反比例函数双曲线对称轴轴为什么是y= x

中考对于数学考查的知识点都是固定的,其中关于函数部分是中考的必考知识点,同时难度也相对较大,需要同学们格外重视!本篇文章帮助大家整理了关于一次函数和二次函数的重要知识点,让大家能够对这部分知识点有系统的了解。这其中概括的都是中考常考的知识点,建议大家收藏起来,复习时候使用!一次函数一、定义与定义式:自变量x和因变量y有如下关系:y=kx+b;则此时称y是x的一次函数。特别地,当b=0时,y是x的正比例函数。即:y=kx (k为常数,k≠0)二、一次函数的性质:1.y的变化值与对应的x的变化值成正比例,比值为k;即:y=kx+b (k为任意不为零的实数 b取任何实数)2.当x=0时,b为函数在y轴上的截距。三、一次函数的图像及性质:1.作法与图形:通过如下3个步骤(1)列表;(2)描点;(3)连线,可以作出一次函数的图像——一条直线。因此,作一次函数的图像只需知道2点,并连成直线即可。(通常找函数图像与x轴和y轴的交点)2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。3.k,b与函数图像所在象限:当k>0时,直线必通过一、三象限,y随x的增大而增大;当k<0时,直线必通过二、四象限,y随x的增大而减小。当b>0时,直线必通过一、二象限;当b=0时,直线通过原点当b<0时,直线必通过三、四象限。特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图像。这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。四、确定一次函数的表达式:已知点A(x1,y1);B(x2,y2),请确定过点A、B的一次函数的表达式。(1)设一次函数的表达式(也叫解析式)为y=kx+b。(2)因为在一次函数上的任意一点P(x,y),都满足等式y=kx+b。所以可以列出2个方程:y1=kx1+b …… ① 和y2=kx2+b …… ②(3)解这个二元一次方程,得到k,b的值。(4)最后得到一次函数的表达式。五、一次函数在生活中的应用:1.当时间t一定,距离s是速度v的一次函数。s=vt。2.当水池抽水速度f一定,水池中水量g是抽水时间t的一次函数。设水池中原有水量S。g=S-ft。六、常用公式:1.求函数图像的k值:(y1-y2)/(x1-x2)2.求与x轴平行线段的中点:|x1-x2|/23.求与y轴平行线段的中点:|y1-y2|/24.求任意线段的长:√(x1-x2)^2+(y1-y2)^2 (注:根号下(x1-x2)与(y1-y2)的平方和)二次函数一、定义与定义表达式一般地,自变量x和因变量y之间存在如下关系:y=ax^2+bx+c;(a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下,IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大.)则称y为x的二次函数。二次函数表达式的右边通常为二次三项式。二、二次函数的三种表达式一般式:y=ax^2+bx+c(a,b,c为常数,a≠0)顶点式:y=a(x-h)^2+k [抛物线的顶点P(h,k)]交点式:y=a(x-x1)(x-x2) [仅限于与x轴有交点A(x1,0)和 B(x2,0)的抛物线]注:在3种形式的互相转化中,有如下关系:h=-b/2ak=(4ac-b^2)/4a x?,x?=(-b±√b^2-4ac)/2a三、二次函数的图像在平面直角坐标系中作出二次函数y=x^2的图像,可以看出,二次函数的图像是一条抛物线。四、抛物线的性质1.抛物线是轴对称图形。对称轴为直线x= -b/2a。对称轴与抛物线唯一的交点为抛物线的顶点P。特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)2.抛物线有一个顶点P,坐标为P( -b/2a ,(4ac-b^2)/4a );当-b/2a=0时,P在y轴上;当Δ= b^2-4ac=0时,P在x轴上。3.二次项系数a决定抛物线的开口方向和大小。当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。|a|越大,则抛物线的开口越小。4.一次项系数b和二次项系数a共同决定对称轴的位置。当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右。5.常数项c决定抛物线与y轴交点。抛物线与y轴交于(0,c)6.抛物线与x轴交点个数Δ= b^2-4ac>0时,抛物线与x轴有2个交点。Δ= b^2-4ac=0时,抛物线与x轴有1个交点。Δ= b^2-4ac<0时,抛物线与x轴没有交点。X的取值是虚数(x= -b±√b^2-4ac 的值的相反数,乘上虚数i,整个式子除以2a)五、二次函数与一元二次方程特别地,二次函数(以下称函数)y=ax^2+bx+c,当y=0时,二次函数为关于x的一元二次方程(以下称方程),即ax^2+bx+c=0;此时,函数图像与x轴有无交点即方程有无实数根。函数与x轴交点的横坐标即为方程的根。1.二次函数y=ax^2,y=a(x-h)^2,y=a(x-h)^2+k,y=ax^2+bx+c(各式中,a≠0)的图象形状相同,只是位置不同,它们的顶点坐标及对称轴如下:解析式y=ax^2,顶点坐标(0,0),对称轴x=0;解析式y=a(x-h)^2,顶点坐标(h,0),对称轴x=h;解析式y=a(x-h)^2+k,顶点坐标(h,k) ,对称轴x=h;解析式y=ax^2+bx+c,顶点坐标(-b/2a,[4ac-b^2]/4a),对称轴 x=-b/2a;当h>0时,y=a(x-h)^2的图象可由抛物线y=ax^2向右平行移动h个单位得到,当h<0时,则向左平行移动|h|个单位得到.当h>0,k>0时,将抛物线y=ax^2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)^2+k的图象;当h>0,k<0时,将抛物线y=ax^2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)^2+k的图象;当h<0,k>0时,将抛物线向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)^2+k的图象;当h<0,k<0时,将抛物线向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)^2+k的图象;因此,研究抛物线 y=ax^2+bx+c(a≠0)的图象,通过配方,将一般式化为y=a(x-h)^2+k的形式,可确定其顶点坐标、对称轴,抛物线的大体位置就很清楚了.这给画图象提供了方便.2.抛物线y=ax^2+bx+c(a≠0)的图象:当a>0时,开口向上,当a<0时开口向下,对称轴是直线x=-b/2a,顶点坐标是(-b/2a,[4ac-b^2]/4a).3.抛物线y=ax^2+bx+c(a≠0),若a>0,当x ≤ -b/2a时,y随x的增大而减小;当x ≥ -b/2a时,y随x的增大而增大.若a<0,当x ≤ -b/2a时,y随x的增大而增大;当x ≥ -b/2a时,y随x的增大而减小.4.抛物线y=ax^2+bx+c的图象与坐标轴的交点:(1)图象与y轴一定相交,交点坐标为(0,c);(2)当△=b^2-4ac>0,图象与x轴交于两点A(x1,0)和B(x2,0),其中的x1,x2是一元二次方程ax^2+bx+c=(a≠0)的两根.这两点间的距离AB=|x1-x2|当△=0.图象与x轴只有一个交点;当△<0.图象与x轴没有交点.当a>0时,图象落在x轴的上方,x为任何实数时,都有y>0;当a<0时,图象落在x轴的下方,x为任何实数时,都有y<0.5.抛物线y=ax^2+bx+c的最值:如果a>0(a<0),则当x= -b/2a时,y最小(大)值=(4ac-b^2)/4a.顶点的横坐标,是取得最值时的自变量值,顶点的纵坐标,是最值的取值.6.用待定系数法求二次函数的解析式(1)当题给条件为已知图象经过三个已知点或已知x、y的三对对应值时,可设解析式为一般形式:y=ax^2+bx+c(a≠0).(2)当题给条件为已知图象的顶点坐标或对称轴时,可设解析式为顶点式:y=a(x-h)^2+k(a≠0).(3)当题给条件为已知图象与x轴的两个交点坐标时,可设解析式为两根式:y=a(x-x?)(x-x?)(a≠0).7.二次函数知识很容易与其它知识综合应用,而形成较为复杂的综合题目。因此,以二次函数知识为主的综合性题目是中考的热点考题,往往以大题形式出现.反比例函数形如 y=k/x(k为常数且k≠0) 的函数,叫做反比例函数。自变量x的取值范围是不等于0的一切实数。反比例函数图像性质:反比例函数的图像为双曲线。由于反比例函数属于奇函数,有f(-x)=-f(x),图像关于原点对称。另外,从反比例函数的解析式可以得出,在反比例函数的图像上任取一点,向两个坐标轴作垂线,这点、两个垂足及原点所围成的矩形面积是定值,为∣k∣。当K>0时,反比例函数图像经过一,三象限,是减函数当K<0时,反比例函数图像经过二,四象限,是增函数反比例函数图像只能无限趋向于坐标轴,无法和坐标轴相交。知识点:1.过反比例函数图象上任意一点作两坐标轴的垂线段,这两条垂线段与坐标轴围成的矩形的面积为
k
。2. 对于双曲线y=k/x ,若在分母上加减任意一个实数 (即 y=k/(x±m)m为常数),就相当于将双曲线图象向左或右平移一个单位。(加一个数时向左平移,减一个数时向右平移)了解了以上函数的知识点,建议大家也不要忘记做相应的练习题进行巩固哦~这里给大家推荐天星教育的《中考帮》针对各个地区的中考量身设计,全面概括中考的所有知识点,帮你中考复习,助你中考逆袭!

时间:2020-08-30 16:18:25
初中知识
我要投稿
反比例函数知识点
  反比例函数,存在感极强,年年会遇到它,熟记其性质并灵活运用是解题的关键。以下是小编整理的关于反比例函数知识点,希望大家认真阅读!
  反比例函数
  反比例函数定义
  一般地,如果两个变量x、y之间的关系可以表示成y=k/x (k为常数,k≠0)的形式,那么称y是x的反比例函数。 因为y=k/x是一个分式,所以自变量X的取值范围是X≠0。而y=k/x有时也被写成xy=k或y=k·x^(-1)。
  反比例函数图像性质
  反比例函数的图像为双曲线。
  1.当 k >0时,反比例函数图像经过一,三象限,每一象限内,从左往右,y随x的增大而减小。
  2.当k <0时,反比例函数图像经过二,四象限,每一象限内,从左往右,y随x的增大而增大。
  反比例函数图像是中心对称图形,对称中心是原点;反比例函数的'图像也是轴对称图形,其对称轴为y=x和y=-x;反比例函数图像上的点关于坐标原点对称。
  知识点
  1.过反比例函数图象上任意一点作两坐标轴的垂线段,这两条垂线段与坐标轴围成的矩形的面积为
k

  2.对于双曲线y= k/x,若在分母上加减任意一个实数m (即 y=k/x(x±m)m为常数),就相当于将双曲线图象向左或右平移m个单位。(加一个数时向左平移,减一个数时向右平移)【反比例函数知识点】相关文章:反比例函数教案07-31反比例函数图像教案07-31反比例函数练习题07-31初中数学反比例函数复习题10-18反比例函数的图像和性质教案07-31一次函数图像应用知识点07-28Java认证考试知识点:Java时间类的函数09-21初三数学二次函数知识点07-29成人高考专升本高等数学知识点:函数09-30

展开全部反比例函数的图像,的对称轴有两条Y=X
Y=-X一反比例函数图像上一点(A,B)则关于Y=X对称的点(B,A)关于Y=-X对称的点(-B,-A)都在同一函数图像上所以,反比例函数的图像是轴对称图形已赞过已踩过你对这个回答的评价是?评论
收起',getTip:function(t,e){return t.renderTip(e.getAttribute(t.triangularSign),e.getAttribute("jubao"))},getILeft:function(t,e){return t.left+e.offsetWidth/2-e.tip.offsetWidth/2},getSHtml:function(t,e,n){return t.tpl.replace(/\{\{#href\}\}/g,e).replace(/\{\{#jubao\}\}/g,n)}},baobiao:{triangularSign:"data-baobiao",tpl:'{{#baobiao_text}}',getTip:function(t,e){return t.renderTip(e.getAttribute(t.triangularSign))},getILeft:function(t,e){return t.left-21},getSHtml:function(t,e,n){return t.tpl.replace(/\{\{#baobiao_text\}\}/g,e)}}};function l(t){return this.type=t.type
"defaultTip",this.objTip=u[this.type],this.containerId="c-tips-container",this.advertContainerClass=t.adSelector,this.triangularSign=this.objTip.triangularSign,this.delaySeconds=200,this.adventContainer="",this.triangulars=[],this.motherContainer=a("div"),this.oTipContainer=i(this.containerId),this.tip="",this.tpl=this.objTip.tpl,this.init()}l.prototype={constructor:l,arrInit:function(){for(var t=0;t0}});else{var t=window.document;n.prototype.THROTTLE_TIMEOUT=100,n.prototype.POLL_INTERVAL=null,n.prototype.USE_MUTATION_OBSERVER=!0,n.prototype.observe=function(t){if(!this._observationTargets.some((function(e){return e.element==t}))){if(!t
1!=t.nodeType)throw new Error("target must be an Element");this._registerInstance(),this._observationTargets.push({element:t,entry:null}),this._monitorIntersections(),this._checkForIntersections()}},n.prototype.unobserve=function(t){this._observationTargets=this._observationTargets.filter((function(e){return e.element!=t})),this._observationTargets.length
(this._unmonitorIntersections(),this._unregisterInstance())},n.prototype.disconnect=function(){this._observationTargets=[],this._unmonitorIntersections(),this._unregisterInstance()},n.prototype.takeRecords=function(){var t=this._queuedEntries.slice();return this._queuedEntries=[],t},n.prototype._initThresholds=function(t){var e=t
[0];return Array.isArray(e)
(e=[e]),e.sort().filter((function(t,e,n){if("number"!=typeof t
isNaN(t)
t1)throw new Error("threshold must be a number between 0 and 1 inclusively");return t!==n[e-1]}))},n.prototype._parseRootMargin=function(t){var e=(t
"0px").split(/\s+/).map((function(t){var e=/^(-?\d*\.?\d+)(px|%)$/.exec(t);if(!e)throw new Error("rootMargin must be specified in pixels or percent");return{value:parseFloat(e[1]),unit:e[2]}}));return e[1]=e[1]
e[0],e[2]=e[2]
e[0],e[3]=e[3]
e[1],e},n.prototype._monitorIntersections=function(){this._monitoringIntersections
(this._monitoringIntersections=!0,this.POLL_INTERVAL?this._monitoringInterval=setInterval(this._checkForIntersections,this.POLL_INTERVAL):(r(window,"resize",this._checkForIntersections,!0),r(t,"scroll",this._checkForIntersections,!0),this.USE_MUTATION_OBSERVER&&"MutationObserver"in window&&(this._domObserver=new MutationObserver(this._checkForIntersections),this._domObserver.observe(t,{attributes:!0,childList:!0,characterData:!0,subtree:!0}))))},n.prototype._unmonitorIntersections=function(){this._monitoringIntersections&&(this._monitoringIntersections=!1,clearInterval(this._monitoringInterval),this._monitoringInterval=null,i(window,"resize",this._checkForIntersections,!0),i(t,"scroll",this._checkForIntersections,!0),this._domObserver&&(this._domObserver.disconnect(),this._domObserver=null))},n.prototype._checkForIntersections=function(){var t=this._rootIsInDom(),n=t?this._getRootRect():{top:0,bottom:0,left:0,right:0,width:0,height:0};this._observationTargets.forEach((function(r){var i=r.element,a=o(i),c=this._rootContainsTarget(i),s=r.entry,u=t&&c&&this._computeTargetAndRootIntersection(i,n),l=r.entry=new e({time:window.performance&&performance.now&&performance.now(),target:i,boundingClientRect:a,rootBounds:n,intersectionRect:u});s?t&&c?this._hasCrossedThreshold(s,l)&&this._queuedEntries.push(l):s&&s.isIntersecting&&this._queuedEntries.push(l):this._queuedEntries.push(l)}),this),this._queuedEntries.length&&this._callback(this.takeRecords(),this)},n.prototype._computeTargetAndRootIntersection=function(e,n){if("none"!=window.getComputedStyle(e).display){for(var r,i,a,s,u,l,f,h,p=o(e),d=c(e),v=!1;!v;){var g=null,m=1==d.nodeType?window.getComputedStyle(d):{};if("none"==m.display)return;if(d==this.root
d==t?(v=!0,g=n):d!=t.body&&d!=t.documentElement&&"visible"!=m.overflow&&(g=o(d)),g&&(r=g,i=p,a=void 0,s=void 0,u=void 0,l=void 0,f=void 0,h=void 0,a=Math.max(r.top,i.top),s=Math.min(r.bottom,i.bottom),u=Math.max(r.left,i.left),l=Math.min(r.right,i.right),h=s-a,!(p=(f=l-u)>=0&&h>=0&&{top:a,bottom:s,left:u,right:l,width:f,height:h})))break;d=c(d)}return p}},n.prototype._getRootRect=function(){var e;if(this.root)e=o(this.root);else{var n=t.documentElement,r=t.body;e={top:0,left:0,right:n.clientWidth
r.clientWidth,width:n.clientWidth
r.clientWidth,bottom:n.clientHeight
r.clientHeight,height:n.clientHeight
r.clientHeight}}return this._expandRectByRootMargin(e)},n.prototype._expandRectByRootMargin=function(t){var e=this._rootMarginValues.map((function(e,n){return"px"==e.unit?e.value:e.value*(n%2?t.width:t.height)/100})),n={top:t.top-e[0],right:t.right+e[1],bottom:t.bottom+e[2],left:t.left-e[3]};return n.width=n.right-n.left,n.height=n.bottom-n.top,n},n.prototype._hasCrossedThreshold=function(t,e){var n=t&&t.isIntersecting?t.intersectionRatio
0:-1,r=e.isIntersecting?e.intersectionRatio
0:-1;if(n!==r)for(var i=0;i0&&function(t,e,n,r){var i=document.getElementsByClassName(t);if(i.length>0)for(var o=0;o展开全部关于Y=X 和Y=-X两条直线对称(证明略)还关于原点成中心对称
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
为你推荐:
下载百度知道APP,抢鲜体验使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。扫描二维码下载
×个人、企业类侵权投诉
违法有害信息,请在下方选择后提交
类别色情低俗
涉嫌违法犯罪
时政信息不实
垃圾广告
低质灌水
我们会通过消息、邮箱等方式尽快将举报结果通知您。说明
做任务开宝箱累计完成0
个任务
10任务
50任务
100任务
200任务
任务列表加载中...

我要回帖

更多关于 双曲线对称轴 的文章