微纳金属探针的主要作用3D打印技术应用:AFM探针?


谈到金属3D打印,我们关注的焦点通常是SLM粉末平台选区激光熔融金属3D打印技术,而容易忽略定向能量沉积-DED技术。DED技术由激光或其他能量源在沉积区域产生熔池并高速移动,材料以粉末或丝状直接送入高温熔区,熔化后逐层沉积,称之为激光定向能量沉积3D打印技术。而DED技术分类中的激光金属粉末沉积技术(laser metal deposition-LMD),则是以激光为能量源,并以金属粉末为加工材料。
不仅仅专注于基于粉末平台的选区金属熔化3D打印技术应用。西门子对激光金属粉末沉积技术也保有积极的开发与应用心态。近日,西门子与其合作伙伴开发出一种解决方案,可以比以前更有效地提高激光金属粉末沉积技术(laser metal deposition-LMD)中金属3D打印的工艺稳定性。该解决方案为不断发展的3D打印技术打开了应用深化的大门。
图片:激光金属粉末沉积技术(laser metal deposition-LMD),来源西门子
释放速度与尺寸的局限
-独特的优势
众所周知,西门子关于3D打印的应用视野远远超出了其正在应用的涡轮燃气机及航空航天应用领域,就在去年,西门子还与Hackrod合作全球首款通过虚拟现实来设计的跑车。
西门子对于3D打印的雄心壮志需要专心致志的研发力量来推动技术与应用的发展与结合。事实上,西门子正在加强推动3D打印技术的开发工作。在位于慕尼黑的西门子企业技术(CT)实验室,激光沉积焊接的过程中逐层构建金属组件,机器以不同的速度移动激光束,有时缓慢有时快速,通过这种方式,研究人员可以平滑不均匀的位置,这样就可以最终生产出更加完美的近净形部件。
与SLM粉末平台选区激光熔融金属3D打印技术不同的是,定向能量沉积-DED技术不依赖于压力室,压力室可以保护金属3D打印过程免受周围环境的影响。对于SLM粉末平台选区激光熔融金属3D打印过程,工作区域必需首先充满惰性气体,这是一个费时的过程。而对于定向能量沉积-DED技术分类中的激光金属粉末沉积技术(laser metal deposition-LMD)来说,3D打印加工过程可以立即开始,因为惰性气体直接从激光头流出并包围粉末流和熔池。
除此之外,激光金属粉末沉积技术-LMD技术允许激光头和工件更灵活地移动,从而为增加设计自由度和生产更大的部件打开了大门 – 这在航空工业和涡轮机技术等领域具有潜在优势。
LMD通常不需要任何支撑构造,这方面与粉末平台方法相比具有显着优势。
并且激光金属沉积适合加工合金。传统制造领域,双金属复合界面的结合方式多采用机械结合型复合或冶金结合型。LMD技术相比于传统加工工艺在双金属的加工方面具有着突出的优势。
鉴于这些优势,西门子企业技术(CT)实验室正在与西门子数字工厂部门合作,在工业生产中更加牢固地提高和应用LMD技术。
图片来源:西门子
-对厚度多一点控制
但是,在LMD充分发挥其潜力之前,还有大量工作要做。例如,该过程不如SLM精确。因此,成品部件通常必需进行再加工,这就解释了为什么LMD机器通常与工业设施中的铣床相结合。这种混合3D打印系统目前在全世界范围内得到了一些应用推广,包括为飞机涡轮引擎机和滚柱轴承生产精确的部件。
考虑到定向能量沉积金属3D打印技术的这一缺点,西门子现在专注于如何使混合3D打印系统更快,更经济地运行。具体来说,他们正在研究LMD工艺的关键部分:如何更有效的控制金属层的厚度,这决定了3D打印部件的尺寸。这些厚度可能因多种原因而有所不同 – 例如,如果材料流以无计划的方式发生变化。再例如如果由机器人臂承载的打印头的速度波动,厚度也可能发生变化。
为了解决这个问题,西门子企业技术(CT)实验室正在参与名为PARADDISE的欧盟开发项目,提高LMD3D打印工艺的可控性。除西门子外,该项目的成员还包括西班牙机床制造商Ibarmia,RWTH Aachen大学和Precitec,后者是德国激光材料加工和光学测量技术专家。
亚琛工业大学为该项目的开发过程贡献了一项开创性的发明。该团队开发了一种控制技术,其中Precitec传感器可计算出已铺设的每个金属层的精确厚度。为了实现这一点,控制程序使用测量光学干涉的传感器来比较部件的计划高度与其实际高度。然后可以通过改变建造速度来调节层的厚度。这是一个标志性事件式的结果,通过这种自动调节过程,使混合3D打印设备能够更快地生产组件,因为坯料需要较少的后续工艺。并且它还需要更少的能源和材料。这反过来又降低了高质量金属部件的制造成本。
图片来源:西门子
魔猴网总结:
-DED技术突飞猛进
DED定向能量沉积3D打印技术正在整体迎来技术发展过程中的标志性事件。此前三菱电宣布开发出高精度定向能量沉积3D打印设备,2021年将实现商业化。三菱电机表示该技术的其中一个优势是显着提高了精度,与连续成型技术相比,精度提高了60%。除此之外,与传统技术相比,氧化问题可以减少20%以上,因为高温区域限于窄点形成区域。
而关于定向能量沉积3D打印设备的加工速度与精度,德国Fraunhofer激光技术研究所开发了EHLA超高速激光材料沉积技术。根据魔猴网的市场研究,该技术可用于涂层和修复金属部件。超高速激光材料沉积技术(EHLA)具有替代当前腐蚀和磨损保护方法如硬镀铬和热喷涂的潜力。并且EHLA方法加工出来的涂层是无孔的,从而改善粘合情况并降低裂纹和孔隙的发生的可能性。 除此之外,根据Fraunhofer,EHLA技术比热喷涂节约90%的材料。
除此之外,根据魔猴网的市场观察,德国Fraunhofer 激光技术研究所还正在开发基于金属线材激光沉积的创新技术(wire-based laser metal deposition,LMD-W)。

超灵敏的纳米机械仪器,如原子力显微镜(AFM)和纳米压痕仪,可以完成精细的生物力学测量,从而揭示生命活动中复杂的生物力学机制。然而,受限于机械反馈机制和有源组件的存在,目前常用的力学检测仪器仍存在体积过大、无法进行在体测量等难题。微型化的全光纤纳米机械生物探针可以弥补现有检测仪器的不足,在细胞测量、微创检查和组织弹性成像等诸多领域发挥作用。
最近,深圳大学王义平教授团队的廖常锐教授和邹梦强博士等人《极端制造》期刊上发表了题为'3D printed fiber-optic nanomechanical bioprobe'的研究论文。
图1 FONP的结构示意图和纳米力学检测原理。(a) 光纤端面微悬臂梁生物探针结构示意图;(b) FONP的光学相位解调原理。
该团队开发了一种微型化的光纤纳米机械生物探针(FONP),成功应用于单细胞及小鼠活体组织的生物力学性能检测(图1)。利用飞秒激光3D打印技术和力学结构优化算法,该团队成功研制了弹性系数可调谐的微悬臂梁探针,解决了FONP与待测样品的刚度失配问题,实现了对洋葱细胞、MCF-7乳腺癌细胞和小鼠活体组织等多种异质生物材料的力学性能检测。FONP传感系统有望为生物力学研究提供一种全新的介入式检测方法,为全光纤型AFM的发展奠定了基础。
....
论文亮点
1.飞秒激光3D打印一体化制备光纤端面微悬臂梁探针;
2.通过力学结构优化实现了刚度可调谐微悬臂梁探针的可控制备;
3.通过光学相位解调实现了纳牛顿(nN)级的超高力学检测分辨率;
4.实现了癌细胞和小鼠活体组织的生物力学性能在线检测。
研究背景
随着微加工技术的发展,微操作逐渐得到了更广泛的应用。在微观世界中,如果接触力得不到可靠的检测和有效的控制,微观物体很容易损坏。尤其在细胞检测、组织成像和微创检查等领域,迫切需要精确控制和测量施加在微小物体上的微弱力。例如,在心脏导管插入术中,医生必须清楚知晓导管与血管壁之间的接触力,避免在插入过程中损伤患者的血管壁。为了满足在体生物力学检测应用的需求,迫切需要将微力传感器的尺寸缩小,检测方式优化,以实现稳定、高精度的介入式力学性质检测。
飞秒激光3D打印技术是一种纳米尺度的增材加工方法,其加工精度可优于10 nm。飞秒激光3D打印技术可用于加工任意形状的微纳结构,同时对光刻胶进行材料掺杂,可以轻松实现微纳结构的功能化。将飞秒激光3D打印技术与“光纤实验室”技术交叉融合,可以在传统光纤上一体化集成微纳功能结构,从而有效提高光纤传感器的性能。因此,光纤传感技术和飞秒激光3D打印技术相结合为开发刚度可调谐的微型纳米机械仪器开辟了新途径。
最近进展
超高的力学分辨率和使用灵活性。我们使用飞秒激光3D打印技术,结合力学结构优化算法,制备出一系列的光纤端面微悬臂梁探针。在确保结构鲁棒性的基础上,力学检测分辨率达到了纳牛顿(nN)级水平,实现了2.1 nN的超高检测极限,可与商用AFM相媲美(图2)。FONP系统使用全光纤信号传输代替AFM系统复杂的光学杠杆解调,并结合深度传感压痕法,可以测量各种非均匀异质材料的力学性质,且降低了对测试样品形状规则的要求,具有较高的使用灵活性。
图2 (a)-(c) FONP的刚度特性有限元仿真结果;(d)-(e) FONP的扫描电镜图;(f) FONP的纳牛级力学传感特性;(g) FONP深度传感压痕测试仿真结果;(h) 基于商用纳米压痕仪的结果验证;(i) FONP的压力灵敏度响应。
实现了FONP和待测样品之间的刚度匹配。我们提出了一种实现微型FONP刚度可调的策略。该策略利用结构力学与拓扑学理论,结合有限元仿真,设计出具有与样品刚度匹配的FONP,再通过飞秒激光3D打印技术在光纤端面一体成型制备出特定刚度的FONP。目前,我们研制了刚度系数范围在0.4至52.6 N/m之间的FONPs(图3),并成功应用于不同种类生物材料的测量。
图3 (a) 三种不同设计FONPs的扫描电镜图;(b) 三种不同设计FONPs的刚度系数测量结果。
提出了全光纤型AFM的新概念。我们通过制备的一系列FONPs成功地测量了聚二甲基硅氧烷(PDMS)、洋葱细胞、MCF-7乳腺癌细胞、活体小鼠组织等非均质材料的杨氏模量,并用商用纳米压痕仪的测试结果进行验证(图4)。新型FONP系统不仅测试结果准确可靠,而且使用光学相位解调,简化了商用AFM复杂的光学杠杆解调系统,为实现便携式全光纤AFM开辟了新的思路和途径。
图4 (a)-(c) 基于FONP-2对洋葱细胞力学性质的测试结果;(d)-(f) 基于FONP-3对MCF-7乳腺癌细胞力学性质的测试结果;(g)-(i) 基于FONP-1对活体小鼠脑部肌肉组织力学性质的在线测试结果。
未来展望
本研究所提出的全光纤纳米机械生物探针具有灵敏度高、检测极限低、无特殊封装要求、生物相容性好和全光操作等优点,在材料力学和生物力学研究方面,具有广阔的应用前景。此外,这种方法为实现通用型全光纤AFM开辟了新的途径。在未来,我们期望这种新型的光纤纳米机械生物探针系统能够广泛应用于人体不同组织的在线生物力学性质检测,如体内心肌细胞跳动监测、组织弹性成像、肿瘤组织介入活检等,成为生物力学相关领域研究的重要新方法。
原始文献:Zou M Q, Liao C R, Chen Y P, Cai Z H, Li B Z, Zhao C, Liu S, Wang Y, Wang Y P et al. 2023. 3D printed fiber-optic nanomechanical bioprobe. Int. J. Extrem. Manuf. 5 015005.
论文链接:https://doi.org/10.1088/2631-7990/acb741
研究团队
论文作者:邹梦强、廖常锐*、许改霞、赵聪、张需明、Sandor Kasas、王义平*等
单位:深圳大学、香港理工大学、瑞士洛桑理工学院等
哈工大(深圳)魏军团队 AFM综述:3D打印超级电容器 - 技术、材料、设计及应用_资讯中心_仪器信息网视频号抖音号哔哩哔哩号前沿资讯手机看
谢谢您的赞赏,您的鼓励是我前进的动力~打赏失败了~评论成功+4积分评论成功,积分获取达到限制
收藏成功
取消收藏成功
点赞成功
取消点赞成功
投票成功~投票失败了~

我要回帖

更多关于 金属探针的主要作用 的文章

 

随机推荐