蛋白质的合成可以不需要生物作用而在自然界中的蛋白质有多少种自然合成吗?

mRNA的作用是转录细胞核内DNA上的遗传信息tRNA负责运输合成蛋白质所需的氨基酸并解读密码

mRNA:在蛋白质生物合成中,mRNA能够作为翻译的直接模板由mRNA线性单链分子中每相邻3个核苷酸碱基组成代表一种氨基酸的密码子。决定蛋白质分子中的氨基酸排列顺序?

tRNA:在蛋白质生物合成过程中,tRNA分子依赖其反密码环上的3个反密码子辨认mRNA密码子依赖3\'端的CCA--OH末端结合特定的氨基酸。从而按密码子指令将特定氨基酸带到核糖体上“对号入座”参与蛋白质多肽链嘚合成。?

rRNA:核糖体是由几种rRNA与数十种蛋白质共同构成的超大分子复合体核糖体的作用是将氨基酸连接起来构成多肽链的“装配机”,即是蛋白质生物合成的场所

关于现代生物技术应用的叙述错誤的是( )

A. 蛋白质工程可合成自然界中的蛋白质有多少种不存在的蛋白质

B. 体细胞杂交技术可用于克隆动物和制备单克隆抗体

C. 植物组织培养技术可用于植物茎尖脱毒

D. 动物细胞培养技术可用于转基因动物的培养

B 【解析】试题分析:A、蛋白质工程可通过对现有基因进行改造合而合荿自然界中的蛋白质有多少种不存在的蛋白质A正确; B、克隆动物利用了细胞核移植、早期胚胎培养和胚胎移植等技术,体细胞杂交技术目前主要用于制备单克隆抗体B错误; C、茎尖和根尖等分生区几乎不含病毒,所以将植物分生区(茎尖、根尖等)进行组织培养可以获得脫毒苗C正确; D、动物细胞培养技术可为动物的转基因技术提供受体细胞等,...

20世纪90年代开始兴起的DNA疫苗被称为第三次疫苗革命医学专家將含病毒抗原基因的重组质粒注入人体表达后使人获得免疫能力。下列叙述不正确的是(    )

A.重组质粒在内环境中表达后引起机体免疫反应

B.病毒忼原基因在体内表达时需要RNA聚合酶

C.病毒抗原基因与质粒重组时需要DNA连接酶

D.注射DNA疫苗后机体会产生相应的记忆细胞

图1为某种质粒简图图2表礻某外源DNA上的目的基因,小箭头所指分别为限制性核酸内切酶EcoRⅠBamHⅠHind

A. 在基因工程中若只用一种限制酶完成对质粒和外源DNA的切割则可选EcoRⅠ

如果将一个外源DNA分子和一个质粒分别用EcoRⅠ酶切后,再用DNA连接酶连接形成一个含有目的基因的重组DNA,此重组DNAEcoRⅠ酶切点有1个

C. 为了防止质粒和含目的基因的外源DNA片段自身环化酶切时可使用BamHⅠHind Ⅲ两种限制酶同时处理

D. 一个图1所示的质粒分子经EcoRⅠ切割后,含有2个游离的磷酸基團

超氧化物歧化酶(SOD)是一种源于生命体的活性物质下图为人工培育含SOD植物新品种的过程,相关叙述正确的是

A.过程可用基因枪法导叺SOD基因

B.过程所用的激素种类和比例都相同

C.SOD催化反应的机制是为反应提供活化能

D.图示育种过程体现了植物细胞的全能性

利用外源基因在受体细胞中表达可生产人类所需要的产品。下列各项中能说明目的基因完成了在受体细胞中表达的是(  )

A. 棉花二倍体细胞中检测到細菌的抗虫基因

B. 大肠杆菌中检测到人胰岛素基因及其mRNA

C. 山羊乳腺细胞中检测到人生长激素DNA序列

D. 酵母菌细胞中提取到人干扰素蛋白

关于右图DNA分孓片段的说法正确的是 

A.限制性内切酶可作用于①部位解旋酶作用于③部位

B.②处的碱基缺失导致染色体结构的变异

C.把此DNA放在含15N的培养液中复制2代, 子代中含15N的DNA占3/4

D.该DNA的特异性表现在碱基种类和(A+T)/(G+C)的比例上

蛋白质结构几乎有无限的可能按照我们的需求设计并制造蛋白质,有可能实现多种神奇功能

蛋白质是所有活着的生物的“劳动力”,执行着来自DNA的各种命令它同时囿着各种复杂的结构,实现人类和所有生物体中全部的重要功能包括消化食物、组织生长、血液中氧气的传输、细胞分裂、神经元激活、肌肉供能等等。令人惊奇的是蛋白质如此多样性的功能仅来源于区区20种氨基酸分子的组合序列。直到现在研究人员才刚刚开始明白這些线型序列是如何折叠成复杂的结构。

更加令人惊奇的是大自然似乎只利用了一小部分所有可能的蛋白质结构,尽管后者的数量是庞夶的因此利用已有的氨基酸设计具有特殊结构的非常规蛋白质,即大自然中不曾有过的合成蛋白有着非常诱人的应用前景。合成蛋白嘚方法是:对细菌进行基因改造让它的DNA控制产生特定氨基酸序列,进而合成蛋白质能够以原子级的准确性生产和研究合成蛋白对于开拓基础研究的新领域,以及在更多领域实现实际应用有着重要意义

设计过程开始时,假设一种能解决某个具体问题或实现某种功能的新疍白结构然后反过来确定能够折叠成这种结构的候选氨基酸序列。Roseetta蛋白质模型设计软件可以确定最有希望的候选者:即折叠出目标结构嘚最低能量状态的氨基酸序列接下来,这些序列从计算机转移到实验室中制造合成蛋白质并进行测试。

目前还没有任何技术能与蛋皛质执行的奇妙功能相媲美。合成蛋白的无限可能性让蛋白质设计能极大地拓展蛋白质技术的能力。为了说明这一点我将列举一些利鼡这种设计方法合成的蛋白质,以及研究过程中的根本挑战和它们的实际应用领域

这幅图展示的是叫做TIM-barrel蛋白质家族的一种合成蛋白。绝夶多数酶中都含有这类自然存在的TIM-barrel蛋白质而酶是我们身体内发生的生化反应的催化剂。之所以这样部分原因是这种蛋白质中心圆形的杯状或桶状结构为生化反应提供了适宜的场所。图中的合成蛋白质是TIM-barrel类蛋白理想的模板针对特定的反应物,你可以用袋状结构、结合位點和催化介质对它进行个性化改造这种方法可用来设计自然界中的蛋白质有多少种不曾有过的新型蛋白酶。图片来源:Possu Huang大卫贝克实验室,华盛顿大学

清洁能源和医药的催化剂

蛋白酶是已知的催化剂中最为高效的物质远胜化学家合成的无机催化剂。部分原因是蛋白酶能准确地将关键部位同反应分子关联起来提供场所加速反应或降低反应的活化能。虽然准确的发生机理仍是一个未被解释的关键问题但哽多地与合成蛋白打交道或许有助于解决这个难题。

我们做出的合成蛋白已经能够催化一些极具应用潜力的新陈代谢反应比如在将大气Φ的二氧化碳转化为燃料有机分子的反应中,合成蛋白的催化效率比任何一种无机催化剂都要好因此有望通过这类反应制取碳中性燃料;还包括应用于能治疗疾病的反应,有望为肠道疾病患者提供一种能在胃中分解谷蛋白的口服药物;以及中和阿尔茨海默病患者身体里的蝳性淀粉蛋白的合成蛋白

包含有机物质和无机物质的糅合材料是一类具有很大市场潜力的新型材料。鲍鱼壳就是一个天然例子它是由碳酸钙和蛋白质结合成的异常坚硬的物质。很明显在鲍鱼壳成形过程中,一些蛋白质改变了无机物质在结合蛋白质上的沉积方式并参与形成了壳的整体结构合成蛋白质有望复制这一过程,进而扩充这种蛋白质的种类另一种类似于蛛丝的材料,它作为有机物质却有很高嘚硬度并且能够生物降解,合成蛋白质似乎非常适合用来制作这种材料但还需要把形成机制弄清楚。另外我们获得的合成蛋白质能夠形成仅一层分子厚的互锁结构,有望用于制作新型防刮膜或有机太阳能电池

自组装蛋白质在生物体内形成了多种用途的容器或外部屏障,从病毒的蛋白质外壳到几乎所有活细胞的外壁我们开发出一种方法来设计并构建类似的蛋白质容器:非常小的笼式结构——蛋白质納米粒,由一到两条肽链组装而成我们能做到非常精确,实现原子级控制目前的工作是构建这种蛋白质纳米颗粒,用它携带靶向“货粅”即药物或其他治疗物质,同时在表面部署相关蛋白质表面蛋白质用来与靶向细胞表面的相似蛋白特异性结合。

这些自组装蛋白质顆粒提高了向细胞运输药物的靶向水平避免对身体其他部位造成有害影响。还可以设计一些其他纳米蛋白颗粒用来穿透血脑屏障,输送治疗大脑疾病的药物或治疗物质我们还设计出能打断蛋白质-蛋白质交流的阻断蛋白,以及同小分子结合的功能性蛋白用于生物感测,比如说确定病原体最为重要的是,合成蛋白作为新工具提高了药物或其他治疗手法的靶向性,同时提高了药物载体与靶向细胞外壁緊密结合的能力

这种20面蛋白质纳米颗粒能把药物或其他治疗物质准确送达人体内部的靶细胞,副作用很小它由两种合成蛋白自组装形荿。插图及蛋白质设计者:Jacob Bale华盛顿大学大卫贝克实验室

不光可用于药物运输,自组装蛋白质纳米颗粒在疫苗研制领域也有前景在合成疍白纳米颗粒表面嵌上稳定的病毒蛋白,我们希望诱发细胞发生强烈而专一的免疫反应来中和HIV病毒和流感病毒我们目前正在研究怎样能將这些蛋白质纳米颗粒用作针对一些病毒的疫苗。这些具有热稳定性的设计疫苗将不再依赖于复杂的冷链储存系统从而让这些能挽救生命的疫苗在全球范围内更容易获得,有助于实现消灭病毒性疾病的目标同时,在疫苗设计上具有的分子级准确性让我们得以对免疫系统洳何识别并防御病原体进行系统研究反过来,这类研究的发现也会促进耐受性疫苗的开发帮助训练自体免疫疾病和哮喘患者的免疫系統停止攻击宿主组织。

大多数获得批准的药物要么是蛋白质大分子要么是小分子。而自然界中的蛋白质有多少种存在的多肽(氨基酸化匼物)尺寸大小中等,在改造或稳定后它们能精确结合生物靶向目标,被认为是已知的最有效的药物分子在效果上,多肽具有蛋白質和小分子药物的双重优点环孢素就是一个大家熟悉的例子。但不幸的是这些肽种类很少。

我们最近实现的一种新设计方法能产生兩大类多肽物质,它们具有不同寻常的热稳定性和化学稳定性这些多肽包括来源于基因编码(然后在细菌中合成)的肽物质,也包括由洎然界没有的氨基酸构成的肽物质可以说,这些多肽构成了全新多肽药物的基础和设计模型

另外,我们还开发出一种通用方法用来設计稳定的小型蛋白,与病原体蛋白特异性结合一种这类设计蛋白能与病毒的糖蛋白血球凝集素特异性结合,后者负责帮助流感病毒入侵细胞这些设计蛋白对受感染的小鼠来说,既起到预防疾病的作用又有治疗的效果,因此可以用作非常有效的抗流感药物类似的方法还用来设计针对埃博拉病毒的治疗蛋白,以及与肿瘤和自身免疫疾病相关的靶向目标更为重要的是,合成蛋白可以作为非常有用的测試探针来探索免疫系统分子化学原理。

人的大脑是一个完全基于蛋白质的高能效逻辑系统是否可以用自组装、比硅逻辑系统更便宜更高效的合成蛋白来建造一个类似的逻辑系统(比方说电脑)呢?自然界中的蛋白质有多少种存在的蛋白开关已经得到了很好的研究但制莋合成蛋白开关仍然是个挑战。除了在生物科技领域的应用理解蛋白质逻辑系统或许对探索人的大脑如何做决定或早期信息处理过程有哽加深远的影响。

设计合成蛋白有着无穷的潜力新的研究前沿和广泛的实际应用领域等待人们去探索。事实上人们已经开始掌握设计噺的分子解决特定问题的能力。蛋白质设计迎来了激动人心的时代

倘若我们不能根据一条给定的氨基酸序列预测它的蛋白结构,蛋白质匼成将无从谈起世界上有20种天然氨基酸,它们可以以任何顺序连接起来折叠形成近乎天文数字般的可能结构。幸运的是蛋白质结构預测难题将被一款名叫Rosetta的蛋白质模型软件所攻克。

Rosetta会根据能量状态评估可能的蛋白质结构确定能量最低的结构,即通常情况下发生在生粅组织内的情形对比较小的蛋白质,Rosetta的预测已经相当准确全球数百位蛋白质科学家形成的合作网络一直在持续改进Rosetta的算法,让Rosetta变得越來越强大、准确

我们的研究队伍已经阐明了超过1000种蛋白质的结构,并且有望在未来几年能够预测任一蛋白质的结构这将成为基础生物學和生物医学领域的一项具有重大意义的进步,因为对蛋白质结构的理解会让人们理解人体和所有生物体内不计其数的蛋白质的功能同時,预测蛋白质结构的能力将成为设计新型人工合成蛋白质的强大工具

我要回帖

更多关于 自然界中的蛋白质有多少种 的文章

 

随机推荐