完全取决于稳压管的稳压值,采用这种方法对输出电压进行调整很不方便也很不实用。
为了实现对矩形波发生器输出电压幅值的精确调节,同时提高电路带负载的能力,可在图1电路输出端uo处并联一只可调电位器将输出电压进行取样,并将取样电压接至由运放和电阻网络组成的同相放大电路,通过改变取样电阻值即可精确调节矩形波输出电压的幅值,即构成了占空比、频率及幅值可调的矩形波信号发生器。
1.3 元件参数选择
&&&为提高输出信号频率和占空比的调节范围并减小二极管的动态电阻对电路参数的影响,设计电路时R5、R6应远大于R3。为使电路输出受频率影响较小的理想矩形波信号,电容C1和C2取值不宜过小(可取0.01、O.1和1μF),并选用具有高转换速率的运算放大器,同时为简化电路结构,可选用双集成运放LF353P,其转换速率(SR)为13
为减小对矩形波振荡电路输出信号的影响,设计幅值调节电路时应选用大阻值(可取100 kΩ)电压取样电位器。因电路为±12
V双电源供电,考虑到集成运放最大输出电压的限制,设计同相放大电路的电压放大倍数为2倍,同时反馈电阻不宜过大或过小(可取10
为分析矩形波信号发生器的带负载能力,在测量电路的输出阻抗时,由于电路的闭环输出电阻极小,而运放的最大输出电流有限,所以负载电阻的取值不可太小。
2 Multisiin 10仿真分析
&&&在Muhisim
10中建立如图2所示的矩形波信号发生器,打开仿真开关,观察电路的起振过程,并观测当R5、R6及R7变化时电路输出波形的参数。文中参数及波形以电容C1为例,开关拨至C2时电路的测试方法相同。
R5、R6均为最大值时,矩形波发生器输出波形的频率最小,如图3(a);R5、R6均为0时,输出波形频率最大,如图3(b)。输出信号频率调节范围为1.77~21.5
kHz。如作为方波信号源(占空比严格为50%)使用时,方波信号的频率调节范围为2.64—21.5 kHz。
R5为最大值、R6为0时,矩形波发生器输出波形的占空比最小,如图4(a);R5为0、R6为最大值时,输出波形的占空比最大,如图4(b)。输出信号占空比调节范围为11%~94%。
通过参数扫描分析(Parameter Sweep Analysis)中的瞬态分析(Transient
Analysis)选择电阻R7为扫描元件,设置取样电阻值由O至最大值时,矩形波输出电压幅值在0~10.45
V之间连续可调,如图5所示。
在图2电路输出端并联一只200 Ω负载电阻,测得电路的输出阻抗为144 Ω,同理测出未接入幅值调节电路时的输出阻抗为968
Ω。可见,幅值调节电路提高了矩形波信号发生器的带负载能力。
3 应用电路测试
&&&选用LF353P双集成运放(±12
V双电源供电),选用1N4001二极管、HZ5C2双向稳压管,对图2所示矩形波信号发生器进行应用电路实测分析,调节电位器R5、R6及R7,通过示波器观测应用电路的输出波形分别如图6、图7所示。
由图6、图7测得矩形波发生器应用电路的输出波形参数如下:频率调节范围为1.72~23.8
kHz,作为方波信号源时频率调节范围为2.6~23.8 kHz;占空比调节范围为11.4%~94%;电压幅值调节范围为0~10.5
V;电路的输出阻抗为224 Ω。未接入幅值调节电路时的输出阻抗为l 042 Ω。所测参数与Multisim
10仿真分析结果基本接近。
本文亦对电容C2分别取100
nF和1μF时的应用电路进行了测试,综合测试结果分析可知:图2矩形波发生器相邻两挡频率的可调范围互相覆盖,输出信号的频率在16
Hz~23.8 kHz之间连续可调,电路实现了多频段的控制。
4 理论参数分析
&&&通过对矩形波信号发生器进行理论分析,可知电路理论参数如下:矩形波输出信号频率调节范围为1.92~30.2
kHz,作为方波信号源使用时频率可调范围为2.9~30.2 kHz,占空比调节范围为8.9%~95%,电压幅值调节范围为0~10
V,理论参数与Multisim
10仿真分析及应用电路测试结果略有不同,主要是由于电路中二极管的动态电阻以及稳压二极管的正向导通电压引起的误差。
&&&本文在电路设计过程中,先后选用了μA741和LF353P两种运放电路。通过仿真分析和应用电路测试比较后发现,采用具有高转换速率的LF353P矩形波发生器输出波形的上升沿(下降沿)更为陡直,波形更为稳定。
本文设计的矩形波信号发生器的频率调节范围可达到16 Hz~23.8
kHz(三频段控制),占空比调节范围可达到11.4%~94%,电压幅值在0~1O.5V之间连续可调,同时可作为方波信号源使用,为三角波、锯齿波、阶梯波等其他非正弦波信号产生电路的研究工作提供了条件。&
10仿真分析和应用电路测试结果表明:该电路能产生较理想的可控矩形波信号,具有低失真、简单实用、调试方便、性能稳定的优点,各项性能指标均达到了设计要求。
已投稿到:
以上网友发言只代表其个人观点,不代表新浪网的观点或立场。捷配欢迎您!
微信扫一扫关注我们
当前位置:&>>&&>>&&>>&一种矩形波信号发生器仿真与实现
  矩形波被广泛用于数字开关电路,两个二进制(2级)是从中产生。逻辑电路的同步操作,严格规定的时间间隔,使方波快速转换和定时参考信号适当“时钟”被使用。这可以从图中频域看到,但是,包含了频率带宽方波。他们不在,造成电磁辐射脉冲电流,影响了闭路的结果,造成噪音和错误。公元准确和非常敏感的电路,如传感器,以避免这个问题,以此作为时序参考方波,而不是正弦波。因为矩形波电压只有两种状态,不是高电平,就是低电平,所以电压比较器是它的重要组成部分;因为产生振荡,就是要求输出的两种状态自动地相互转换,所以电路中必须引入反馈;因为输出状态应按一定的时间间隔交替变化,即产生周期性变化,所以电路中要有延迟环节来确定每种状态维持的时间。 矩形波发生电路只有高电平、低电平两个暂态,而且两个暂态自动地相互转换,从而产生自激振荡。矩形波信号发生器通常用作数字电路的信号源或模拟开关的控制信号,亦是其他非正弦波发生器的基础。
  1 电路设计
  矩形波发生器电路有多种方案,本设计以为核心,由矩形波振荡电路、幅值调节电路两部分组成。电路设计方案和选择的原则是:工作稳定可靠、结构简单合理、安装调试方便、性能参数达标。
  由于矩形波发生电路中电容正向充电与反向充电的时间常数均为R3C,而且充电的总幅值也相等,所以也称该电路为方波发生电路。矩形波的宽度Tk与周期T之比称为占空比,因此占空比为1/2的矩形波。利用一阶RC电路的三要素法可列出方程,求出振荡周期。
  1.1 矩形波振荡电路
  矩形波振荡电路:利用深度正反馈,通过阻容耦合使两个电子器件交替导通与截止,从而自激产生方波输出的振荡器。常用作方波发生器。多谐振荡器是一种能产生矩形波的自激振荡器,也称矩形波发生器。“多谐”指矩形波中除了基波成分外,还含有丰富的高次谐波成分。多谐振荡器没有稳态,只有两个暂稳态。在工作时,电路的状态在这两个暂稳态之间自动地交替变换,由此产生矩形波脉冲信号,常用作脉冲信号源及时序电路中的时钟信号。 在运放的输出端引入限流和两个背靠背的就组成了如图1所示的双向限幅矩形波发生器。
  图1中滞回比较器的阈值电压
  假设接通电源时,电容C两端电压uc=O,输出电压uo=+Uz,则运放同相输入端电压up=+UT,二极管VD2导通,VD1截止,uo通过电阻R3和R6给电容C充电,忽略二极管的动态电阻,充电时间常数近似为(R3+R6)C,使运放反相输入端电压uN由0逐渐上升,在uNup时,uo=-Uz保持不变。当uN≤up时,uo又从-Uz跃变为+Uz,电容C又开始充电,运放输出状态再次翻转。如此周而复始,电路产生了自激振荡,输出端输出矩形波信号。
  通常将矩形波输出高电平的持续时间与振荡周期的比定义为占空比。图1所示电路利用二极管的单向导电性使电容充、放电的通路不同,从而使它们的时间常数不同,实现了输出电压占空比的调节。
  图1矩形波发生器的输出电压幅值等于稳压管的稳压值,电路输出电压正、负幅度对称。
  由上述分析可知,调节电位器R5或R6可改变矩形波发生器的振荡频率及占空比。如果在图1中电容C处通过一只多路开关投入不同数值的电容,则可实现输出信号的频段控制。
  在低频范围(如10 Hz~1O kHz)以内,对于固定频率来说,图1所示电路是一种较好的振荡电路。当振荡频率较高时,为了获得前后边沿较陡的矩形波,宜选择转换速率较高的运放。
  1.2 幅值调节电路
  图1中稳压管双向限幅电路结构简单,选用不同稳压值的稳压管可改变输出电压,但限幅特性受稳压管参数影响大,而且输出限幅电压完全取决于稳压管的稳压值,采用这种方法对输出电压进行调整很不方便也很不实用。
  为了实现对矩形波发生器输出电压幅值的精确调节,同时提高电路带负载的能力,可在图1电路输出端uo处并联一只可调电位器将输出电压进行取样,并将取样电压接至由运放和电阻网络组成的同相放大电路。
  1.3 元件参数选择
  为提高输出信号频率和占空比的调节范围并减小二极管的动态电阻对电路参数的影响,设计电路时R5、R6应远大于R3。为使电路输出受频率影响较小的理想矩形波信号,电容C1和C2取值不宜过小(可取、O.1和1μF),并选用具有高转换速率的运算放大器,同时为简化电路结构,可选用双集成运放,其转换速率(SR)为13 V/μs。
  为减小对矩形波振荡电路输出信号的影响,设计幅值调节电路时应选用大阻值(可取100 kΩ)电压取样电位器。因电路为±12 V双电源供电,考虑到集成运放最大输出电压的限制,设计同相放大电路的电压放大倍数为2倍,同时反馈电阻不宜过大或过小(可取10 kΩ)。
  2 Multisiin 10仿真分析
  在Muhisim 10中建立如图2所示的矩形波信号发生器,打开仿真开关,观察电路的起振过程,并观测当R5、R6及R7变化时电路输出波形的参数。文中参数及波形以电容C1为例,开关拨至C2时电路的测试方法相同。
  R5、R6均为最大值时,矩形波发生器输出波形的频率最小,如图3(a);R5、R6均为0时,输出波形频率最大,如图3(b)。输出信号频率调节范围为1.77~21.5 kHz。如作为方波信号源(占空比严格为50%)使用时,方波信号的频率调节范围为2.64―21.5 kHz。
  R5为最大值、R6为0时,矩形波发生器输出波形的占空比最小,如图4(a);R5为0、R6为最大值时,输出波形的占空比最大,如图4(b)。输出信号占空比调节范围为11%~94%。
  通过参数扫描分析(Parameter Sweep Analysis)中的瞬态分析(Transient Analysis)选择电阻R7为扫描元件,设置取样电阻值由O至最大值时,矩形波输出电压幅值在0~10.45 V之间连续可调,如图5所示。
  在图2电路输出端并联一只200 Ω负载电阻,测得电路的输出阻抗为144 Ω,同理测出未接入幅值调节电路时的输出阻抗为968 Ω。可见,幅值调节电路提高了矩形波信号发生器的带负载能力。
  3 应用电路测试
  选用LF353P双集成运放(±12 V双电源供电),选用二极管、双向稳压管,对图2所示矩形波信号发生器进行应用电路实测分析,调节电位器R5、R6及R7,通过观测应用电路的输出波形分别如图6、图7所示。
  由图6、图7测得矩形波发生器应用电路的输出波形参数如下:频率调节范围为1.72~23.8 kHz,作为方波信号源时频率调节范围为2.6~23.8 kHz;占空比调节范围为11.4%~94%;电压幅值调节范围为0~10.5 V;电路的输出阻抗为224 Ω。未接入幅值调节电路时的输出阻抗为l 042 Ω。所测参数与Multisim 10仿真分析结果基本接近。
  本文亦对电容C2分别取100 nF和1μF时的应用电路进行了测试,综合测试结果分析可知:图2矩形波发生器相邻两挡频率的可调范围互相覆盖,输出信号的频率在16 Hz~23.8 kHz之间连续可调,电路实现了多频段的控制。
  4 理论参数分析
  通过对矩形波信号发生器进行理论分析,可知电路理论参数如下:矩形波输出信号频率调节范围为1.92~30.2 kHz,作为方波信号源使用时频率可调范围为2.9~30.2 kHz,占空比调节范围为8.9%~95%,电压幅值调节范围为0~10 V,理论参数与Multisim 10仿真分析及应用电路测试结果略有不同。
  5 结束语
  本文设计的矩形波信号发生器的频率调节范围可达到16 Hz~23.8 kHz(三频段控制),占空比调节范围可达到11.4%~94%,电压幅值在0~1O.5V之间连续可调,同时可作为方波信号源使用,为三角波、锯齿波、阶梯波等其他非正弦波信号产生电路的研究工作提供了条件。& Multisim 10仿真分析和应用电路测试结果表明:该电路能产生较理想的可控矩形波信号,具有低失真、简单实用、调试方便、性能稳定的优点,各项性能指标均达到了设计要求。&&来源:
技术资料出处:杨真人
该文章仅供学习参考使用,版权归作者所有。
因本网站内容较多,未能及时联系上的作者,请按本网站显示的方式与我们联系。
【】【】【】【】
上一篇:下一篇:
本文已有(0)篇评论
发表技术资料评论,请使用文明用语
字符数不能超过255
暂且没有评论!
12345678910
12345678910
12345678910
在设计时,一个常见的问题是如何在过压条件下保护ADC输入。ADC输入的保护具有许多情况和潜在解决方案。所有供应商的ADC都在此方面具有相似需求。本文将深入分析过压情形中可能出现的问题、发生频率及潜在的补救措施。 ADC输入的过驱一般发生于驱动电轨远远大于ADC最大输入范围时,...[][][][][][][][][][]
IC热门型号
IC现货型号
推荐电子百科07届李贤春函数信号发生器原理图
07届李贤春函数信号发生器原理图
09-06-14 &匿名提问
设计一个能输出正弦波的 方波和三角波等波形,并能显示频率的函数信号发生器,显示频率时间为两秒。对超出9999hz的,有溢出指示。技术指标 1可输出正弦波 方波 及三角波电压         2他们的输出频率范围:1~9999hz,分辨率为1hz         3直流稳压源正负12v,请设计原理图电路各单元电路的主要技术指标1正弦信号源 输出正弦电压频率1khz 10khz两档   输出正弦电压有效值0.5~5v可调 输出直流偏移电压范围 0~正负3v2方波信号源 输出方波电压频率 1khz 10khz 两档输出电压方波幅值 正负5v输出方波电压直流偏移电压范围 0~正负3v3三角波信号源 锯齿波频率 1khz 10khz两档 锯齿波电压幅值正负4v 可输出正反向三角波元件清单发光二极管          1IN4148              4数码管              4IN4936              2稳压二极管(C6V2)  2芯片NE555N              2CD4011              1CD4017              1CD40110             4OP07                4电阻5.1k                21k                  610k                 74.7k                120k                 42k                  4电位器47k                 1100k                433k                 1电容100u                10.1u                80.01u               2 问题补充:拜托还有专业点的人啊,随便在网上复制点东西我有必要来问吗,上面的要求可是我自己一点一点敲出来的。有谁正经学过模电数电的帮忙做下好吧。。。提问者: ruiwei012 - 助理 二级 答复    共 3 条信号发生器又称信号源或振荡器,在生产实践和科技领域中有着广泛的信号发生器又称信号源或振荡器,在生产实践和科技领域中有着广泛的应用。各种波形曲线均可以用三角函数方程式来表示。能够产生多种波形,如三角波、锯齿波、矩形波(含方波)、正弦波的电路被称为函数信号发生器。函数信号发生器在电路实验和设备检测中具有十分广泛的用途。例如在通信、广播、电视系统中,都需要射频(高频)发射,这里的射频波就是载波,把音频(低频)、视频信号或脉冲信号运载出去,就需要能够产生高频的振荡器。在工业、农业、生物医学等领域内,如高频感应加热、熔炼、淬火、超声诊断、核磁共振成像等,都需要功率或大或小、频率或高或低的振荡器。函数信号发生器的实现方法通常有以下几种:(1)用分立元件组成的函数发生器:通常是单函数发生器且频率不高,其工作不很稳定,不易调试。(2)可以由晶体管、运放IC等通用器件制作,更多的则是用专门的函数信号发生器IC产生。早期的函数信号发生器IC,如L8038、BA205、XR等,它们的功能较少,精度不高,频率上限只有300kHz,无法产生更高频率的信号,调节方式也不够灵活,频率和占空比不能独立调节,二者互相影响。(3)利用单片集成芯片的函数发生器:能产生多种波形,达到较高的频率,且易于调试。鉴于此,美国马克西姆公司开发了新一代函数信号发生器ICMAX038,它克服了(2)中芯片的缺点,可以达到更高的技术指标,是上述芯片望尘莫及的。MAX038频率高、精度好,因此它被称为高频精密函数信号发生器IC。在锁相环、压控振荡器、频率合成器、脉宽调制器等电路的设计上,MAX038都是优选的器件。(4)利用专用直接数字合成DDS芯片的函数发生器:能产生任意波形并达到很高的频率。但成本较高。设计指标:1.输出为方波和三角波两种波形,用开关切换输出;2.均为双极性;3.输出阻抗均为50Ω;4.输出为方波时,输出电压峰值为0~5V可调,输出信号频率为200Hz~2kHz可调;5.输出为三角波时,输出电压峰值为0~5V可调,输出信号频率为200Hz~2kHz可调本项目都切实用到了所学知识,数控电源部分采用数电中的DAC0808数模转换电路以及计数器74LS193构成。信号发生部分全部应用模电知识制作,采用性能优良的集成信号发生芯片ICL8038结合运放电路制成。频率测试部分,用555构成秒脉冲,通过40110来实现计数译码显示。此次制作真正达到了学以至用,理论联系实际的目的。符合理工科学生学习的要求。      当然本次实验参阅了除课程以外的大量参考书籍,通过多种方案论证,最终确立的此课题。由于时间紧,项目大,虽然在规定的时间完成任务,经过多次的修改,但仍然存在不足之处,望专家组批评指正。 回答者: ababygoa - 助理 二级  
17:51函数信号发生器的设计与制作 系别:电子工程系 专业:应用电子技术 届:07届 姓名:李贤春 摘 要 本系统以ICL8038集成块为核心器件,制作一种函数信号发生器,制作成本较低。适合学生学习电子技术测量使用。ICL8038是一种具有多种波形输出的精密振荡集成电路,只需要个别的外部元件就能产生从0.001Hz~30KHz的低失真正弦波、三角波、矩形波等脉冲信号。输出波形的频率和占空比还可以由电流或电阻控制。另外由于该芯片具有调制信号输入端,所以可以用来对低频信号进行频率调制。 关键词 ICL8038,波形,原理图,常用接法 一、概述 在电子工程、通信工程、自动控制、遥测控制、测量仪器、仪表和计算机等技术领域,经常需要用到各种各样的信号波形发生器。随着集成电路的迅速发展,用集成电路可很方便地构成各种信号波形发生器。用集成电路实现的信号波形发生器与其它信号波形发生器相比,其波形质量、幅度和频率稳定性等性能指标,都有了很大的提高。 二、方案论证与比较 2.1·系统功能分析 本设计的核心问题是信号的控制问题,其中包括信号频率、信号种类以及信号强度的控制。在设计的过程中,我们综合考虑了以下三种实现方案: 2.2·方案论证 方案一∶采用传统的直接频率合成器。这种方法能实现快速频率变换,具有低相位噪声以及所有方法中最高的工作频率。但由于采用大量的倍频、分频、混频和滤波环节,导致直接频率合成器的结构复杂、体积庞大、成本高,而且容易产生过多的杂散分量,难以达到较高的频谱纯度。 方案二∶采用锁相环式频率合成器。利用锁相环,将压控振荡器(VCO)的输出频率锁定在所需要频率上。这种频率合成器具有很好的窄带跟踪特性,可以很好地选择所需要频率信号,抑制杂散分量,并且避免了量的滤波器,有利于集成化和小型化。但由于锁相环本身是一个惰性环节,锁定时间较长,故频率转换时间较长。而且,由模拟方法合成的正弦波的参数,如幅度、频率 相信都很难控制。 方案三:采用8038单片压控函数发生器,8038可同时产生正弦波、方波和三角波。改变8038的调制电压,可以实现数控调节,其振荡范围为0.001Hz~300KHz。 三、系统工作原理与分析 3.1、ICL8038的应用 ICL8038是精密波形产生与压控振荡器,其基本特性为:可同时产生和输出正弦波、三角波、锯齿波、方波与脉冲波等波形;改变外接电阻、电容值可改变,输出信号的频率范围可为0.001Hz~300KHz;正弦信号输出失真度为1%;三角波输出的线性度小于0.1%;占空比变化范围为2%~98%;外接电压可以调制或控制输出信号的频率和占空比(不对称度);频率的温度稳定度(典型值)为120*10-6(ICL8038ACJD)~250*10-6(ICL8038CCPD);对于电源,单电源(V+):+10~+30V,双电源(+V)(V-):±5V~±15V。图1-2是管脚排列图,图1-2是功能框图。8038采用DIP-14PIN封装,管脚功能如表1-1所示。 3.2、ICL8038内部框图介绍 函数发生器ICL8038的电路结构如图虚线框内所示(图1-1),共有五个组成部分。两个电流源的电流分别为IS1和IS2,且IS1=I,IS2=2I;两个电压比较器Ⅰ和Ⅱ的阈值电压分别为 和 ,它们的输入电压等于电容两端的电压uC,输出电压分别控制RS触发器的S端和 端;RS触发器的状态输出端Q和 用来控制开关S,实现对电容C的充、放电;充点电流Is1、Is2的大小由外接电阻决定。当Is1=Is2时,输出三角波,否则为矩尺波。两个缓冲放大器用于隔离波形发生电路和负载,使三角波和矩形波输出端的输出电阻足够低,以增强带负载能力;三角波变正弦波电路用于获得正弦波电压。 3.3、内部框图工作原理 ★当给函数发生器ICL8038合闸通电时,电容C的电压为0V,根据电压比较器的电压传输特性,电压比较器Ⅰ和Ⅱ的输出电压均为低电平;因而RS触发器的 ,输出Q=0, ; ★使开关S断开,电流源IS1对电容充电,充电电流为 IS1=I 因充电电流是恒流,所以,电容上电压uC随时间的增长而线性上升。 ★当上升为VCC/3时,电压比较器Ⅱ输出为高电平,此时RS触发器的 ,S=0时,Q和 保持原状态不变。 ★一直到上升到2VCC/3时,使电压比较器Ⅰ的输出电压跃变为高电平,此时RS触发器的 时,Q=1时, ,导致开关S闭合,电容C开始放电,放电电流为IS2-IS1=I因放电电流是恒流,所以,电容上电压uC随时间的增长而线性下降。 起初,uC的下降虽然使RS触发的S端从高电平跃变为低电平,但 ,其输出不变。 ★一直到uC下降到VCC/3时,使电压比较器Ⅱ的输出电压跃变为低电平,此时 ,Q=0, ,使得开关S断开,电容C又开始充电,重复上述过程,周而复始,电路产生了自激振荡。 由于充电电流与放电电流数值相等,因而电容上电压为三角波,Q和 为方波,经缓冲放大器输出。三角波电压通过三角波变正弦波电路输出正弦波电压。 结论:改变电容充放电电流,可以输出占空比可调的矩形波和锯齿波。但是,当输出不是方波时,输出也得不到正弦波了。 3.4、方案电路工作原理(见图1-7) 当外接电容C可由两个恒流源充电和放电,电压比较器Ⅰ、Ⅱ的阀值分别为总电源电压(指+Vcc、-VEE)的2/3和1/3。恒流源I2和I1的大小可通过外接电阻调节,但必须I2>I1。当触发器的输出为低电平时,恒流源I2断开,恒流源I1给C充电,它的两端电压UC随时间线性上升,当达到电源电压的确2/3时,电压比较器I的输出电压发生跳变,使触发器输出由低电平变为高电平,恒流源I2接通,由于I2>I1(设 I2=2I1),I2将加到C上进行反充电,相当于C由一个净电流I放电,C两端的电压UC又转为直线下降。当它下降到电源电压的1/3时,电压比较器Ⅱ输出电压便发生跳变,使触发器输出为方波,经反相缓冲器由引脚9输出方波信号。C上的电压UC,上升与下降时间相等(呈三角形),经电压跟随器从引脚3输出三角波信号。将三角波变为正弦波是经过一个非线性网络(正弦波变换器)而得以实现,在这个非线性网络中,当三角波的两端变为平滑的正弦波,从2脚输出。 其中K1为输出频段选择波段开关,K2为输出信号选择开关,电位器W1为输出频率细调电位器,电位器W2调节方波占空比,电位器W3、W4调节正弦波的非线性失真。
请登录后再发表评论!

我要回帖

更多关于 5v转正负15v 的文章

 

随机推荐