微纳金属3D打印技术应用:AFM探针?

微针阵列由于其方便和降低感染风险,在药物输送应用中显示出许多优势。与其他微尺度制造方法相比,3D打印技术可以很容易地克服复杂几何形状和多功能性能的微针制造难题。然而,由于材料特性和打印能力的限制,三维打印微针在实现各种临床应用所需的机械性能方面仍然存在瓶颈。帽贝牙齿的层次结构非常坚固,被誉为地球上最强的生物材料,这是由矿化组织的排列纤维和基于蛋白质的聚合物增强框架形成的。这些结构为机械增强生物医学微针提供了设计灵感。

1在打印过程中,排列整齐的微束氧化铁纳米粒子(aIOs)被聚合物基体包裹。

2制备了一种具有生物启发性的3D打印的无痛微针阵列,并证明了这种微针贴片在长期佩戴期间适用于药物输送。此处报告的结果为临床试验中如何优化微针的几何形态以实现无痛药物输送提供了见解。

可穿戴的软电子设备最近已成为新兴的研究领域,它扩展了传统刚性电子设备在医疗记录、人机界面和能量收集中的功能;同时,机械上的相似性有助于将对人体组织的刺激降到最低,并能够持续进行医疗保健监测。导电聚合物,碳质或金属纳米材料以其卓越的性能在导体、显示器、可穿戴电子设备和绿色能源等方面广泛应用。但其透明度、延展性不足(<90%),制造成本、潜在毒性限制进一步应用;聚合物-弹性体杂化体渗流网络具有明显的滞后、连接损耗和疲劳失效。液态金属(LM)的模量比弹性体低几个数量级,所以流体LM对弹性体的载荷微不足道。与弹性体复合材料具有响应延迟、恢复时间长、磁滞高的缺点。因此,具有高成本效率、透明性、无滞后性及多功能的柔性导体-弹性体混合物导电材料仍是个严峻的挑战。

作者以自液化发展可穿戴电子设备、人机界面和清洁能源。透明的蛋清水凝胶(EWH)是在碱性环境下由物理交联产生;EWH有剪切稀化和特性,这对于直接墨水书写3D打印以实现复杂的体系结构至关重要。碱性水解诱导EWH相变过程独特,可从固体水凝胶自发液化成液体及蛋白质电泳。相变过程中机械模量急剧下降(从770Pa降低到1Pa),得到的蛋清(EW)液体(EWL)的透射率明显高于原始EW溶液,并且表现出优异的离子电导率。EWH室温下可直接3D打印,可通过调节挤出速度来设计复杂电路;基于EWH的双拉伸/压缩传感器可灵敏的检测剧烈的运动(手指和腕部运动)及微软的运动(如脉搏,面部表情和血管扩张),以及生活场景中的其他实际应用(声音振动,剪切力和粗糙度)。以EWL为电极,作者还开发了具有高压缩性和透明性的摩擦电纳米发电机(TENG)。

EWH水凝胶从原始EW溶液中形成,该水凝胶体系可通过多价阳离子与羧基之间的二次交联。将两个染有绿色和红色荧光染料的圆柱形EWH块垂直堆叠并密封,堆叠的水凝胶在重力作用下会融合在一起(图1a)。在强碱水解作用下EWH发生“自清偿”现象,即 EWH发生相变的触发与EWH形成同步,并在相变过程中,较小的肽或氨基酸片段分散在EWL中而不是完整的蛋白质链中(图1b)。凝胶化后EWH的模量比EW高两个数量级(图1c)。自清偿所需时间随温度升高而降低(图1d)。不同的碱性溶液(LiOH和KOH)制成EWH的机械模量几乎没有变化(图1e)。在4°C冷藏2个月后,EWH是稀薄的液体,其模量出比原始老化EW溶液更高的(图1f)。相比于EW,水凝胶的模量具有时间相对动力学行为。

图1相变后EWH和EWL的物理和机械性能。

下一代可穿戴电子设备需具有高度光学透明的界面,这不仅可替换当前不透明设备,还可提供“隐形系统”的可能性。与原始EW溶液相比, EWH的光学性能显着提高(图2a)。自清偿过程中透光率进一步提高(图2b),这种现象归因于水解后肽链残基的长度越来越短,从而使液体中的不溶性聚集物急剧减少。图2c透明的液体足以让白光穿过并在三角玻璃棱镜中分散成彩虹光谱。EWL还具有高离子电导率。图2d证明 EWH自清偿过程对电子性能产生了很大的影响。EWL作为导体集成到一个闭合电路中,而发光二极管(LED)作为开/关指示器(图2f),几滴EWL可以有效地恢复电路连接。样品的电导率在EWH完全液化为EWL、并在室温下放置24 h后急剧增加(图2g)。EWH中的电荷载流子和输运归因于Na+和OH-,电导率的提高是由于水解后的肽残基或游离氨基酸的总离子浓度增加,以及自清偿过程中多孔结构的塌陷。

图2 EWH和EWL的透光率和电性能。

作者以EWH作为剪切稀化油墨在室温下直接进3D打印,该技术无需进行UV固化、流变改性剂。EWH具有典型的剪切稀化行为,可作为直接印刷油墨通过挤出喷嘴进行打印(图3a)。以三种硅橡胶商业产品Sylgard 184和Ecoflex系列(00-35和00-50)作为EWL的软质基材。接触角测试显示所有弹性体对EW或EWL的固有疏水性,即使完全清偿后,仍保持清晰的边界(图3b)。在打印中,可以通过变化的挤出速度改变线分辨率。如图3c所示,挤出机的挤出速度增加导致在基板上的水凝胶沉积减少,这大大降低了线的分辨率。作者接着创建了一个具有流互连的层次结构阵列,仅通过改变挤出速度即可获得具有高保真度且宽度逐渐减小的直线(图3d),该装置有出色的拉伸性(图3e)。此外,EWL还可以通过微流体浇铸和针头注入进行图案化,用于电子电路以及环境温度应变传感器(图3f-

图3 EWH用于3D打印和可拉伸电子制造。

2.3高灵敏度和无滞后的EWL-Eco混合作为双应变/压缩传感器

作者将EWL自动封装在Ecoflex中,然后在Ecoflex中嵌入3D打印EWH线,通过自动清偿以制造EWL–Eco传感器。电阻变化值(ΔR%)会随着拉伸变形而增加,传感器在从0%拉伸到200%时都具有可重复的响应。ΔR%的大小与内部尺寸密切相关,直径越小,电阻变化越大(图4a–c),其灵敏度与EWL导体的内部宽度相关,且在板级范围内具有高灵敏度变(图4d)。传感器具有“速度绝缘”特性,这意味着该传感器可以承受极快的拉伸,并在没有明显变化的情况下仍保持了可靠的灵敏度(图4e)。EWL–Eco传感器的响应时间及恢复时间都比皮肤快10ms,具有长期电子耐用性和使用寿命(图4g,h)。由于EWL的流动特性和Ecoflex的高弹性,传感器表现出优异的压缩率,最高可达90%(图4i)。传感器的电阻随着负载压力增大而增加(图4j),且稳定性和耐用性在300 k至12 kPa的循环中没有明显的偏差(图4k)。

图4 EWL–Eco传感器对拉伸力和压缩力的机电性能。

2.4可穿戴式EWL-Eco传感器在平面和曲线表面上的应用

鉴于其高柔顺性和灵活性,可忽略的滞后性以及对拉伸和压力的双重机电灵敏度,EWL–Eco传感设备被用于在屏幕及非平面上的识别认证(图5a- e),包括剧烈/微弱运动(图5a- b),例如手指和手腕弯曲(图5c),模拟血管收缩和血管舒张,识别莫尔斯电码(图5e);监视久坐和运动后状况下的脉搏(图5f);检测前额皱纹的细微收缩(图5g);检测非接触模式的声音(图5h)。EWL–Eco传感器还有动态刺激的能力(图5i)、纹理识别能力(图5j)和可编程制造能力(如3D视觉压力传感(图5k))。EWL-Eco设备可以识别出健康状况的细微差异,并适应大量的动态刺激或非平面表面,这表明它作为高灵敏度和准确性的可穿戴传感器具有广泛的潜力。

图5. EWL-Eco传感器用于检测现实世界中各种剧烈和细微的行为。

2.5基于EWL流动性的手势控制台

人机界面设备通过人与人之间的物理交互(即触摸,按动或抓握)来执行操作,并且基于触摸的电子设备(如键盘,鼠标,智能手机)为生活与科学的发展铺平了道路。作者通过将EWL密封在以LED为指示器的3D打印塑料模具制造一种新颖而简化的手势控制台,该控制台可使电子设备处于开/关/待机状态。简而言之,将导电EWL作为流触头集成到分层电路中,以交替打开/关闭信号;根据手势变化将液体倒入设计的腔中,并连接当前的电支路,然后打开相邻控制器以实现相应的电子功能。该控制台基于手势识别编程软件并控制设备,在未来可用于物联网领域(图6)。

图6由EWL制造的手势控制控制台。

2.6 EWL作为摩擦式纳米发电机TENG能量收集导体

TENG仅通过接触带电和静电感应的耦合作用即可高效地将各种机械能转换为电能,具有低成本、材料方便的优点。作者以简单铸造工艺来制造具有大块形状的TENG,EWH夹在两层Ecoflex之间以实现自我清偿。皮肤(正电荷)接触到Ecoflex薄膜表面时摩擦起电,并在弹性体上感应出相同量的负电荷,但没有产生电势。EWL中的离子运动由于弹性体的负电荷而产生过量正电荷,皮肤离开Ecoflex表面可驱动自由电子通过外部电路从EWL流向地面,一旦皮肤再次接近弹性体,整个电子流就会反向运动;EWL-TENG对外部运动能够稳定而快速地响应,其电流输出能力随压力增大而增加,作者还以此为基础制造一种功能性电皮阵列。

图7 EWL-TENG的发电机理,结构设计,机械能收集和传感特性。

作者开发了具有溶胶-凝胶-溶胶(EW-EWH-EWL)相变过程的独特液态蛋清,碱性环境不仅重新调整了物理平衡以形成固体EWH,而且同步触发了EWL的自我清偿。相变后制备的EWL具有高透明性和高离子电导率,并继承了其前身(EWH)的完整3D结构,该结构保留了直接的3D可印刷性,具有高灵敏度和良好的耐久性,滞后性可几乎不计。这种材料在电子传感器,手势控制控制台和摩擦电动纳米发生器中的具有广泛应用。该材料和技术因来源丰富,绿色制造工艺和工业上的可行具有很大的实用价值,并可能会推动可穿戴电子设备在各个领域的发展,例如,持久健康监控,人机界面,物联网和清洁能源。

2.1 开机a)打开计算机主机、显示器;b)打开Nanoscope控制器;c)打开Dimension Stage控制器。2.2 安装探针a)选择合适的探针和夹;b)安装探针;c)安装探针夹到仪器上。2.3 调节激光a)将激光打在悬臂前端;调整检测器位置;2.4 启动软件a)双击桌面Nanoscope软件图标;b)进入实验选择界面,根据方案,第一步选择实验方案,二步选择实验环境,第三具体操作模式;c)结束上述步骤后,单击界面右下方图标“Load Experiment”,进入具体实验设置界面。2.5 在视野中找到探针在视野中预先找到探针位置非常重要。若不如此做,可能会发生撞针的情况。2.6 进样a)样品制备;b)聚焦样品。2.7

  金相显微镜   金相显微镜是指通过光学放大,对材料显微组织、低倍组织和断口组织等进行分析研究和表征的光学显微镜。   金相显微镜通过观察可以明确材料显微组织的成像及其定性、定量表征,也可以帮助用户了解必要的样品制备、准备和取样方法。   金相显微镜通过观察也可以反映和表征出构成

1981年,Bining,Rohrer在IBM苏黎世实验室发明了扫描隧道显微镜(STM)并为此获得1986年诺贝尔物理奖。STM的出现使人类能够对原子级结构和活动过程进行观察。由于STM需要被测样本必须为导体或半导体,其应用受到一定的局限。  1985年,原子力显微镜(AFM)的发明则将观察对象由导

 读数显微镜的使用方法   1.先把读数显微镜进行调零(注意要轻轻旋转旋钮,因为读数显微镜是高精度仪器且成本高,用力过大会导致精度降低);   2.然后将打上压痕的元件置于水平工作台面上;   3.把读数显微镜置于元件上(当显微镜与工件置于一起时,手不要抖动,因为显微镜

  偏光显微镜是用于研究所谓透明与不透明各向异性材料的一种显微镜。凡具有双折射的物质,在偏光显微镜下就能分辨的清楚,当然这些物质也可用染色法来进行观察,但有些则不可能,而必须利用偏光显微镜。反射偏光显微镜是利用光的偏振特性对具有双折射性物质进行研究鉴定的必备仪器,可供广大用户做单偏光观察,正交偏光观

偏光显微镜能否观察石墨烯?在光学显微镜下是什么特殊反应?最近针对以下几个比较常见的问题:如何用显微镜观察石墨烯?石墨烯在光学显微镜下是不是有什么特殊的颜色反应?石墨烯可以用偏光显微镜观察?看石墨烯需要用什么光学显微镜?如何用显微镜观察石墨烯?首先是石墨烯的概念:石墨烯是材料学科的新星,受到材料科学和

什么是数码显微镜?它与一般光学显微镜有什么区别?为什么说显微镜成像系统将显微镜带进了数码时代?我们带着这种种问题来认识一下数码显微镜吧:数码显微镜又叫摄像显微镜,它是将显微镜看到的实物图像通过数模转换,使其成像在计算机上。它是由一般的光学显微镜配上显微成像系统也就是现在很多人所说的显微镜摄像头,之后

  12月26日,由中国科学院苏州生物医学工程技术研究所(简称“苏州医工所”)承担的国家重大科研装备研制项目“超分辨显微光学核心部件及系统研制”通过验收,标志着我国具备了高端超分辨光学显微镜的研制能力。   在当今生物学和基础医学研究中,高/超分辨光学显微镜发挥着至关重要的作用,10-100nm尺

  显微镜是科研和医学都必不可少的工具,但通常比拟昂贵,所以普通只要经济情况较好的国度和地域才买得起。不过,这种状况很快就将改动,由于在3D打印技术的协助下,愈加经济的显微镜正在被不时开发出来。   在“3D打印显微镜附件:经济实惠的高效诊断技术”一书中,尼古拉斯·艾迪·塔伊(Nicholas A

一、综述连续变倍体视显微镜是光学系统具备连续变倍功能(Zoom)的汗盟仪器仪表体视显微镜,其倍率可以在标定范围内连续变化。由于麦克奥迪体视显微镜的目镜视场直径固定(比如:10X目镜视场直径为22mm),其物方(被观察物体方)视场直径随着倍率的变化而变化、与倍率呈反比关系:物方视场直径 =&

 在古代文物的结构和工艺研究中,显微结构分析是一种不可或缺的方法和手段,它提供的显微结构信息,可以为人们提供直观的、细微的观察。体视显微镜可用于观察纸张、丝绸、陶瓷等各类文物,是文物研究的理想工具之一。 (1)金相显微镜  金相显微镜是进行金相分析(金属显微组织)的zui基本的仪器之一。所谓金相分析

 徕卡显微镜是一款开放式工业显微镜,在这平台上可以适应您的具体任务。徕卡显微系统邀请您创建个人定制版Leica DMi8。所有功能尽在掌握,您有权添加未来可能需要的组件。本手册中所有建议的配置可以作为开放式平台,以支持您的工作。   徕卡显微镜是苛刻研究应用和新手操作员的工具。自动化功能有

   现代尿液分析除了理学检验、化学检验外,最重要的是对尿中表形成分的显微镜检查。尿中主要有形成份的各种形态参见附图。但是对于理学检验结果正常、中性粒细胞酯酶和亚硝酸盐试带法结果阴性的尿液,其显微镜检查的价值已被提出了质疑。如有学者提出,试带法结果若符合下列条件就可不做显微镜检查

显微镜检查是血液、体液检查非常重要的一部份,也是一个临床医师和检验人员的基本功。但是近年来由于添置了先进的血细胞分析仪、尿液干化学分析仪、尿液分析仪等,不少人认为可以不用显微镜检查了,加上镜检费工夫又费时间,收费低廉,也没有什么产值,导致当今显微镜检查被许多人忽视了。    近年

超越了获得诺贝尔奖的超分辨率显微镜的局限性的超精密显微镜将使科学家们直接测量单个分子之间的距离。新南威尔士大学的医学研究人员在单分子显微镜中检测完整细胞内单个分子之间的相互作用方面已实现了空前的解析能力。2014年诺贝尔化学奖因超分辨率荧光显微镜技术的发展而获奖,该技术为显微镜专家提供了细胞内部的第

徕卡生物显微镜对于生物、医学或其他学科显微观察和照相工作的显微镜工作者来说,是不可缺少的一部分。学会傻用一台徕卡生物显微镜似乎并不困难,但是,既就是使用了多年徕卡生物显微镜的人并不一定都“真正地”会使用它,也就是说要正确地使用一台徕卡生物显微镜形成较高分辨力的高质量像,或者拍出具有较高反差的清晰照片

  光学显微镜是一种利用光学原理,把人眼所不能分辨的微小物体放大成像,以供人们提取微细结构信息的光学仪器。  仪器结构  机械部分  ① 镜座:是显微镜的底座,用以支持整个镜体。  ② 镜柱:是镜座上面直立的部分,用以连接镜座和镜臂。  ③ 镜臂:一端连于镜柱,一端连于镜筒,是取放显微镜时手握部位。

光学显微镜的应用广泛,从工业生产到科研教育,随处可见光学显微镜的身影。确实,这类显微镜在对于样品及其零部件的质量控制当中发挥着至关重要的作用,例如电子产业的样品和零部件检测就经常用到光学显微镜。显微镜检查或质量控制能够让用户意识到零部件的生产是否正确,同时来判定样品的目标性能存在的缺陷和污染是否是因

观察粉尘颗粒选用什么显微镜?做粉尘分析一般会做几个方面的研究:观察粉尘表面结构,测定粉尘的分散度,粉尘粒度的研究,粉尘颗粒计数等等。那么针对不同方向的研究,所要求看到的粉尘大小和状态都不尽一样,在做何种实验的时候应该选用什么样的显微镜来进行观察,什么类型的显微镜zui适合做什么粉尘样品的观察,可以配

  德国LEICA显微镜09年在华销售突破1亿美元,江文公司获LEICA优秀代理奖   3月12日,德国LEICA仪器公司在厦门召开了2010年全国代理商大会,来自徕卡各个地区,各个产品的代理约100人参加了大会.   徕卡仪器的代理分为生命科学仪器,手术显微镜,组织学设备,工业仪器四大类,徕卡

  分析测试百科网讯 2018年12月14日,2018先进功能材料与原子力显微技术学术研讨会(AFM2 2018)暨2018中国硅酸盐学会微纳技术分会学术年会在南京航空航天大学召开。本次会议旨在聚集学术界及工业界信息功能材料、先进能源材料以及原子力显微技术等学科领域的专家学者共同交流、促进合作,深入

我们使用金相显微镜来观测一些金属物质的内部结构,分析物质的内部布局安排。这款仪器多使用在一些矿石研究领域以及学校和一些研究机构。我们在购买显微镜的时候要做足了准备的工作,这样才会购买到适合的显微镜产品。显微镜的价格高昂,种类繁多我们需要做足了准备才可以进行购买。下面小编来帮助大家一起分析一下,我们具

原子力显微镜(Atomic Force Microscopy, AFM)是继扫描隧道显微镜(Scanning Tunneling Microscopy, STM)之后发明的一种具有原子级高分辨的新型仪器,可以在大气和液体环境下对各种材料和样品进行纳米区域的物理性质包括形貌进行探测。本标准文本将概述纳

  金相显微镜可以在计算机上很方便地观察金相图像,从而对金相图谱进行分析,评级等以及对图片进行输出、打印。金相显微镜电子目镜适用于任何标准的生物、体视、金相显微镜的拍摄,可以广泛的应用于医疗卫生机构、实验室、研究所、高等学校做生物学、病理学、细菌学观察、教学和研究、临床实验和常规医疗检验;工厂、实验

      原子力显微镜(AFM)用一个微小的探针来“摸索”微观世界,它超越了光和电子波长对显微镜分辨率的限制,在立体三维上观察物质的形貌,并能获得探针与样品相互作用的信息。原子力显微镜具有分辨率高、操作容易、样品准备简单、操作环境不受限制、分辨率高等优点。因此,原子力

体式显微镜和金相显微镜的有哪些不同点一、照明光路系统1、金相显微镜一般都有专门的反射光照明光路(因为观察的试样是不透明的),而且照明光通过半反透镜后经物镜照射到试样表面,反射回来后经过物镜目镜再到人眼里成像,所以物镜代替了科勒照明系统中的聚光镜的作用。从原理上看,这种照明属于同轴照明,即照明光和反射

我们使用金相显微镜来观测一些金属物质的内部结构,分析物质的内部布局安排。这款仪器多使用在一些矿石研究领域以及学校和一些研究机构。我们在购买显微镜的时候要做足了准备的工作,这样才会购买到适合的显微镜产品。显微镜的价格高昂,种类繁多我们需要做足了准备才可以进行购买。下面小编来帮助大家一起分析一下,我们具

  分析测试百科网讯 2020年11月05-10日,备受瞩目的第三届中国国际进口博览会(进博会)在上海国家会展中心隆重举行。在丹纳赫展区,分析测试百科网讯采访了徕卡显微系统中国市场总监张玲玲女士。她为我们分享了徕卡在进博会上展示的产品及解决方案,同时介绍了徕卡今年取得的成果以及未来的发展战略。徕卡显

  据国外媒体9日报道,它和一枚50便士的硬币一样重,小到足以放到裤子口袋中,但这种开创性新型显微镜的作用可没有大打折扣。这种装置叫Foldscope,可提供2000多倍的放大效果,有望彻底改变放大物体的方式。  一种可能彻底改变物体放大方式的新型显微镜已在秘鲁亚马逊雨林进行测试。这张照片显示,几只

显微镜帮助用户观察生活,但是生活中包含了很多不同结构的样品,有飞禽走兽,还有泥土砂石等,因此,我们对不同的样品进行观察的时候,就需要应用到不同的工具。那么,金相显微镜和光学显微镜有什么区别呢? 显微镜一般可以根据应用以及结构的不同进行分类,可分为生物显微镜、偏光显微镜以及金相显微镜。我们所说的金相显

我要回帖

更多关于 3d金属拼图 的文章

 

随机推荐