已知关于X的一元二次方程()k-1)x²+2x-2=0有两个不相等的实数根

x+1是关于x的一次函数,则一元二次方程kx2+2x+1=0的根的情况为(  )

C. 有两个不相等的实数根

D. 有两个相等的实数根

∵关于x的一元二次方程2x

-2x+4-k=0有两个不相等的实数根,

  一元二次方程根与系数的关系

  对于任何一个有实数根的一元二次方程,两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商。

  一元二次方程根与系数关系的推论

  ①运用根与系数的关系和运用根的判别式一样,都必须先把方程化为一般形式,以便正确确定a、b、c的值。

  ②有推论1可知,对于二次项系数为1的一元二次方程,他的两根之和等于一次项系数的相反数,两根之积等于常数项。

  ③推论2可以看作推论1的逆定理,利用推论2可以直接求出以两个数x1、x2为根的一元二次方程(二次项系数是1)是x2-(x1+x2)x+x1x2=0

  一元二次方程根与系数知识点总结

  1.一元二次方程根与系数的关系的推导是在求根公式的基础上进行,它深化了两根的和与积和系数之间的关系,是我们今后继续研究一元二次方程根的情况的主要工具,必须熟记,为进一步使用打下基础。

  2.以一元二次方程根与系数的关系的探索与推导,向学生展示认识事物的一般规律,提倡积极思维,勇于探索的精神,借此锻炼学生分析、观察、归纳的能力及推理论证的能力。

  3.一元二次方程的根与系数的关系,在中考中多以填空,选择,解答题的形式出现,考查的频率较高,也常与几何、二次函数等问题结合考查,是考试的热点,它是方程理论的重要组成部分。

据魔方格专家权威分析,试题“已知关于x的一元二次方程x2﹣2x+k=0有两个不相等的实数根,则k的取..”主要考查你对  二次函数的定义二次函数的图像二次函数的最大值和最小值求二次函数的解析式及二次函数的应用  等考点的理解。关于这些考点的“档案”如下:

现在没空?点击收藏,以后再看。

二次函数的定义二次函数的图像二次函数的最大值和最小值求二次函数的解析式及二次函数的应用
  • 二次函数的解析式有三种形式:

    (a,b,c是常数,a≠0);

    (a,h,k是常数,a≠0)

    与x轴有交点时,即对应二次好方程

    存在时,根据二次三项式的分解因式

    。如果没有交点,则不能这样表示。

    二次函数的一般形式的结构特征:①函数的关系式是整式;

    ②自变量的最高次数是2;

    ③二次项系数不等于零。

  • 二次函数的一般形式中等号右边是关于自变量x的二次三项式;

    判断一个函数是不是二次函数,在关系式是整式的前提下,如果把关系式化简整理(去括号、合并同类项)后,能写成

    (a≠0)的形式,那么这个函数就是二次函数,否则就不是。

  • 二次函数图像是轴对称图形。对称轴为直线x=-b/2a
    对称轴与二次函数图像唯一的交点为二次函数图像的顶点P。
    特别地,当b=0时,二次函数图像的对称轴是y轴(即直线x=0)。
    a,b同号,对称轴在y轴左侧
    a,b异号,对称轴在y轴右侧

    顶点:二次函数图像有一个顶点P,坐标为P ( h,k )

    开口:二次项系数a决定二次函数图像的开口方向和大小。


    当a>0时,二次函数图像向上开口;当a<0时,抛物线向下开口。
    |a|越大,则二次函数图像的开口越小。
  • 决定对称轴位置的因素:

    一次项系数b和二次项系数a共同决定对称轴的位置。

    当a>0,与b同号时(即ab>0),对称轴在y轴左; 因为对称轴在左边则对称轴小于0,也就是- b/2a<0,所以 b/2a要大于0,所以a、b要同号

    当a>0,与b异号时(即ab<0),对称轴在y轴右。因为对称轴在右边则对称轴要大于0,也就是- b/2a>0, 所以b/2a要小于0,所以a、b要异号

    可简单记忆为左同右异,即当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0 ),对称轴在y轴右。

    事实上,b有其自身的几何意义:二次函数图像与y轴的交点处的该二次函数图像切线的函数解析式(一次函数)的斜率k的值。可通过对二次函数求导得到。


    决定与y轴交点的因素:
    常数项c决定二次函数图像与y轴交点。

    二次函数图像与y轴交于(0,C)

    注意:顶点坐标为(h,k), 与y轴交于(0,C)。

    k=0时,二次函数图像与x轴只有1个交点。

    当a>0时,函数在x=h处取得最小值ymin=k,在x<h范围内是减函数,在x>h范围内是增函数(即y随x的变大而变小),二次函数图像的开口向上,函数的值域是y>k

    当a<0时,函数在x=h处取得最大值ymax=k,在x<h范围内是增函数,在x>h范围内是减函数(即y随x的变大而变大),二次函数图像的开口向下,函数的值域是y<k

    当h=0时,抛物线的对称轴是y轴,这时,函数是偶函数。

  • 二次函数的三种表达形式:
    把三个点代入函数解析式得出一个三元一次方程组,就能解出a、b、c的值。

    y=a(x-h)2+k(a≠0,a、h、k为常数),顶点坐标为对称轴为直线x=h,顶点的位置特征和图像的开口方向与函数y=ax2的图像相同,当x=h时,y最值=k。
    有时题目会指出让你用配方法把一般式化成顶点式。
    例:已知二次函数y的顶点(1,2)和另一任意点(3,10),求y的解析式。
    注意:与点在平面直角坐标系中的平移不同,二次函数平移后的顶点式中,h>0时,h越大,图像的对称轴离y轴越远,且在x轴正方向上,不能因h前是负号就简单地认为是向左平移。
    具体可分为下面几种情况:
    当h>0时,y=a(x-h)2的图象可由抛物线y=ax2向右平行移动h个单位得到;
    当h>0,k>0时,将抛物线y=ax2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)2+k的图象;

    由一般式变为交点式的步骤:


    a,b,c为常数,a≠0,且a决定函数的开口方向。a>0时,开口方向向上;
    a<0时,开口方向向下。a的绝对值可以决定开口大小。
    a的绝对值越大开口就越小,a的绝对值越小开口就越大。
    能灵活运用这三种方式求二次函数的解析式;
    能熟练地运用二次函数在几何领域中的应用;
    能熟练地运用二次函数解决实际问题。
  • 二次函数表达式的右边通常为二次三项式。

    )此抛物线的对称轴为直线x=(x

    已知二次函数上三个点,(x

    当△=b2-4ac>0时,函数图像与x轴有两个交点。(x

    当△=b2-4ac=0时,函数图像与x轴只有一个交点。(-b/2a,0)。

    X的取值是虚数(x=-b±√b2-4ac的值的相反数,乘上虚数i,整个式子除以2a)

  • 二次函数解释式的求法:
    就一般式y=ax2+bx+c(其中a,b,c为常数,且a≠0)而言,其中含有三个待定的系数a ,b ,c.求二次函数的一般式时,必须要有三个独立的定量条件,来建立关于a ,b ,c 的方程,联立求解,再把求出的a ,b ,c 的值反代回原函数解析式,即可得到所求的二次函数解析式。

    )原创内容,未经允许不得转载!

  • 我要回帖

    更多关于 已知关于X的一元二次方程() 的文章

     

    随机推荐