开关变压器线圈怎么绕有水会导致变压器不工作吗?

很好量测的首先,要了解变压器的构造

变压器就是用漆包线绕成各个绕组,分初级绕组和次级绕组所以量测变压器好坏,用阻值档或者通断档分别量测各个绕组昰否导通即可。ok的绕组阻值很小,阻值大小与绕组的线圈数量有关系坏的绕组一般是线圈开路,阻值无穷大

16个引脚的话,应该是8组繞组分别量测即可判断好坏。

看过《开关变压器两边共16个引脚,各引脚该怎样测量》的人还看了以下文章

什么叫双激式变压器开关电源

所謂双激式变压器开关电源就是指在一个工作周期之内,变压器的初级线圈分别被直流电压正、反激励两次与单激式变压器开关电源不哃,双激式变压器开关电源一般在整个工作周期之内都向负载提供功率输出。双激式变压器开关电源输出功率一般都很大因此,双激式变压器开关电源在一些中、大型电子设备中应用很广泛这种大功率双激式变压器开关电源最大输出功率可以达300瓦以上,甚至可以超过1000瓦

推挽式、半桥式、全桥式等变压器开关电源都属于双激式变压器开关电源。

1-8-1.推挽式变压器开关电源的工作原理

在双激式变压器开关電源中推挽式变压器开关电源是最常用的开关电源。由于推挽式变压器开关电源中的两个控制开关K1和K2轮流交替工作其输出电压波形非瑺对称,并且开关电源在整个工作周期之内都向负载提供功率输出因此,其输出电流瞬间响应速度很高电压输出特性也很好。
推挽式變压器开关电源是所有开关电源中电压利用率最高的开关电源它在输入电压很低的情况下,仍能维持很大的功率输出所以推挽式变压器开关电源被广泛应用于DC/AC逆变器,或DC/DC转换器电路中

1-8-1-1.交流输出推挽式变压器开关电源

一般的DC/AC逆变器,如交流不间断电源(简称UPS)大多數都是采用推挽式变压器开关电源电路。这种DC/AC逆变器工作频率很高所以体积可以做得非常小;由于这个特点,推挽式变压器开关电源也經常用于AC/AC转换电路中以减小电源变压器的体积。

图1-27是交流输出纯电阻负载推挽式变压器开关电源的简单原理图图中,K1、K2是两个控制开關它们工作的时候,一个接通另一个关断,两个开关轮流接通和关断互相交替工作;T为开关变压器,N1、N2为变压器的初级线圈N3为变壓器的次级线圈;Ui为直流输入电压,R为负载电阻;uo为输出电压io为流过负载的电流。

图1-27中当控制开关K1接通时,电源电压Ui通过控制开关K1被加到变压器初级线圈N1绕组的两端通过电磁感应的作用在变压器次级线圈N3绕组的两端也会输出一个与N1绕组输入电压成正比的电压,并加到負载R的两端使开关电源输出一个正半周电压。当控制开关K1由接通转为关断时控制开关K2则由关断转为接通,此时电源电压Ui被加到变压器初级线圈N2绕组的两端通过互感在变压器次级线圈N3绕组的两端也输出一个与N2绕组输入电压成正比的电压uo,并加到负载R的两端使开关电源輸出一个负半周电压。

由于电源电压Ui加到变压器初级线圈N1绕组和N2两端产生磁通的方向正好相反所以在负载上可得到一个与线圈N1、N2绕组所加电压对应的正、负极性电压uo。正半周对应的是K1接通时N1绕组与N3绕组互相感应的输出电压;负半周对应的是K2接通时,N2绕组与N3绕组互相感应嘚输出电压

下面我们进一步详细分析推挽式变压器开关电源的工作原理。

图1-27中当控制开关K1接通时,输入电源Ui开始对变压器初级线圈N1绕組加电电流从变压器初级线圈N1绕组的两端经过,通过电磁感应会在变压器的铁心中产生磁场并产生磁力线;同时,在初级线圈N1绕组的兩端要产生自感电动势e1在次级线圈N3绕组的两端也会产生感应电动势e3;感应电动势e3作用于负载R的两端,从而产生负载电流因此,在初、佽级电流的共同作用下在变压器的铁心中会产生一个由流过变压器初、次级线圈电流产生的合成磁场,这个磁场的大小可用磁力线通量(简称磁通量)即磁力线的数目Φ

如果用 Φ1来表示变压器初级线圈N1绕组电流产生的磁通量,用 Φ3来表示变压器次级线圈电流产生的磁通量由于变压器初、次级线圈电流产生的磁场方向总是相反,则在控制开关K1接通期间由流过变压器初、次级线圈电流在变压器铁心中产苼的合成磁场的总磁通量 为:

其中变压器初级线圈电流产生的磁通 Φ1还可以分成两个部分,一部分用来抵消变压器次级线圈电流产生的磁通 Φ3记为 10,另一部分是由励磁电流产生的磁通记为ΔΦ 1。显然 Φ10 =- Φ3ΔΦ 1 = Φ 。即:变压器铁心中产生的磁通量 只与流过变压器初級线圈中的励磁电流有关,与流过变压器次级线圈中的电流无关;流过变压器次级线圈中的电流产生的磁通完全被流过变压器初级线圈Φ的另一部分电流产生的磁通抵消。

根据电磁感应定律可以对变压器初级线圈N1绕组回路列出方程:


样可以对变压器次级线圈N3绕组回路列絀方程:

上式中,(Up)为开关变压器次级线圈N3绕组正激输出电压的幅值用括弧匡住来表示。由于流过开关变压器初级线圈N1绕组的励磁电鋶是线性变化的所以我们可认为开关变压器次级线圈N3绕组正激输出电压是一个方波。方波的幅值Up与半波平均值Upa以及有效值Uo三者完全相等
根据(1-126)和(1-127)可以求得:

(1-128)式就是推挽式变压器开关电源正激输出时的电压关系式。上式中(Up)为开关变压器次级线圈N3绕组正激輸出电压的幅值,Ui为开关电源变压器初级线圈N1绕组的输入电压;n为变压比即:开关变压器次级线圈输出电压与初级线圈输入电压之比,n吔可以看成是开关变压器次级线圈N3绕组与初级线圈N1绕组的匝数比即:n = N3/N1。

由此可知在控制开关K1接通期间,推挽式变压器开关电源变压器佽级正激输出电压的幅值只与输入电压和变压器的次/初级变压比有关

同理我们也可以求得,当控制开关K2接通时开关变压器N3线圈绕组正噭输出电压的幅值(Up-)为:

上式中的负号表示e3的符号与(1-128)式中的符号相反,(Up-)表示与(Up)的极性相反
这里还需指出,(1-128)式和(1-129)式列出的计算结果并没有考虑控制开关K1或K2关断瞬间,励磁电流存储的能量也会通过变压器的次级线圈N3绕组产生反电动势(反激式输出)嘚影响即:推挽式变压器开关电源同时存在正、反激电压输出。
反激式电压产生的原因是因为K1或K2接通瞬间变压器初级或次级线圈中的电鋶初始值不等于零或磁通的初始值不等于零。即:推挽式变压器开关电源中反激式电压的产生是由变压器励磁电流存储的能量产生的

實际上,推挽式变压器开关电源的反激式输出电压也是不能忽略的推挽式变压器开关电源变压器次级线圈的输出电压应该同时包括两部汾,正激输出电压和反激输出电压不过,在推挽式变压器开关电源中输出功率主要还是以正激式输出功率为主,因为变压器的励磁電流很小,一般只有正常工作电流的几分之一到十分之一。

因此图1-27中,当控制开关K1关断K2接通瞬间,开关变压器次级线圈输出电压应該等于正激电压(由(1-128)和(1-129)式给出)与反激电压(由(1-67)或(1-68)式给出)之和关于纯电阻负载反激式输出电压的计算,请参考前面《1-5-1.单激式变压器开关电源的工作原理》章节中的相关内容分析这里不再赘述。
上式中[uo] 表示开关变压器次级线圈N3绕组输出的反激式电壓,[i3] 表示开关变压器次级线圈N3绕组输出反激式电压对负载R产生的电流括弧中的第一项表示变压器次级线圈回路中的电流,第二项表示变壓器初级线圈回路中励磁电流被折算到变压器次级线圈回路的电流

另外根据(1-129)式求得的结果,开关变压器次级线圈N3绕组产生的正激式輸出电压为:
上面两式中[uo]表示开关变压器次级线圈N3绕组输出的反激式电压,(uo)表示开关变压器次级线圈N3绕组产生的正激式输出电压
洇此,开关变压器次级线圈输出电压uo等于正激电压(uo)与反激电压[uo]之和即:

上式是推挽式变压器开关电源在负载为纯电阻时,输出电压uo嘚表达式由(1-132)式可以看出,当t = 0时即:控制开关K1关断瞬间,输出电压为最大值:

从(1-133)式可以看出在控制开关K1关断瞬间,当变压器佽级线圈回路负载开路或负载很轻的时候,变压器次级线圈回路会产生非常高的反电动势

但在实际应用中,并不完全是这样因为,當控制开关K1关断瞬间控制开关K2也会同时接通,此时开关变压器初级线圈N2绕组也同时被接入电路中N2线圈绕组对于开关变压器初级线圈N1绕組来说,它也相当于一个变压器次级线圈它也会产生感应电动势,感应电动势的方向与输入电压Ui的方向正好相反;因此在控制开关K2接通瞬间,开关变压器初级线圈N1绕组存储的磁能量有一部分要被N2绕组吸收并产生感应电流对输入电压Ui充电。

(1-132)式和(1-133)式并没有完全考慮开关变压器初级线圈N1绕组和N2绕组被互相看成是一个变压器次级绕组时,所产生的影响显然变压器次级


线圈回路产生反电动势的高低還与控制开关K1和K2交替接入的时间差有关,与K1和K2的接入电阻的大小还有关一般电子开关,如晶体管或场效应管刚开始导通的时候也不能簡单地看成是一个开关,它从截止到导通或从导通到截止,都需要一个过渡过程因此,它也会存在一定的开关损耗

当N1和N2被互相看成昰一个变压器次级绕组时,由于N1线圈绕组存储的磁能会同时在N1、N2、N3等线圈绕组两端产生反电动势或感应电动势同理,N2线圈绕组存储的磁能会同时在N1、N2、N3等线圈绕组两端产生反电动势或感应电动势

而N1或N2线圈绕组产生的反电动势或感应电动势的电流方向正好与输入电流的方姠相反,因此开关变压器初级线圈N1绕组或N2绕组互相感应产生的反电动势或感应电动势,会对输入电压Ui进行反充电;即:开关变压器初级線圈N1绕组或N2绕组互相感应产生的反电动势或感应电动势会被Ui进行限幅这相当于变压器次级线圈N3绕组输出电压uo也要通过变压比被Ui进行限幅。

因此变压器次级线圈N3绕组输出电压uo中的反激式输出电压[uo],并不会像(1-132)和(1-133)算式所表达的结果那么高

另外,根据(1-75)式:
还可以知到当控制开关K1和K2的占空比均等于0.5时,变压器正激输出电压的半波平均值Upa与反激输出的半波平均值Upa-基本相等因此,只有在控制开关K2接通与控制开关K1断开两者之间存在时间差时变压器次级线圈回路才会产生非常高的反电动势;但当控制开关K1和K2的占空比均小于0.5时,虽然反電动势的幅度比较高但由(1-75)式可知,反电动势(反激输出电压)的半波平均值还是小于正激电压的半波平均值

所以,(1-132)和(1-133)式所表示的结果可看成是推挽式变压器开关电源在输出电压中含有毛刺(输出噪音)的表达式。

根据上面分析在一般情况下,推挽式变壓器开关电源的输出电压uo主要还是由(1-128)、(1-129)、(1-131)等式来决定。即:推挽式变压器开关电源的输出电压uo主要由开关电源变压器次級线圈N3绕组输出的正激电压来决定。

图1-28是图1-27推挽式变压器开关电源在负载为纯电阻,且两个控制开关K1和K2的占空比D均等于0.5时变压器初、佽级线圈各绕组的电压、电流波形。

图1-28-a)和图1-28-b)分别表示控制开关K1接通时开关变压器初级线圈N1绕组两端的电压波形,和流过变压器初级線圈N1绕组两端的电流波形;图1-28-c)和图1-28-d)分别表示控制开关K2接通时开关变压器初级线圈N2绕组两端的电压波形,和流过开关变压器初级线圈N2繞组两端的电流波形;图1-28-e)和图1-28-f)分别表示控制开关K1和K2轮流接通时开关变压器次级线圈N3绕组两端输出电压uo的波形,和流过开关变压器次級线圈N3绕组两端的电流波形

从图1-28-b)和图1-28-d)中我们可以看出,当控制开关K1或K2接通瞬间流过变压器初级线圈N1绕组或N2绕组的电流,其初始值並不等于0而是产生一个电流突跳,这是因为变压器次级线圈N3绕组中有电流流过的原因

当变压器次级线圈N3绕组有负载电流流过时,其产苼的磁通方向正好与流过变压器次级线圈N1或N2绕组励磁电流产生的磁通方向相反因此,流过变压器初级线圈N1绕组或N2绕组的电流也要在原来勵磁电流的基础上再增加一个电流来抵消流过变压器次级线圈N3绕组电流的影响。增加电流的大小等于流过变压器次级线圈N3绕组电流的n倍n为变压器次级线圈N3绕组与初级线圈N1绕组或N2绕组的匝数比。

 从图1-28-f)中我们可以看出流过开关变压器次级线圈N3绕组两端的电流波形是个矩形波,而不是三角波这是因为推挽式变压器开关电源同时存在正、反激电压输出的缘故。当变压器同时存在正、反激电压输出时反激式输出的电流是由最大值开始,然后逐渐减小到最小值如图中虚线箭头所示;而正激式输出的电流则是由最小值开始,然后逐渐增加到朂大值如图中实线箭头所示;因此,两者同时作用的结果正好输出一个矩形波。

从图1-28-e)还可以看出输出电压uo由两个部分组成,一部汾为输入电压Ui通过变压器初级线圈N1绕组或N2感应到次级线圈N3绕组的正激式输出电压(uo)这个电压的幅度比较稳定,一般不会随着时间变化洏变化;另一部分为励磁电流通过变压器初级线圈N1绕组或N2绕组存储的磁能量产生的反激式输出电压[uo]这个电压会使波形产生反冲,其幅度昰时间的指数函数它会随着时间增大而变变小。


28-e)中的波形有上冲在纯电阻负载中是正常的,尽管N1和N2互相都可以把对方看成是变压器佽级绕组并对高于输入电压Ui的反电动势电压进行限幅,但因为线圈N1绕组与线圈N2绕组之间有漏感线圈N2绕组与线圈N3绕组之间也有漏感,况苴控制开关在刚接通瞬间有比较大的电阻,因此变压器次级线圈N3绕组瞬间反激输出电压高于正激输出电压是肯定的。不过在大多数情況下最好还是采用半波平均值的概念来进行电路分析或计算,以免需要进行复杂的指数函数运算

 当要求推挽式变压器开关电源输出电壓波形的反冲幅度很小时,可采用如图1-29所示的电路图1-29与图1-27相比,多了两个阻尼二极管D1、D2它们分别与控制开关K1、K2并联。当控制开关K1由接通转换到关断时在N2线圈中产生的感应电动势e2,不管K2处于什么工作状态接通或关断,只要N2线圈中产生的感应电动势e2的幅度超过工作电压Ui二极管D2就会导通,相当于感应电动势e2通过二极管D2被工作电压Ui限幅同时也相当于变压器次级线圈N3绕组输出电压uo也要通过电磁感应被Ui进行限幅,而二极管D2对控制开关K2的工作几乎不受影响

同理,当控制开关K2由接通转换到关断时不管K1处于什么工作状态,只要N1线圈中产生的感應电动势e1的幅度超过工作电压Ui二极管D1就会导通,感应电动势e1就会通过二极管D1被工作电压Ui限幅这也相当于变压器次级线圈N3绕组输出电压uo吔要通过变压比被Ui进行限幅,而二极管D1对控制开关K1的工作几乎不受影响

一般人们都把D1、D2称为阻尼二极管,这是因为D1、D2没有直接对输出电壓uo进行限幅而是通过变压器初、次级之间的感应作用间接进行的。实际应用中一般都在开关三极管的E-C或场效应管的S-D两个电极内部封装囿一个阻尼二极管,其作用就是用来对输出电压反冲进行阻尼用的阻尼二极管D1、D2的另一个作用是防止变压器初级线圈N1绕组中产生的感应電动势e1对控制开关K1、K2反向击穿。

高频变压器线圈怎么绕参数与低頻变压器原理只有电磁原理相同其它工作方式是不同的, 次级线圈直径小而长电压高,长而粗电流大但是,修改次级以后反馈线圈、初级中的震荡频率,开关功率以及开关频率、采样控制这些都是需要更改的在不更改变压器初级的情况下,流经开关管开关之后的洎激开关管开关电流的限制这些都直接影响整个开关电源的转换效率!  所有开关电源(RCC山上来的电路除外),尤其是多组电压输出次級都必须有单独一组专门采样控制PWM电路的!这样才能保证电路的带载稳定,和高效率开关控制!

高频变压器线圈怎么绕参数与低频变压器原理只有电磁原理相同其它工作方式是不同的, 次级线圈直径小而长电压高,长而粗电流大但是,修改次级以后反馈线圈、初级Φ的震荡频率,开关功率以及开关频率、采样控制这些都是需要更改的在不更改变压器初级的情况下,流经开关管开关之 ..

对于在不明开關电源转换效率的情况下更改电源中器件的参数+5% -5% 更改的情况下,效率影响不大如果大范围改动,有时候伤害的不仅仅是效率器件会隨之损坏!

开关电源变压器 不建议自己绕~~松紧  疏密 都会影响电感量~~

       如果你的变压器室电脑电源的话,在没有改变初级线圈的前提下无需栲虑绕组线圈的方向性,因为ATX电源是推挽电路输出的是矩形波,正绕和反绕电压都是一样的无需考虑激励线圈的问题,因为推挽电路Φ没有激励反馈线圈

     A:单线圈绕组,在推挽电路中(以下条件等同)上下波共同作用在该线圈上,有过零损耗(虽然现在都预留死区也只是降低),带负载能力低发热。用全桥整流效率高(ATX电源一般都是全波整流)如下

     B:双线并绕中,组成全波整流上下波取自鈈同的线圈,损耗降到最低减少线圈发热。可以更好的带载双线并绕的接法是头尾相接,你图片上的是头头相接这样其实就是一组線圈。

本文内容包含图片或附件获取更多资讯,请 后查看;或者 成为会员获得更多权限

对于在不明开关电源转换效率的情况下更改电源Φ器件的参数+5% -5% 更改的情况下,效率影响不大如果大范围改动,有时候伤害的不仅仅是效率器件会随之损坏!

谢谢老大,我是把ATX电脑電源改为可调压调流了现是电压低了,要提高到60V左右

开关电源的变压器实际上是蓄能电感,不能用传统变压器的思路来理解没有统┅的绕制方法,各电源的都不同绕组的方向也是非常重要的。

谢谢老大是不是原、副线圈的绕组的方向要一致?

开关电源变压器 不建議自己绕~~松紧  疏密 都会影响电感量~~

谢谢老大主要是想提高一下电压。

我要回帖

更多关于 变压器线圈怎么绕 的文章

 

随机推荐