3m偏光3m隔热膜参数数

共找到3824条商品信息
规格尺寸:
200*400 mm
连接方式:
显示模式:
广东省 深圳市
光源形状:
光源种类:
LED发光二极管
加工定制:
货源类别:
最快出货时间:
广东省 深圳市
150.00/千克
贴膜特点:
贴膜类型:
厂家(产地):
1600(mm)
拉伸性能:
广东省 深圳市
TDF和RDF-C
广东省 深圳市
偏光角度:
100UM/155UM
发货期限:
广东省 深圳市
厂家(产地):
1600(mm)
拉伸性能:
广东省 深圳市
0.038-0.065-0.11(mm)
拉伸性能:
厂家(产地):
广东省 东莞市
光源形状:
光源种类:
CCFL冷阴极荧光管
广东省 深圳市
启运地-省份:
启运地-城市:
启运地-区域:
目的地-省份:
目的地-城市:
启运地-省份:
加工定制:
光源形状:
光源种类:
EL电致发光片
显示颜色:
广东省 深圳市
规格尺寸:
显示颜色:
光源形状:
光源分布位置:
江苏省 苏州市
规格尺寸:
连接方式:
热压软带(斑马纸)
显示模式:
光源形状:
广东省 深圳市
SUS304不锈钢
规格尺寸:
800*1200 mm
消泡机,脱泡机
山东省 潍坊市
1.00/平方米
建议零售价:
长期耐温性:
加工定制:
按客户加工尺寸
适用范围:
LCD偏光片、背光源剥离保护膜、
广东省 深圳市
2.00/平方米
3mm 4mm 5mm 6mm 20mm 25mm 30mm ......(mm
300m (可定制)
是否双面胶带:
60um(mm)
广东省 深圳市
1.00/平方米
建议零售价:
长期耐温性:
加工定制:
按客户加工尺寸
适用范围:
LCD偏光片、背光源剥离保护膜、
广东省 深圳市
打印方向:
打印速度:
打码、喷码
日期打码机
打印深度:
打印高度:
广东省 深圳市
规格尺寸:
连接方式:
显示模式:
河南省 郑州市
规格尺寸:
显示模式:
显示颜色:
河南省 郑州市
规格尺寸:
连接方式:
安防设备/医疗设备/数码设备
接口类型:
广东省 深圳市
160.00/公斤
规格尺寸:
连接方式:
显示模式:
显示颜色:
广东省 广州市
红蓝品红绿棕蓝紫灰黑颜色 扩散膜片 散光膜片
主要用途:
灯光、灯具、玩具、光电、
加工定制:
厚度范围:
0.05-30(mm)
pet pc pvc
广东省 深圳市
规格尺寸:
连接方式:
显示模式:
显示颜色:
广东省 深圳市
4.00/平方米
江苏省 苏州市
14.00/平方米
3.6 ±0.02 mm
适用范围:
TFT-LCD偏光片传输及剥膜用
广东省 东莞市
加工定制:
施能调压阀
外形尺寸:
广东省 深圳市
建议零售价:
是否双面胶带:
广东省 东莞市
加工定制:
施能调压阀
外形尺寸:
广东省 深圳市
连接方式:
显示模式:
光源形状:
光源种类:
OEL有机电致发光片
光源分布位置:
广东省 深圳市
光片厚度:
光源分布位置:
光源形状:
光源种类:
EL电致发光片
广东省 深圳市
欧美--大陆
业务范围:
重量分界点(Q):
广东省 深圳市
高光塑胶件
加工定制:
适用范围:
高光塑胶件
广东省 东莞市
规格尺寸:
14,15.6,22,21.5,32,42,55寸 mm
连接方式:
显示模式:
广东省 深圳市
规格尺寸:
连接方式:
显示模式:
安徽省 合肥市
本页是慧聪网为您提供的3M偏光片最新供应商、经销商、厂家,包括3M偏光片的参数、型号、图片、价格等信息,为您提供全面的3M偏光片参考信息和在线洽谈的机会,找3M偏光片供应信息尽在慧聪网。
3M偏光片其他产品
3M偏光片相关行业
3M偏光片最新产品
按字母分类 :
版权所有 慧聪网
通用网址:hc360
互联网药品信息服务资格证书:(京)-经营性- 海淀公安局网络备案编号:
Copyright?2000-. All Rights Reserved35偏极光与偏光膜的基本原理_偏光膜-牛宝宝文章网
<meta name="description" content="35偏极光与偏光膜的基本原理_偏光膜:偏极光与偏光膜的基本原理
35偏极光与偏光膜的基本原理 偏光膜
偏极光与偏光膜的基本原理&P 0cm 0cm 0 TEXT-INDENT: 28 mso-char-indent-count: 2.0; mso-char-indent-size: 14.0pt&&摘要:对平板显示的专业人员来说,3M光学增亮片并不陌生。增亮片分为3大类:棱镜膜(BEF:Brightness Enhancement Film)系列,反射型偏光片(DBEF:Dual-Brightness Enhance Film)系列和增强型镜面反射片(ESR:Enhanced Specular Reflector)。&BR&
棱镜膜(BEF)工作原理&BR&
棱镜膜(BEF)是利用3M微复制技术制造的光学薄膜,其表面为20微米左右高度的微三棱镜结构。图1为装置BEF前后的对比示意图。从下扩散片出射的光线是各方向均匀的发散光。红箭头表示视角较小的光线(能够进入正视者的眼睛),蓝箭头表示视角较大的光线。加入BEF以后,红箭头部分聚拢在如图所示的70度左右范围内出射,而蓝箭头部分被微三棱镜反射回背光源系统,经过循环,重新加以利用,最终也在70度左右范围出射。&BR&
所以,棱镜膜(BEF)的增亮原理,是将原先大视角的发散光,聚拢在约70度的范围内出射,从而增加了正视的亮度,减小了可视视角。对于透射式LCD,标准的配置是安装两层棱镜方向相互垂直的BEF。&BR&
反射型偏光片(DBEF)工作原理&BR&
在以上基础上进一步提高亮度,就要使用第二系列产品DD应用多层膜技术生产的多层光学膜(MOF)。多层膜技术是指在不到200微米的厚度中复合1000层左右的光学薄膜。3M多层光学膜(MOF)包括反射型偏光片(DBEF:Dual Brightness Enhancement Film)系列和增强型镜面反射片(ESR:Enhanced Specular Reflector)。&BR&
如图2,背光源出射的全偏振光光矢量分解到P和S这两个相互垂直的振动方向上。对于传统的吸收型偏光片,选择透过一个振动方向的光线(此处假定是P光),而将与其垂直方向的光线(此处假定是S光)全部吸收,所以光能在通过LCD下偏光片时会被吸收而损失50%以上。&BR&
3M 反射型偏光片(DBEF)装置于背光源和LCD下偏光片之间。P光可以直接透过DBEF,但绝大部分S光会被DBEF反射回背光源,经过背光源各层材料后,S光被消偏振,成为全偏振光(P光+S光)后重新出射背光源,被循环加以利用。所以,DBEF是利用原先被传统吸收型偏光片吸收的50%光线来增加亮度的,而且是全视角、全方位的增加。与棱镜膜(BEF)的增亮方式相比,DBEF在增亮的同时,对视角没有影响。&BR&
因此,反射型偏光片(DBEF)系列很快被广泛应用于LCD TV这类对亮度要求很高的大尺寸产品。&BR&
增强型镜面反射片(ESR)工作原理&BR&
反射片(ESR)和DBEF一样都是利用了多层膜技术,在100多个微米的厚度内集成了1000多层薄膜。反射片不含一点金属,但是看起来金属反射片一样明可鉴人。作为高效反射片,ESR在整个可见光光谱范围内的反射率都在98%以上,高于目前其他种类的反射片。ESR本身由高分子薄膜层组成,是更加绿色环保的反射片材料。在LCD中,ESR作为背光源的光源反射片和底反射片使用。同时,3M还提供乳白色反射片以提供体积角内更均匀的反射光线。&BR&
综合以上3M光学增亮膜特点,图4所示为透射式LCD标准结构:&BR&
1.增强型镜面反射片(ESR)作为光源反射片和底反射片,高效反射光源光线;&BR&
2.上下两层棱镜膜(BEF)将导光板、扩散片出射的发散光线聚拢于中心正视角度范围;&BR&
3.DBEF对整体亮度作全视角、全方位提高。&BR&
与未使用3M光学增亮膜的结构比较,此标准结构可以获得约130%的正视亮度增益。这意味着,在同样品质画面时,将大大降低LCD功耗;或者,在不增加LCD功耗的情况下,能够获得更亮、更美、更清晰的画面。&BR&
本期专题:Brightness Enhance Film III&BR&
BEF3(Brightness Enhance Film III)是上文我们介绍过的BEF系列产品经过十多年的发展和改进到如今最新的型号。最早的BEF膜表面每个棱镜都是等高的,而后逐渐发展为后来每隔几十个矮棱镜放置一个高的棱镜来避免wet-out现象,接下来3M又推出了棱镜尖端有一定弧度的品种,还有波浪形棱镜的BEF等等。BEF3作为最新的棱镜膜型号,兼具了过去诸多老型号的优点,保持了一贯的光学增亮性能,同时依靠其略不规则的棱镜排列和高度有效避免了棱镜和液晶面板象素间的莫尔效应。&BR&
BEF3中分成4种不同的规格:5T,5M,7T,10T。下面来看看这些规格的全称以及他们的含义是什么。如图6,90/50表示的是棱镜膜的棱镜顶角角度是90度,棱镜的平均间距是50个微米。因为BEF3没有其他的棱镜高度和间距,这个标注有时就被省略掉。后面的5表示的是厚度是5个mil(1mil=25um)。最后面的T表示的棱镜膜下表面的光洁度,如果是T就是完全镜面光洁表面,M表示下表面有像毛玻璃一样的粗糙不平的小颗粒。举一个例子,BEF3-7T就表示7个mil厚的棱镜膜而且下表面是光滑的。&BR&
如何选用不同的BEF3棱镜膜呢?不同厚度的棱镜膜的增亮效果没有太大区别,并没有因为膜片变厚而增加对光线的消耗。不同的厚度主要是针对不同的尺寸的模组。对于小于等于17寸的显示器,5mil厚是比较合适的。大于26寸的模组则应该选用10T。中间的尺寸7mil厚的棱镜膜会即合适模组内部空间也具有相应的强度。下表面T和M的区别需要根据不同背光模组的需要,粗糙的表面可以提供一定的雾度,也就是对光有一定的散射作用,同时也可以防止层之间的光学粘连,但是不利的是正视中心亮度会稍低于底面光华的型号。&BR&
不同的模组设计需要不同的增亮薄膜,如果您对具体如何选择薄膜,或者每种薄膜的性能规格感兴趣,可以直接和3M中国光学事业部门的工程师联系。您的需求会得到满意的回复。&p&&/p&&/P&大多数的人仍然对偏光膜这个名词感到陌生而不很清楚,故在此先对偏极光的现象及基本原理稍做说明。偏极光人类对光的了解依序可分成以下四个重要阶段:1.十七世纪中,牛顿首先开始对光做有系统的研究,他发现到所谓的白光(White Light)是由所有的色光(Colored Light)混合而成。为了要解释这个现象,就有许多不同的理论衍生出来。2.十九世纪初,杨氏(Thomas Young)利用波动理论成功的解释了大部分的光学现象如反射、折射和绕射等。3.1873年,马克斯威尔发现光波是电磁波,其中它的电波和磁波是相依相存不能分开的,电场(E)、磁场(H)与电磁波进行的方向(k)这三者是呈相互垂直的关系。图24.二十世纪初,爱因斯坦发现光的能量要用粒子学说才能解释,因而衍生出量子学。换言之,光同时具有波动及粒子两种特性。因为偏极光的理论是用波动学来解释的,所以往后的讨论都将光视为电磁波,并且为了简化易懂,我们只考虑其电场向量E。非偏极光的E可以用图2表示,图2中许多对称等长的辐射线表示E在E、H所组成的平面上振动,并且在各方向振动的机会均等。当E的分布不均时就称之为偏极化(Polarization),如图3所示为部份偏极光,当E只在一个方向振动时则称之为线性偏极光(图4)。从向量的观点来看,当图2中各方向的向量投影到X和Y两个相互垂直的坐标轴上后,非偏极光可以分解为两条相垂直的线性偏极光(图5)。图2:非偏极光图3:部份偏极光图4:线性偏极光图5:相互垂直的线性偏极光偏极光的制造一般而言,制造偏极光的方法是由以下三个步骤:1.制造普通非偏极光(图2)。2.分解此非偏极光为两个相互垂直的线性偏极光(图5)。3.舍弃一条偏极光,应用另一条偏极光(图4)。能将非偏极光分解为两条偏极光,而舍弃其一的仪器称之为起偏器(Polarizer),起偏器可以利用如吸收、反射、折射、绕射等光学效应来产生偏极光。一般较常用的起偏器种类有以下数种:35偏极光与偏光膜的基本原理_偏光膜(1) 反射型当光线斜射入玻璃表面时,其反射光将被部分偏极化。利用多层玻璃的连续反射效果即可将非偏极光转为线性偏极光。(2) 复屈折型将两片方解石晶体接合,入射光线会被分解为两道偏极光,称为平常光与非常光。(3) 二色性微晶型将具有二色性的微小晶体有规则地吸附排列在透明的薄片上,这是人工第一次做出偏光膜的方法。(4) 高分子二色性型利用透光性良好的高分子薄膜,将膜内分子加以定向,再吸着具有二色性的物质,此为现今生产偏光膜最主要的方法。这类吸收式的起偏器都是以膜(Film)或是板(Plate or Sheet)的形式存在,因此,通常又称之为偏光膜(Polarizing Film)或偏光板(Polarizing Plate or Sheet)。英文上另外一个更通俗的称呼是Polarizing Filter。偏光膜的起源偏光膜是由美国拍立得公司(Polaroid)创始人兰特(Edwin H. Land)于1938年所发明。六十年后的今天,虽然偏光膜在生产技巧和设备上有了许多的改进,但在制程的基本原理和使用的材料上仍和六十年前完全一样。因此,在说明偏光膜的制程原理之前,先简单的叙述一下兰特当时是在什么情况下得到灵感,相信这有助于全面了解偏光膜的制程。兰特于1926年在哈佛大学念书时看了一篇由英国的一位医生Dr. Herapath在1852年发表的论文,内容提到Dr. Herapath的一位学生Mr. Phelps曾不小心把碘掉入the solution disulfate of quinine,他发现立即就有许多小的绿色晶体产生,Dr. Herapath于是将这些晶体放在显微镜下观察,发现如下图所示:当两片晶体相重迭时,其光的透过度会随晶体相交的角度而改变,当它们是相互垂直时,光则被完全吸收(图6);相互平行时,光可完全透过(图7)。图6:光被完全吸收图
7:光可完全透过这些碘化合物的晶体非常小,所以在实际应用上有了很大的限制,Dr. Herapath花了将近十年的时间来研究如何才能做出较大的偏光晶体,可是他并没有成功。因此,兰特认为这条路可能是不可行的,于是他采用了以下的方式:●兰特把大颗粒晶体研磨(ball mill)成微小晶体,并使这些小晶体悬浮在液体中。 ●将一塑料片放入上述的悬浮液中,然后再放入磁场或电场中定向。●将此塑料片从悬浮液中取出,偏光晶体就会附盖在塑料片的表面上。●将此塑料片留在磁场或电场中,干燥后就成为偏光膜。兰特的方法是将许多小的偏光晶体,有规则的排列好,这就相当于一个大的偏光晶体。他应用上述的方法,在1928年成功的做出了最早问世的偏光膜、J片。这种方法的缺点是费时、成本高和模糊不透明。但兰特已经发现了制造偏光膜的几个重要因素:(1)碘 (2)高分子 (3)定向(Orientation)。经过不断的研究改进,兰特终于在1938年发明了到现在还在沿用的制造方法,其基本原理将于下节中讨论。偏光膜的工作原理时下最通用的偏光膜是兰特在1938年所发明的H片,其制法如下:首先把一张柔软富化学活性的透明塑料板(通常用PVA)浸渍在I2 / KI的水溶液中,几秒之内许多碘离子扩散渗入内层的PVA,微热后用人工或机械拉伸,直到数倍长度,PVA板变长同时也变得又窄又薄,PVA分子本来是任意角度无规则性分布的,受力拉伸后就逐渐一致地偏转于作用力的方向,附着在PVA上的碘离子也跟随着有方向性,形成了碘离子的长链。因为碘离子有很好的起偏性,它可以吸收平行于其排列方向的光束电场分量,只让垂直方向的光束电场分量通过,利用这样的原理就可制造偏光膜(如图8)。图8偏光膜的种类及发展现今所使用偏光膜的种类偏光膜的应用范围很广,不但能使用在LCD做为偏光材料,亦可用于太阳眼镜、防眩护目镜、摄影器材之滤光镜、汽车头灯防眩处理及光量调整器,其它尚有偏光显微镜与特殊医疗用眼镜。为了满足轻量化及使用容易的要求,所以偏光膜的选择以高分子二色性型为主,这型起偏材料的种类有四:(1) 金属偏光膜将金、银、铁等金属盐吸附在高分子薄膜上,再加以还原,使棒状金属有起偏的能力,现在已不使用这种方法生产。(2) 碘系偏光膜PVA与碘分子所组成,为现今生产偏光膜最主要的方法。(3) 染料系偏光膜将具有二色性的有机染料吸着在PVA上,并加以延伸定向,使之具有偏旋光性能。(4) 聚乙烯偏光膜用酸为触媒,将PVA脱水,使PVA分子中含一定量乙烯结构,再加以延伸定向,使之具有偏旋光性能。偏光膜的构造高分子膜在经过延伸之后,通常机械性质会降低,变得易碎裂。所以在偏光基体(PVA)延伸完后,要在两侧贴上三醋酸纤维(TAC)所组成的透明基板,一方面可做保护,一方面则可防止膜的回缩。此外,在基板外层可再加一层离型膜及保护膜,以方便与液晶槽贴合(如图十三)。图十三:偏光膜的构造简图LCD用偏光膜的质量特性由于LCD的显示非发光型,为了达到显示器明亮、易辨识的要求,偏光膜就必须具有清晰、高透过及高偏旋光性。近来LCD的使用愈来愈广泛,如民生、军事、高科技等。因应LCD的多样化及耐用性的提升,必须加强偏光膜的耐久性及耐旋光性。另外、在外观特性上,配合LCD画素的提高,偏光膜的表面必须是平滑且高精细化;若是在高温高湿的环境之下长时间使用,也必须维持偏旋光性能,且所用的黏着剂其安定性也是要求的要点之一。通常在偏光膜的制造过程中,都是在无尘室进行:1.由于偏光膜的素材为PVA及TAC,所以其上不可有异物及未溶的树脂。2.在偏光膜的贴合过程中,不可在涂胶、贴合及加工时有任何异物混入。3.保护膜或离型膜等材料不可有任何缺陷。4.在成品的表面及切断面,或包装袋上不可有任何异物附着混入。若无法满足上述条件,则无法做出高解析、大尺寸、高精细化的偏光膜。LCD用偏光膜的发展(1) 碘系偏光膜PVA及碘所构成的偏光膜长久以来都在LCD的市场上占有相当大的比例。现今材料与延伸技术不断改良下偏光度及透过率都相当接近理论值(偏光度100%;透过率50%)。(2) 耐久性偏光膜使用染料配方让偏光膜具有耐高温高湿、耐光等特性,大多使用在车、船舶或飞机用的LCD上。但偏光率不及碘系且价格昂贵是其缺点。现今发展是藉由PVA的延伸配向及开发在可见光区有均匀吸收的高偏旋光性能染料分子,其偏旋光性能已可与碘系偏光膜相当,唯价格方面仍比碘系偏光膜高。(3) 光学补偿膜随着LCD产品技术愈来愈进步,故针对偏光膜之着色、视角、漏光等等要求相对提高,因此需要各种光学补偿膜去做补偿。例如(STN-LCD)因液晶分子之扭转超过90度造成使用直线偏光之偏光膜会有着色现象出现,其解决方法为加上一片位相差膜。表面处理表面加工处理可增加偏光膜的光学及机械性能。现今为了满足LCD多样化的要求,具有复合功能的偏光膜已在市场上销售。35偏极光与偏光膜的基本原理_偏光膜1. 抗反射(AR)处理当光经过偏光膜的表面时,会有5%左右的反射损失,由于光度的损失及反射光将造成LCD辨识度的降低。改善的方法是在偏光膜的表面蒸镀上一层金属膜,利用光的干涉原理来降低反射值,将反射率降至1%以下。(2) 抗眩(AG)处理为了避免光线被过度集中,将偏光膜的表面加工做成凹凸状,将光线均匀地分散,可达到防眩的效果。有经AG处理,其表面可达铅笔3H硬度较耐刮,另雾度高可适用于大尺寸产品(大于12.1”),主要是因LCD之背光源强的关系。另外随着LCD之分辨率要求增加如UXGA级(1600 x 1200)对AG要求更细致化处理,目前偏光板制造商亦开始注意到此方面,相信最近会有对应产品供市场评估。偏极光与偏光膜的基本原理时间:关键词:极光 偏光 基本 原理大多数的人仍然对偏光膜这个名词感到陌生而不很清楚,故在此先对偏极光的现象及基本原理稍做说明。偏极光人类对光的了解依序可分成以下四个重要阶段:1.十七世纪中,牛顿首先开始对光做有系统的研究,他发现到所谓的白光(White Light)是由所有的色光(Colored Light)混合而成。为了要解释这个现象,就有许多不同的理论衍生出来。2.十九世纪初,杨氏(Thomas Young)利用波动理论成功的解释了大部分的光学现象如反射、折射和绕射等。3.1873年,马克斯威尔发现光波是电磁波,其中它的电波和磁波是相依相存不能分开 的,电场(E)、磁场(H)与电磁波进行的方向(k)这三者是呈相互垂直的关系。图14.二十世纪初,爱因斯坦发现光的能量要用粒子学说才能解释,因而衍生出量子学。换言之,光同时具有波动及粒子两种特性。因为偏极光的理论是用波动学来解释的,所以往后的讨论都将光视为电磁波,并且为了简化易懂,我们只考虑其电场向量E。非偏极光的E可以用图2表示,图2中许多对称等长的辐射线表示E在E、H所组成的平面上振动,并且在各方向振动的机会均等。当E的分布不均时就称之为偏极化(Polarization),如图3所示为部份偏极光,当E只在一个方向振动时则称之为线性偏极光(图4)。从向量的观点来看,当图2中各方向的向量投影到X和Y两个相互垂直的坐标轴上后,非偏极光可以分解为两条相垂直的线性偏极光(图5)。图2:非偏极光图3:部份偏极光图4:线性偏极光图5:相互垂直的线性偏极光偏极光的制造一般而言,制造偏极光的方法是由以下三个步骤:1.制造普通非偏极光(图2)。2.分解此非偏极光为两个相互垂直的线性偏极光(图5)。3.舍弃一条偏极光,应用另一条偏极光(图4)。能将非偏极光分解为两条偏极光,而舍弃其一的仪器称之为起偏器(Polarizer),起偏器可以利用如吸收、反射、折射、绕射等光学效应来产生偏极光。一般较常用的起偏器种类有以下数种:(1) 反射型当光线斜射入玻璃表面时,其反射光将被部分偏极化。利用多层玻璃的连续反射效果即可将非偏极光转为线性偏极光。(2) 复屈折型将两片方解石晶体接合,入射光线会被分解为两道偏极光,称为平常光与非常光。(3) 二色性微晶型将具有二色性的微小晶体有规则地吸附排列在透明的薄片上,这是人工第一次做出偏光膜的方法。(4) 高分子二色性型利用透光性良好的高分子薄膜,将膜内分子加以定向,再吸着具有二色性的物质,此为现今生产偏光膜最主要的方法。这类吸收式的起偏器都是以膜(Film)或是板(Plate or Sheet)的形式存在,因此,通常又称之为偏光膜(Polarizing Film)或偏光板(Polarizing Plate or Sheet)。英文上另外一个更通俗的称呼是Polarizing Filter。偏光膜的起源偏光膜是由美国拍立得公司(Polaroid)创始人兰特(Edwin H. Land)于1938年所发明。六十年后的今天,虽然偏光膜在生产技巧和设备上有了许多的改进,但在制程的基本原理和使用的材料上仍和六十年前完全一样。因此,在说明偏光膜的制程原理之前,先简单的叙述一下兰特当时是在什么情况下得到灵感,相信这有助于全面了解偏光膜的制程。兰特于1926年在哈佛大学念书时看了一篇由英国的一位医生Dr. Herapath在1852年发表的论文,内容提到Dr. Herapath的一位学生Mr. Phelps曾不小心把碘掉入the solution disulfate of quinine,他发现立即就有许多小的绿色晶体产生,Dr. Herapath于是将这些晶体放在显微镜下观察,发现如下图所示:当两片晶体相重叠时,其光的透过度会随晶体相交的角度而改变,当它们是相互垂直时,光则被完全吸收(图6);相互平行时,光可完全透过(图7)。图6:光被完全吸收图7:光可完全透过这些碘化合物的晶体非常小,所以在实际应用上有了很大的限制,Dr. Herapath花了将近十年的时间来研究如何才能做出较大的偏光晶体,可是他并没有成功。因此,兰特认为这条路可能是不可行的,于是他采用了以下的方式:●兰特把大颗粒晶体研磨(ball mill)成微小晶体,并使这些小晶体悬浮在液体中。●将一塑料片放入上述的悬浮液中,然后再放入磁场或电场中定向。●将此塑料片从悬浮液中取出,偏光晶体就会附盖在塑料片的表面上。●将此塑料片留在磁场或电场中,干燥后就成为偏光膜。兰特的方法是将许多小的偏光晶体,有规则的排列好,这就相当于一个大的偏光晶体。他应用上述的方法,在1928年成功的做出了最早问世的偏光膜、J片。这种方法的缺点是费时、成本高和模糊不透明。但兰特已经发现了制造偏光膜的几个重要因素:(1)碘 (2)高分子(3)定向(Orientation)。经过不断的研究改进,兰特终于在1938年发明了到现在还在沿用的制造方法,其基本原理将于下节中讨论。偏光膜的工作原理35偏极光与偏光膜的基本原理_偏光膜时下最通用的偏光膜是兰特在1938年所发明的H片,其制法如下:首先把一张柔软富化学活性的透明塑料板(通常用PVA)浸渍在I2 / KI的水溶液中,几秒之内许多碘离子扩散渗入内层的PVA,微热后用人工或机械拉伸,直到数倍长度,PVA板变长同时也变得又窄又薄,PVA分子本来是任意角度无规则性分布的,受力拉伸后就逐渐一致地偏转于作用力的方向,附着在PVA上的碘离子也跟随着有方向性,形成了碘离子的长链。因为碘离子有很好的起偏性,它可以吸收平行于其排列方向的光束电场分量,只让垂直方向的光束电场分量通过,利用这样的原理就可制造偏光膜(如图8)。图8偏光膜的种类及发展现今所使用偏光膜的种类偏光膜的应用范围很广,不但能使用在LCD做为偏光材料,亦可用于太阳眼镜、防眩护目镜、摄影器材之滤光镜、汽车头灯防眩处理及光量调整器,其它尚有偏光显微镜与特殊医疗用眼镜。为了满足轻量化及使用容易的要求,所以偏光膜的选择以高分子二色性型为主,这型起偏材料的种类有四:(1) 金属偏光膜将金、银、铁等金属盐吸附在高分子薄膜上,再加以还原,使棒状金属有起偏的能力,现在已不使用这种方法生产。(2) 碘系偏光膜PVA与碘分子所组成,为现今生产偏光膜最主要的方法。(3) 染料系偏光膜将具有二色性的有机染料吸着在PVA上,并加以延伸定向,使之具有偏旋光性能。(4) 聚乙烯偏光膜用酸为触媒,将PVA脱水,使PVA分子中含一定量乙烯结构,再加以延伸定向,使之具有偏旋光性能。
偏光膜的构造高分子膜在经过延伸之后,通常机械性质会降低,变得易碎裂。所以在偏光基体(PVA)延伸完后,要在两侧贴上三醋酸纤维(TAC)所组成的透明基板,一方面可做保护,一方面则可防止膜的回缩。此外,在基板外层可再加一层离型膜及保护膜,以方便与液晶槽贴合(如图9)。图9:偏光膜的构造简图LCD用偏光膜的品质特性由于LCD的显示非发光型,为了达到显示器明亮、易辨识的要求,偏光膜就必须具有清晰、高透过及高偏旋光性。近来LCD的使用愈来愈广泛,如民生、军事、高科技等。因应LCD的多样化及耐用性的提升,必须加强偏光膜的耐久性及耐旋光性。另外、在外观特性上,配合LCD画素的提高,偏光膜的表面必须是平滑且高精细化;若是在高温高湿的环境之下长时间使用,也必须维持偏旋光性能,且所用的黏着剂其安定性也是要求的要点之一。通常在偏光膜的制造过程中,都是在无尘室进行:1.由于偏光膜的素材为PVA及TAC,所以其上不可有异物及未溶的树脂。2.在偏光膜的贴合过程中,不可在涂胶、贴合及加工时有任何异物混入。3.保护膜或离型膜等材料不可有任何缺陷。4.在成品的表面及切断面,或包装袋上不可有任何异物附着混入。若无法满足上述条件,则无法做出高解析、大尺寸、高精细化的偏光膜。LCD用偏光膜的发展(1) 碘系偏光膜PVA及碘所构成的偏光膜长久以来都在LCD的市场上占有相当大的比例。现今材料与延伸技术不断改良下偏光度及透过率都相当接近理论值(偏光度100%;透过率50%)。(2) 耐久性偏光膜使用染料配方让偏光膜具有耐高温高湿、耐光等特性,大多使用在车、船舶或飞机用的LCD上。但偏光率不及碘系且价格昂贵是其缺点。现今发展是藉由PVA的延伸配向及开发在可见光区有均匀吸收的高偏旋光性能染料分子,其偏旋光性能已可与碘系偏光膜相当,唯价格方面仍比碘系偏光膜高。(3) 光学补偿膜随着LCD产品技术愈来愈进步,故针对偏光膜之着色、视角、漏光等等要求相对提高,因此需要各种光学补偿膜去做补偿。例如(STN-LCD)因液晶分子之扭转超过90度造成使用直线偏光之偏光膜会有着色现象出现,其解决方法为加上一片位相差膜。表面处理表面加工处理可增加偏光膜的光学及机械性能。现今为了满足LCD多样化的要求,具有复合功能的偏光膜已在市场上销售。1. 抗反射(AR)处理当光经过偏光膜的表面时,会有5%左右的反射损失,由于光度的损失及反射光将造成LCD辨识度的降低。改善的方法是在偏光膜的表面蒸镀上一层金属膜,利用光的干涉原理来降低反射值,将反射率降至1%以下。2. 抗眩(AG)处理为了避免光线被过度集中,将偏光膜的表面加工做成凹凸状,将光线均匀地分散,可达到防眩的效果。
有经AG处理,其表面可达铅笔3H硬度较耐刮,另雾度高可适用于大尺寸产品(大于12.1”),主要是因LCD之背光源强的关系。另外随着LCD之分辨率要求增加如UXGA级(1600 x 1200)对AG要求更细致化处理,目前偏光板制造商亦开始注意到此方面,相信最近会有对应产品供市场评估。偏振光(Polarization)光是一种电磁波,电磁波是横波。而振动方向和光波前进方向构成的平面叫做振动面,光的振动面只限于某一固定方向的,叫做平面偏振光或线偏振光。通常光源发出的光,它的振动面不只限于一个固定方向而是在各个方向上均匀分布的。这种光叫做自然光。光的偏振性是光的横波性的最直接,最有力的证据,光的偏振现象可以借助于实验装置进行观察,P1、P2是两块同样的偏振片。通过一片偏振片p1直接观察自然光(如灯光或阳光),透过偏振片的光虽然变成了偏振光,但由于人的眼睛没有辨别偏振光的能力,故无法察觉。如果我们把偏振片P1的方位固定,而把偏振片P2缓慢地转动,就可发现透射光的强度随着P2转动而出现周期性的变化,而且每转过90°就会重复出现发光强度从最大逐渐减弱到最暗;继续转动P2则光强又从接近于零逐渐增强到最大。由此可知,通过P1的透射光与原来的入射光性质是有所不同的,这说明经P1的透射光的振动对传播方向不具有对称性。自然光经过偏振片后,改变成为具有一定振动方向的光。这是由于偏振片中存在着某种特征性的方向,叫做偏振化方向,偏振片只允许平行于偏振化方向的振动通过,同时吸收垂直于该方向振动的光。通过偏振片的透射光,它的振动限制在某一振动方向上,我们把第一个偏振片P1叫做“起偏器”,它的作用是把自然光变成偏振光,但是人的眼睛不能辨别偏振光。必须依靠第二片偏振片P2去检查。旋转P2,当它的偏振化方向与偏振光的偏振面平行时,偏振光可顺利通过,这时在P2的后面有较亮的光。当P2的偏振方向与偏振光的偏振面垂直时,偏振光不能通过,在P2后面也变暗。第二个偏振片帮助我们辨别出偏振光,因此它也称为“检偏器”。一、自然光和偏振光光波是横波,即光波矢量的振动方向垂直于光的传播方向。通常,光源发出的光波,其光波矢量的振动在垂直于光的传播方向上作无规则取向,但统计平均来说,在空间所有可能的方向上,光波矢量的分布可看作是机会均等的,它们的总和与光的传播方向是对称的,即光矢量具有轴对称性、均匀分布、各方向振动的振幅相同,这种光就称为自然光。 偏振光是指光矢量的振动方向不变,或具有某种规则地变化的光波。按照其性质,偏振光又可分为平面偏振光(线偏光)、圆偏振光和椭圆偏振光、部分偏振光几种。如果光波电矢量的振动方向只局限在一确定的平面内,则这种偏振光称为平面偏振光,若轨迹在传播过程中为一直线,故又称线偏振光。如果光波电矢量随时间作有规则地改变,即电矢量末端轨迹在垂直轨迹在传播过程中为一直线,故又称线偏振光。如果光波电矢量随时间作有规则地改变,即电矢量末端轨迹在垂直于传播方向的平面上呈圆形或椭圆形,则称为圆偏振光或椭圆偏振光。如果光波电矢量的振动在传播过程中只是在某一确定的方向上占有相对优势,这种偏振光就称为部分偏振光。二、平面偏振光的产生和特性通过反射、多次折射、双折射和选择性吸收的方法可以获得平面偏振光。本实验采用具有选择吸收的偏振片产生平面偏振光。偏振片是用人工方法制成的薄膜,是用特殊方法使选择性吸收很强的微粒晶体在透明胶层中作有规则排列而制成的,它允许透过某一电矢量振动方向的光(此方向称为偏振化方向),而吸收与其垂直振动的光,即具有二向色性. 因此自然光通过偏振片后,透射光基本上成为平面偏振光。由于偏振片易于制作,所以它是普遍使用的偏振器。偏振光示意图在高中我们学过,光是一种电磁波,是由与传播方向垂直的电场和磁场交替转换的振动形成的。这种振动方向与传播方向垂直的波我们称之为横波。声波是靠空气或别的媒质前后压缩振动传播的,它的振动方向与传播相同,这类波我们称之为纵波。横波有一个特性,就是它的振动是有极性的。在与传播方向垂直的平面上,它可以向任一方向振动。我们一般把光波电场振动方向作为光振动方向。如果一束光线都在同一方向上振动,我们就称它们是偏振光,或严格一点,称为完全偏振光。一般的自然光在各个方向振动是均匀分布的,是非偏振光。但是,光滑的非金属表面在一定角度下(称为布儒斯特角,与物质的折射率有关)反射形成的眩光是偏振光。偏离了这个角度,就会有部分非偏振光混杂在偏振光里。我们称这种光线为部分偏振光。部分偏振光是有程度的。偏离的角度越大,偏振光的成分越少,最终成为非偏振光。欢迎您转载分享:
更多精彩:

我要回帖

更多关于 显示器偏光膜更换 的文章

 

随机推荐