téc.ing.www.kluniv.edu.cnzulia是什么期刊

Fractional q-Difference Equations - Springer
Academic edition
Find out how to access preview-only content
Fractional q-Difference EquationsMahmoud H. AnnabyAffiliated withFaculty of Science Department of Mathematics, Cairo University, Zeinab S. MansourAffiliated withFaculty of Science Department of Mathematics, King Saud University
* Final gross prices may vary according to local VAT.Examining the Potential of Plasma-Assisted Pretreated Wheat Straw for Enzyme Production by Trichoderma reesei
| SpringerLink
This service is more advanced with JavaScript available, learn more at http://activatejavascript.org
Examining the Potential of Plasma-Assisted Pretreated Wheat Straw for Enzyme Production by Trichoderma reeseiDivanery Rodriguez-GomezLinda LehmannNadja Schultz-JensenAnne Belinda BjerreTimothy John HobleyArticleDOI:
10.-012-9631-xCite this article as: Rodriguez-Gomez, D., Lehmann, L., Schultz-Jensen, N. et al. Appl Biochem Biotechnol (: 2051. doi:10.-012-9631-x
Plasma-assisted pretreated wheat straw was investigated for cellulase and xylanase production by Trichoderma reesei fermentation. Fermentations were conducted with media containing washed and unwashed plasma-assisted pretreated wheat straw as carbon source which was sterilized by autoclavation. To account for any effects of autoclavation, a comparison was made with unsterilized media containing antibiotics. It was found that unsterilized washed plasma-assisted pretreated wheat straw (which contained antibiotics) was best suited for the production of xylanases (110 IU ml-1) and cellulases (0.5 filter paper units (FPU) ml-1). Addition of Avicel boosted enzyme titers with the highest cellulase titers (1.5 FPU ml-1) found with addition of 50 % w/w Avicel and with the highest xylanase production (350 IU ml-1) reached in the presence of 10 % w/w Avicel. Comparison with enzyme titers from other nonrefined feedstocks suggests that plasma pretreated wheat straw is a promising and suitable substrate for cellulase and hemicellulase production.PretreatmentOzonisationAvicelEnzyme productionFungal growth1.Octave, S., & Thomas, D. (2009). Biorefinery: Toward an industrial metabolism. Biochimie, 91, 659–664.2.Polizeli, M. L. T. M., Rizzatti, A. C. S., Monti, R., Terenzi, H. F., Jorge, J. A., & Amorim, D. S. (2005). Xylanases from fungi: Properties and industrial applications. Appl Microbiol Biot, 67(5), 577–591.3.Aro, N., Pakula, T., & Penttil?, M. (2005). Transcriptional regulation of plant cell wall degradation by filamentous fungi. FEMS Microbiol Rev, 29, 719–739.4.Zaldivar, M., Velásquez, J. C., Contreras, I., & Pérez, L. M. (2001). Trichoderma aureoviride 7–121, a mutant with enhanced production of lytic enzymes: Its potential use in waste cellulose degradation and/or biocontrol. Electron J Biotechn, 4(3), 160–168.5.Rosgaard, L., Pedersen, S., Langston, J., Akerhielm, D., Cherry, J. R., & Meyer, A. S. (2007). Evaluation of minimal Trichoderma reesei cellulase mixtures on differently pretreated barley straw substrates. Biotechnol Progr, 23, .6.Balat, M., Balat, H., & ?z, C. (2008). Progress in bioethanol processing. Prog Energ Combust, 34, 551–573.7.Sun, R. C., Fang, J. M., Rowlands, P., & Bolton, J. (1998). Physicochemical and thermal characterization of wheat straw hemicelluloses and cellulose. J Agric Food Chem, 46(7), .8.Schultz-Jensen, N., Leipold, F., Bindslev, H., & Thomsen, A. B. (2011). Plasma assisted pretreatment of wheat straw. Appl Biochem Biotech, 163(4), 558–572.9.Schultz-Jensen, N., Kádár, Z., Thomsen, A. B., Bindslev, H., & Leipold, F. (2011). Plasma assisted pretreatment of wheat straw for ethanol production. Appl Biochem Biotech, 165(3–4), .10.Saha, B. C. (2003). Hemicellulose bioconversion. J Ind Microbiol Biot, 30, 279–291.11.Mandels, M., & Weber, J. (1969). Cellulases and their applications. In R. F. Gould (Ed.), Advances in chemistry series (95th ed., pp. 391–414). Washington, D.C: American Chemical Society.12.Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem, 72, 248–254.13.Xiao, Z., Storms, R., & Tsang, A. (2004). Microplate-based filter paper assay to measure total cellulase activity. Biotechnol Bioeng, 88, 832–837.14.Bailey, M. J., Biely, P., & Poutanen, K. (1992). Interlaboratory testing of methods for assay of xylanase activity. J Biotechnol, 23(3), 257–270.15.Ghose, T. K. (1987). Measurement of cellulase activities. Pure Appl Chem, 59(2), 257–268.16.Seker, T., M?ller, K., & Nielsen, J. (2005). Analysis of acyl CoA ester intermediates of the mevalonate pathway in Saccharomyces cerevisiae. Appl. Microbiol. Biot., 67, 119–124.17.Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227(5259), 680–685.18.Herpo?l-Gimbert, I., et al. (2008). Comparative secretome analyses of two Trichoderma reesei RUT-C30 and CL847 hypersecretory strains. Biotechnology for biofuels, 1, 18.19.Kubicek, C. P. (1992). The cellulase proteins of Trichoderma reesei: Structure, multiplicity, mode of action and regulation of formation. Adv Biochem Eng Biot, 45, 1–27.20.Thygesen, A., Thomsen, A. B., Schmidt, A. S., Jorgensen, H., Ahring, B. K., & Olsson, L. (2003). Production of cellulose and hemicellulose degrading enzymes by filamentous fungi cultivated on wet-oxidized wheat straw. Enzyme Microb Technol, 32, 606–615.21.Hendriks, A. T. W. M., & Zeeman, G. (2009). Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresource Technol, 100, 10–18.22.Buranov, A. U., & Mazza, G. (2008). Lignin in straw of herbaceous crops. Ind Crop Prod, 28, 237–259.23.Leipold, F., Schultz-Jensen, N., Kusano, Y., Bindslev, H., & Jacobsen, T. (2011). Decontamination of objects in a sealed container by means of atmospheric pressure plasmas. Food Control, 22(8), .24.Colina, A., Ferrer, A., & Urribarri, L. (2009). Producción de celulasas por Trichoderma reesei Rut C-30 en diferentes substratos celulósicos. Rev Téc Ing Univ Zulia, 32(2), 152–159.25.Sun, W. C., Cheng, C. H., & Lee, W. C. (2008). Protein expression and enzymatic activity of cellulases produced by Trichoderma reesei Rut C-30 on rice straw. Process Biochem, 43(10), .26.Juhasz, T., Szengyel, Z., Reczey, K., Siika-Aho, M., & Viikari, L. (2005). Characterization of cellulases and hemicellulases produced by Trichoderma reesei on various carbon sources. Process Biochem, 40, .27.Szengyel, Z., Zacchi, G., Varga, A., & Réczey, K. (2000). Cellulase production of Trichoderma reesei Rut C 30 using steam-pretreated spruce hydrolytic potential of cellulases on different substrates. Appl Biochem Biotech, 84–86, 679–691.28.Szengyel, Z., Zacchi, G., & Reczey, K. (1997). Cellulase production based on hemicellulose hydrolysate from steam-pretreated willow. Appl Biochem Biotech, 63–65, 351–362.29.Zacchi, G., Reczey, K., Szengyel, Z., & Eklund, R. (1996). Cellulase production by Trichoderma reesei. Bioresource Technol, 57, 25–30.30.Palmqvist, E., Hahn-H?gerdal, B., Szengyel, Z., Zacchi, G., & Rèczey, K. (1997). Simultaneous detoxification and enzyme production of hemicellulose hydrolysates obtained after steam pretreatment. Enzyme Microb Technol, 20, 286–293.31.Chahal, D. S., McGuire, S., Pikor, H., & Noble, G. (1982). Production of cellulase complex by Trichoderma reesei rut-C30 on lignocellulose and its hydrolytic potential. Biomass, 2, 127–137.32.Szakacs, G., & Tengerdy, R. P. (1997). Lignocellulolytic enzyme production on pretreated poplar wood by filamentous fungi. World J Microb Biot, 13(5), 487–490.33.Shin, C. S., Lee, J. P., Lee, J. S., & Park, S. C. (2000). Enzyme production of Trichoderma reesei Rut C-30 on various lignocelluloses substrates. Appl Biochem Biotech, 84–86, 237–245.34.Xiong, H., von Weymarn, N., Turunen, O., Leisola, M., & Pastinen, O. (2005). Xylanase production by Trichoderma reesei Rut C-30 grown on l-arabinose-rich plant hydrolysates. Bioresource Technol, 96, 753–759.35.Wen, Z., Liao, W., & Chen, S. (2005). Production of cellulase by Trichoderma reesei from dairy manure. Bioresource Technol, 96, 491–499.36.Bigelow, M., & Wyman, C. E. (2002). Cellulase production on bagasse pretreated with hot water. Appl Biochem Biotech, 98–100, 921–934.37.Szijarto, N., Szengyel, Z., Lidén, G., & Réczey, K. (2004). Dynamics of cellulase production by glucose grown cultures of Trichoderma reesei Rut-C30 as a response to addition of cellulose. Appl Biochem Biotech, 113(1–3), 115–124.Divanery Rodriguez-Gomez1Linda Lehmann1Nadja Schultz-Jensen23Anne Belinda Bjerre24Timothy John Hobley51.Center for Microbial Biotechnology, Department of Systems BiologyTechnical University of DenmarkLyngbyDenmark2.Biosystems Division, RIS? National Laboratory for Sustainable EnergyTechnical University of DenmarkRoskildeDenmark3.Department of GeochemistryGeological Survey of Denmark and Greenland (GEUS)Copenhagen KDenmark4.Department of Sustainable Energy and TransportTechnological Institute Gregersensvej 3TaastrupDenmark5.Institute for FoodTechnical University of DenmarkLyngbyDenmark
Print ISSN
Online ISSN
Publisher Name
Springer-Verlag
Buy (PDF)EUR&34,95
Unlimited access to full article
Instant download (PDF)
Price includes local sales tax if applicable
Export citation
Share article
We use cookies to improve your experience with our site. 上传我的文档
 下载
 收藏
该文档贡献者很忙,什么也没留下。
 下载此文档
正在努力加载中...
A Time Sequence Encoding Algorithm Based on Dimension Reduction
下载积分:1500
内容提示:A Time Sequence Encoding Algorithm Based on Dimension Reduction
文档格式:PDF|
浏览次数:3|
上传日期: 16:37:49|
文档星级:
该用户还上传了这些文档
A Time Sequence Encoding Algorithm Based on Dimens
官方公共微信

我要回帖

更多关于 applyuniv 的文章

 

随机推荐