物理上未证实的超弦理论与灵魂为何数学上可以用?

引力会随季节变化吗?
苹果在春天会不会比秋天下落得更快?形状、质量相同,但组成成分不同的两个物体,感受到的地球引力是否也会有所差异?
每个人都听说过牛顿和苹果的故事。话说1666年秋天,牛顿在自己母亲的庄园里看到一个苹果掉到地上,由此启发了他的一系列思考:“为什么苹果总是垂直落向地面?”“为什么它不会走偏,或者朝天上飞去,而是始终对着地心下落?”作为这些思考的成果,最后他发现了万有引力定律。
有一个问题牛顿当时没有问及:“苹果或者橘子下落的方式会不会有所不同?”或者“要是苹果在春天落地,下落方式是否会有变化?”这些问题看似画蛇添足,无事生非,但在美国物理学家阿兰·克斯特里克看来,却非常重要。
按我们现在对引力的理解,引力只跟质量和距离有关,而跟物体是苹果还是橘子无关;只要距离不变,也跟时间、季节无关。但是,到底是不是真的这样呢?克斯特里克觉得大可怀疑。他和他的学生业已证明,假如引力在这些问题上有异常表现,那也是不容易被发觉的,要是数百年来逃过了人们的观测,也不用奇怪。
如何寻找一个“万有理论”?
不过,假如引力确实跟组成物体的成分有关,或者与季节变化有关,就算这些效应微乎其微,但对于我们理解宇宙的运作却十分重要,是忽略不得的。
20多年来,克斯特里克一直在思考这些问题。1989年,他开始考虑如何从当今物理学上的两大理论给我们描述的世界图景中寻找一个突破口。这两大理论一个是广义相对论,即爱因斯坦关于万有引力的理论;另一个是粒子物理学的标准模型,即描述所有物质和除引力之外所有作用力的量子理论。
当前,相对论和粒子物理的标准模型都是不完善的。当引力非常强的时候,譬如当描述宇宙大爆炸那一瞬间或者黑洞奇点的时候,广义相对论就崩溃了。同样,标准模型在解释宇宙中的基本粒子为何具有不同的质量时,也无能为力。此外,这两个理论本身也不兼容,比如它们对时间的理解就各执一词:在相对论里,时间和空间是密不可分的,但在量子力学里,它们却毫不相干。这种基本观念上的分歧,使得它们很难统一起来,形成一个能解释宇宙中所有现象的“万有理论”。
可是说来奇怪,尽管它们各有缺陷,但迄今却都是非常好的理论:广义相对论在描述宇观世界时,至今还没有出过错;而标准模型在微观世界,更是所向披靡。如果我们想知道将来把它们统一起来的理论会是什么样子,那么就不得不去寻找一些它们不能解释的东西。
挑战“相对性原理”
克斯特里克就是这么去做的。作为第一步,克斯特里克对物理学上一条几乎神圣的假设提出了质疑。这个假设叫“相对性原理”。我们知道,爱因斯坦的相对论建立在两个假设基础之上,一个是光速不变,另一个就是相对性原理。相对性原理告诉我们,对于任何相对你以匀速直线运动的观察者,不论他在空间朝哪个方向运动,物理定律对于你俩都完全一样。
相对性原理的一个推论是宇宙各向同性,即宇宙中没有“上下”或者“左右”之分,这种区分仅是人为的;也没有一个特殊的方向,在那个方向上,光或者天体会运动得更快。
为什么克斯特里克要选择向这个原理开炮呢?首先,科学上所谓的原理,就是一开始就假设它是对的东西,然后以它为基础来构建理论大厦。既然相对性原理是相对论的基础,那么它自身对错是相对论无法证实的。其次,在过去许多年里,包括著名的超弦理论和圈量子理论在内的许多理论都表明,相对性原理或许并非严格成立。
当然,迄今宇宙中还没有一件事情表明相对性原理已经受到了破坏,但在克斯特里克看来,这或许只是因为至今我们没有在合适的地方去寻找,或者仅仅实验精度不够而已。
X场作用的三种可能方式
克斯特里克从广义相对论和标准模型出发,先假设宇宙中充斥着一种迄今未知的力场,这种场就像夹在两块平行板之间的匀强电场一样,有一个“优先”的方向,只不过匀强电场只局限于两块平行板之间,而这种场却充斥着整个宇宙空间。因为它有一个特殊的方向,这就破坏了相对性原理。这个理论他称之为标准模型的扩充版(简称SME)。
当把所有的粒子和基本作用力包含进来,就可以推算这些粒子和基本作用力将如何与新的力场相互作用,这样,SME就产生了一类可能观察到相对性原理受到破坏的新现象。接下去,人们就可以设计实验去检验了。
为了看看这个想法如何操作,我们不妨把这种假想的力场称之为“X场”——它也存在于我们的太阳系。X场像磁场或电场一样,可以用一系列箭头来描述。
这个X场或许对空间运动的物体有非常微弱的作用。
第一种可能是,由于它有一个特殊的方向,物体处在这个方向,其表现或许与处在别的方向上会有所不同。
第二种可能是,当地球在公转轨道上做周期性运动时,它所受的X场作用也将周期性变化。由于实际测量中,在排除了电磁力等其他作用力的影响之后,我们是把剩余的作用统统算在引力的“账”上的,所以X场作用的周期性变化,必表现为“引力”(其实是真实引力和X场作用力之和)的周期性变化。于是,地球公转时,“引力”在一年四季可能会表现出微小的周期性变化。用一个通俗的比喻就是,“苹果或许在一年四季会以不同的重力加速度下落”。
这个思路跟天文学上发现行星的一种办法相似。我们知道,许多太阳系外行星靠目前的技术手段是无法直接观测到的,因为它们太小太暗了,比之它们所在的恒星,就像好比芝麻比西瓜。一颗恒星倘若没有行星,短时间内观察,它在天空中的位置是不动的。但假如拥有行星,行星必然要和它一起绕着共同的质心转动,使得恒星也发生周期性的摆动。只要观察到恒星的周期性摆动,我们也就间接证明了行星的存在。
第三种可能是,X场以不同的方式影响不同的粒子,就像电场只对带电粒子有作用一样。举个例子,每一种类型的夸克或许都能“感觉”到X场,但程度有所不同。这样,两个物体即使质量和形状相同,仅仅组成成分不同,那么因其所含的每一种类型的夸克数量不等,物体作为整体感受到的X场作用力就将不尽相同。结果是,“苹果和橘子或许以不同的重力加速度坠落”。
当然,这些效应哪怕存在也是微乎其微的,需要设计极高精度的实验才能探测到;而且,因为X场产生效应的可能方式有很多,有些甚至是我们意想不到的,所以即便上文提及的三种可能性不存在,也不能轻易下结论说X场一定不存在。
目前的结果是否定的
迄今,研究者们设计了大量高精度的实验去检验在空间某个特殊的方向上时钟是否走快些,但他们并没有观察到任何异常。
另一个实验最近由一群美国物理学家开展,目的是想检验两种不同的元素——一个是钛,另一个是铍——对引力是否会有不同的反应。这类似于比较一个苹果和一个橘子下落方式是否会有所不同。他们利用极其精确的仪器来测量两个物体之间的引力。为了排除任何可能存在的干扰,他们对电磁场和附近实验室的振动进行了屏蔽,又对地下水位一年内不同季节的涨落所引起的引力变化做了修正。但最终发现,在千亿分之一的误差范围内,引力对铍和钛元素的作用并没有什么区别。
有人还建议用反物质来做这个实验,用个通俗的说法,即去看看“苹果和反物质苹果在相同的引力场中会不会以不同的重力加速度下落”。但制造大量的反物质目前超出了我们的能力之外,这类实验或许要等到下一个十年才能开展。
这类实验尽管难度极大,但因为意义重大,物理学家们依然前仆后继,乐此不疲。
责任编辑:
声明:该文观点仅代表作者本人,搜狐号系信息发布平台,搜狐仅提供信息存储空间服务。
大科技淘宝网店
大科技淘宝网店
今日搜狐热点外行也能看懂的“物理学最深邃的理论”
20世纪物理学的两大突破——广义相对论和量子力学在根本上是有冲突的。世界上是否存在能够统一这两大学说的“万有理论”?在当下的物理学理论中,弦理论最有可能回答这一问题。
撰文Ethan Siegel
翻译金庄维(北京大学物理学院)
审校林海(清华大学丘成桐数学中心) 赵维杰
2015年,顶尖的弦理论家、普林斯顿高等研究院的爱德华·威腾(Edward Witten)在《今日物理》(Physics Today)上发表文章—— What every physicist should know about string theory(《每个物理学家都该了解的弦理论知识》,链接见文末)。威腾在文章里讲了什么?我们不妨来看看这篇文章的“通俗版”——《每个外行都该了解的弦理论知识》。
弦理论的核心在于构成宇宙的基本元素是一维的弦,而不是零维的点粒子。图片来源: Trailfan, flickr.com
弦理论是物理学中最深邃、最有想象力,但尚未被实验证实的理论之一。几个世纪以来,“统一”的思想贯穿物理学发展始终:在某个基本层次,所有不同的力、粒子、相互作用和现象都彼此联系,能被纳入同一框架。自然界存在某种能够包含四种独立的基本相互作用(强、弱、电磁和引力相互作用)的统一理论。
综合多方面因素,弦理论是最有希望的“统一理论”。它出人意料地在最高能标上统一了引力和量子理论。虽然没有实验证据,但物理学家有充分的理论依据来相信弦论是正确的。
两个粒子/弦发生相互作用(如碰撞)产生新粒子/弦。点粒子在时空中扫出的轨迹是条线,而闭弦的轨迹则是管道状。图片来源:Wikimedia Commons user Kurochka
说起自然规律时,人们总会惊叹:看似无关的现象之间竟有如此多的相似之处!
两个有质量物体间根据牛顿定律的引力相互作用,和两个带电粒子间的电磁相互作用形式几乎相同;钟摆的振荡方式和弹簧上物体的来回运动、卫星围绕恒星运动的方式都很相似;引力波、水波和光波,尽管物理来源不同,特征相当接近。同样地,虽然大多数人并未意识到,单粒子的量子理论与量子引力理论也颇为类似。
优美的类比
量子场论的工作方式是对粒子的“过去”求和。我们不能只考虑粒子从一个位置运动到另一个位置的确切路径,因为自然界带有“量子不确定”属性。正确的计算方式是给所有可能的路径赋予相应的概率权重,再将它们相加(也就是下面所谓的“求平均”)。但是因为爱因斯坦的广义相对论讨论的是时空曲率而不是粒子,所以在计算引力的量子效应时,我们就不是对粒子路径求平均,而是对所有可能的时空几何求平均。
考虑三维空间中所有可能的几何非常困难,但是如果降到一维,计算就变得很简单。
一维光滑几何只可能有开弦和闭弦。开弦两端不相连,而闭弦的两端相连形成圈。此外,在一维情况下,曲率标量的计算也变得简单。加入物质后,我们需要处理一些标量场和宇宙学常数,恰好对应于量子场论中的几种粒子和质量项:一个优美的类比!
开弦(上)和闭弦(下)。图片来源:Phys. Today 68, 11, 38 (2015)
一维情况下,只要做出良好的定义,动量向量的维度就是我们关心的维度。因此,我们在一维中得到的量子引力看起来就像是任意维中的自由粒子的量子理论。下一步就是加入相互作用,让没有散射振幅或截面的自由粒子和时空耦合,产生物理效应。
三点耦合顶角(y1,y2,y3,y4)组合成的图:一维量子引力中路径积分的关键组成部分。图片来源:Phys. Today 68, 11, 38 (2015).
像上面这样的图可以用来描述量子引力中“作用量”的物理概念。写下这类图的所有可能排列组合,并将它们求和——当然需要遵循动量守恒等规则——我们就大功告成了!现在,我们的一维量子引力就与任意维中参与相互作用的单粒子量子理论非常相像了。
那么下一步,我们要从一维空间转移到3+1维时空(三个空间维度、一个时间维度)吗?对于引力而言,这会非常困难。然而,如果把粒子换成弦,可以得到更完整的量子引力理论。
弦论中的对应
费曼图(上)基于点粒子和点粒子间的相互作用。转换成弦理论类比(下)后,线条变成弯曲表面。图片来源:Phys. Today 68, 11, 38 (2015).
一维量子引力可以给出弯曲时空中单粒子的量子场论,但它没有描述引力本身。这个图象中缺少了什么?因为没有算符(表示量子力学的真空激发及其性质的函数)和态(表示粒子及其性质如何随时间演化)之间的对应关系。
将粒子换成弦就可以解决这个问题。一维的弦在时空中的轨迹是二维曲面。而二维曲面能够以复杂的方式进行弯曲,产生非常有趣的行为。就像下面的图中,(b)、(c)之间存在某种几何上的等价关系,也就是算符与量子态之间存在对应关系。
时空几何的扰动可以通过在“p”处插入算符来表示。在弦理论类比中,(b)和(c)共形等价。图片来源:Phys. Today 68, 11, 38 (2015).
具体来讲,在某些特殊的量子场论中,算符-态对应关系存在:时空几何的扰动(插入的算符,描述引力)自然地表示为一个量子态,而这个态描述了弦的性质。因此我们可以从弦理论中得到引力的量子理论。不仅如此,我们得到的量子引力还能与时空中的其他各种粒子和力(对应于弦的其他算符/量子态)相统一!
最理想的情况是这些类比在所有尺度都成立,并且弦图象与我们的宇宙间存在清楚的一一对应关系。然而目前,超弦图像只在几个维度中自洽,其中最有希望的一种无法直接给出爱因斯坦的四维引力,而是给出了十维的超引力理论。为了得到正确的四维引力,我们还须解决六个多余的维度。为什么会这样?答案仍然无人知晓。
弦理论中需要紧化额外维,图为Calabi-Yau 流形的二维投影。图片来源:Wikimedia Commons user Lunch.
即便如此,弦理论提供了一条通向量子引力的途径,如果在所有可能中做出了正确的选择,我们能够得到广义相对论和标准模型。迄今为止只有弦理论能够带来这样好的结果,并且因此受到广泛的研究。
无论你对弦理论充满信心,还是对它缺乏可被证实的预言有所想法,弦理论无疑仍是理论物理研究最活跃的领域之一,也是无数物理学家梦寐以求的可能的终极理论。
希望这篇文章可以使读者对弦理论有一个初步的认识,如果想了解更多背景知识,可以参阅介绍弦理论的科普著作《宇宙的琴弦》、《超弦理论:探究时间、空间及宇宙的本源》或纪录片《优雅的宇宙》等。物理专业的读者可以点击下方“阅读原文”查看威腾所作的详细版:《每个物理学家都该了解的弦理论知识》
哥伦比亚大学物理学和数学教授 Brian Greene 介绍弦理论。Brian Greene 因弦理论的科普工作而为大众熟知,相关作品包括科普著作《宇宙的琴弦》和纪录片《优雅的宇宙》。图片来源:NASA/Goddard/Wade Sisler.
原文链接:
http://www.forbes.com/sites/startswithabang//what-every-layperson-should-know-about-string-theory/#d
参考文献:
Edward Witten, What every physicist should know about string theory, Physics Today 68 (2015) no.11, 38-43 (点击“阅读原文”获取)
(注:日,爱德华·威腾接受了中国科学院大学授予的名誉博士学位,随后作了题为 What Every Physicist Should Know About String Theory 的特邀报告,报告的主要内容来自这篇 Physics Today 的文章。)
责任编辑:
声明:该文观点仅代表作者本人,搜狐号系信息发布平台,搜狐仅提供信息存储空间服务。
今日搜狐热点当前位置:
&&>&&&&>&&&&>&&&&>&&
史上最大胆的能源计划:从黑洞中提取能源?&
责任编辑:科幻世界杂志社更新时间: 14:37:00
  来源:环球科学ScientificAmerican
  有朝一日,太空电梯能够将物质运送到地球以外。但是,我们能在黑洞附近建造一架足够结实的电梯吗?
  总有一天太阳会陨落,供其进行核聚变的燃料会耗尽,世界会变得阴冷。如果届时地球仍然健在,人类将会坠入永恒的严冬中。当可见宇宙范围内所有星系中的所有恒星的能源都会被消耗殆尽、没有任何剩余能源可用时,他们肯定会把目光投向最后的能量仓库:黑洞。我们的后代能从黑洞中获取能源,并延续我们的文明吗?
  虚幻的希望
  乍看之下,从黑洞中提取能量或者其他任何东西都是不可能的。毕竟,黑洞被一个“事件视界”包围着,这是一个有去无回的球面,球面内的引力场会变得无限大。任何误入这个球面的东西都注定会毁灭。因此,一台抡着大铁球,企图从视界上破开一个洞,从而把能量释放出来的吊车不仅不会成功,自己反而会被破坏,连带着不幸的驾驶员一起被黑洞吞没。投入黑洞的炸弹非但不能摧毁黑洞,反而会让它变得更大,增加的量就等于炸弹的质量。进入到黑洞中的任何东西都无法出来:陨石不能,火箭不能,甚至光也不能。
  我们过去基本上就是这么认为的。但是,斯蒂芬·霍金(Stephen Hawking)在1974年发表的那篇让我最为震惊,也最为兴奋的物理学论文证明,我们过去的想法是错误的。在雅各布·贝肯斯坦(Jacob D。 Bekenstein,目前就职于耶路撒冷希伯来大学)的早期思想的基础上,霍金证明黑洞会泄漏出少量辐射。如果你掉入黑洞的话还是会死,不过,尽管你本人永远无法逃出来,但你的能量可以出来。这对于未来的黑洞能源开发者是一个好消息:能量是可以逃出来的。
  能量能够逃离出来的奥秘,隐藏在量子力学的神秘世界中。量子物理的一个标志性现象是,粒子可以穿过本不可能穿过的障碍。一个向着势垒(势能比周围高的区域,在经典物理范畴内,粒子的能量必须足够高才能从这个区域翻越过去)运动的粒子有时会出现在势垒的另一边。不要在家里尝试这种行为——将自己撞向一堵墙,你是不可能毫发无伤地出现在墙的另一边的。但是,微观粒子的隧穿效应就容易得多。
  量子隧穿是α粒子(一个氦核)能够挣脱放射性铀核的原因,也是霍金辐射能从黑洞中泄露出的原因。粒子挣脱事件视界并不是直接突破了那近乎无限强的引力场,而是通过量子隧穿实现的。(当然,没有人见过黑洞辐射。但这是将量子力学应用到弯曲时空所得到的令人信服的数学结果,任何人都不会怀疑的。)
  由于黑洞会发出辐射,我们也许就有希望获取它们的能量。但真正的困难在于细节方面。无论我们如何去尝试提取这些能量,都将困难重重。
  一个简单的方法就是等待。经过足够长的时间后,黑洞会一个光子一个光子地将自己的能量释放回宇宙中,进入我们等待的双手里。每损失一点能量,黑洞都会减小一点,直到最后消失不见。从这个意义上来说,黑洞就像一杯美味可口的咖啡,你不能接触它的表面,否则就会被引力撕裂。但仍然有一种办法可以享受到这杯危险的咖啡,那就是等着它蒸发,然后吸入蒸发出的气体。
  遗憾的是,虽然等待是一个简单的办法,但这个过程极其缓慢。黑洞非常黯淡,一个质量与太阳相等的黑洞,发出的辐射相当于温度低至60纳开尔文的黑体(也就是说,这个黑体的温度距离绝对零度只有0.度)。20世纪80年代以前,我们还无法在实验室中将物体冷却到那样的低温。要使一个质量相当于太阳的黑洞完全蒸发掉,需要的时间无比漫长,是现今宇宙年龄的1057倍。一般来说,一个黑洞的寿命等于其质量的立方——m3。因此,我们浑身打颤的后代们必须要加快行事才行。
  开采“黑洞大气”
  有一个原因,可以让我们的后代保持乐观:并不是每一个挣脱了黑洞视界的粒子都会逃逸到无穷远的地方。实际上,几乎没有粒子能跑出那么远。差不多所有通过隧穿效应穿过事件视界的粒子很快就会再次被引力场俘获,然后被黑洞回收。如果我们能用某种方法,将这些光子从黑洞的束缚中夺取过来,在它们已脱离视界但还没被再次俘获时将它们营救出来,那么我们也许可以更快地获取黑洞的能量。
  要知道怎样夺取这些光子,首先必须研究黑洞附近的那些极端作用力。之所以绝大多数的粒子会被黑洞重新俘获,是因为它们并不是笔直射出的。试想,紧贴着黑洞的视界向外发射一束激光。为使激光能够逃脱出去,你必须对准正上方发射,离视界越近就更要对准正上方。那里的引力场实在太强,只要稍微偏离方向,光线就会绕一个圈子落回到黑洞中。
  如果粒子偏离垂直方向,由此产生的旋转速度反而不利于粒子逃离,这可能听起来很奇怪。毕竟,就是轨道速度提供的离心力抵消了引力,才使得国际空间站能够悬在空中。然而,当过于接近黑洞的时候,形势发生了逆转——旋转速度会阻碍物体逃离。这种效应是广义相对论的结果,根据广义相对论,引力会作用于所有的物质和能量——不仅是静质量,也包含轨道动能。当靠近黑洞时(更确切地说是在事件视界半径的1.5倍以内),轨道动能所带来的吸引力大于离心排斥力。在这个半径之内,旋转速度越大,粒子就会越快落入黑洞。
  这个效应表明,如果你沿着绳索向黑洞表面下降,很快你就会感到非常热。你将同时沐浴在两类光子中。一类是将会逃到无限远处,成为“霍金辐射”的光子,还有一类是那些不能逃出去的光子。黑洞有一层“热大气”,离事件视界越近就越热。而热就意味着携带着能量。
  事件视界之外储存着能量,这让科学家想到了一个非常巧妙的办法来获取黑洞能量:我们可以接近黑洞,采集那里的热大气然后运出去,通过这种方式来开采黑洞能量。把一个盒子悬挂到黑洞视界附近,但不要穿过视界,装满热气体后拽出来。采集到的气体中有一部分本来可以自己逃出去,就是“霍金辐射”,但是绝大部分气体如果没有我们的干预,最终注定会掉回黑洞。(一旦那些气体离开了事件视界附近,将它们运回地球就非常容易了:简单的打包,放到火箭上运回家或者将气体的能量转变成激光发射回去。)
  这个方法就像是在我们那杯可口而又危险的咖啡表面吹气一样。如果不加干预的话,绝大多数蒸发出来的水蒸气都将落回杯中,但从表面吹气,可以赶在水蒸气落回杯中之前把它们移走。这种方法的设想就是,通过剥离黑洞的热大气,我们可以快速地“享用”黑洞,把时间尺度从自然蒸发需要的m3量级缩短到m量级。
  然而,我最近的研究证明,这种设想是不可行的。这个结论并非源于对量子力学或者量子引力的深层思考。相反,这来自于最简单的考虑:你找不到足够结实的绳子。为了开发那层热大气,你需要在黑洞附近悬挂一根绳子——需要建造一部太空电梯。但是,我发现,要在黑洞附近建造任何实际有效的太空电梯都是不可能的。
  建造太空电梯
  太空电梯(有时也被称作天钩)是幻想中的未来交通工具,因出现在科幻小说家亚瑟·C·克拉克(Arthur C。 Clarke)1979年的小说 《天堂的喷泉》中而为人熟知。克拉克设想,让一根绳索悬挂在外太空并一直垂到地球表面。这跟绳索不是由来自下方的推力所支撑(像摩天大楼那样,每一层都支撑着上面的楼层),而是由来自上方的拉力拉着(每一段绳索都支持着它下方的片段)。绳索的远端系在一个巨大的、沿着同步静止轨道外围缓慢运行的物体上,这个物体向外拽着绳索,让整个装置保持悬浮。绳索的底端垂到地球的表面,由于各种力的平衡,就像用了魔法的力量一样静止在那里(克拉克曾说过,足够先进的科技无异于魔法)。
  这种先进技术的关键在于,由于有那根绳索的存在,向轨道上运输货物会变得非常容易。我们不再需要危险、低效而又浪费的火箭了。在火箭的太空之旅中,送上天的主要是自己要用的燃料。取而代之的是附着在绳索上,以电力驱动的电梯。这样一来,将货物运送到近地轨道的基本成本只是电费了,将1千克物品送到太空的费用将会从搭载航天飞机所需的数万美元降低到几美元——到太空的旅程将比坐一次地铁还便宜。
  建造一个太空电梯需要克服艰巨的技术难题,而其中最困难的在于,找到一种适合做绳索的材料。理想的材料需要既轻又结实——结实就不会在拉力的作用下伸长或断裂,轻就不会让上方的绳索负担过重。
  钢材的强度是远远不够的。除了承受下方货物的重量外,每段钢索还要承受它自身的重量,所以绳索从下往上必须越来越粗。相对于自身的强度而言,钢材实在太重了,所以从靠近地表一端开始,每隔几千米,钢索的半径就必须加倍。远在到达同步静止轨道的高度之前,绳索就已经粗到不切实际的程度了。用19世纪的材料建造太空电梯显然是不可能的了,但我们还有值得期待的、来自21世纪的材料。碳纳米管是碳原子组成的长带,在它内部,碳原子排列成蜂巢一样的六边形格子。这种材料的强度是钢材的1 000倍,是建造太空电梯的完美候选者。
  作为迄今为止最浩大的工程,太空电梯需要花费数十亿美元。而且,怎样才能把纳米管编制成数万千米长的绳子也是个必须解决的问题,此外还有很多其他困难。但是,对于一个我这样的理论物理学家而言,一旦确认我们设想的构造不违反已知的物理规律,那么剩下的就只是工程学问题了。(从这个意义上来说,建造热核发电站的问题也已经“解决了”。尽管显而易见的是,除了伟大的太阳,现在还没有能为我们提供能源的热核发电厂。)
弦:最结实的绳子
  在黑洞周围,问题显然会变得更加困难。那里的引力场更强,在地球附近可行的办法到了那里就会失效。
  可以证明,即使借助碳纳米管那常被夸大的力量,要建造一个可以抵达黑洞视界附近的太空电梯也是不可行的。承载这种电梯的碳纳米管绳索要么在靠近黑洞的一端会细到能被一个“霍金辐射”光子破坏,要么在远离黑洞的一端会由于太粗而在自身引力作用下坍缩,自己变成一个黑洞。
  这些限制排除了碳纳米管。但就如同铁器时代紧随着青铜器时代,碳纳米管某天将会取代钢铁那样,我们会期待材料科学家发明出越来越结实、越来越轻的材料,而他们确实也能做得到。但是,这种进步不能无限持续下去。这样的进步有一个极限,一个工程学的极限,材料的张力强度与重量之比是不可能无限增大的,自然规律本身为其规定了一个极限。根据爱因斯坦的著名公式E=mc2,我们可以推导出这个让人吃惊的结论。
  绳子的张力告诉你要拉长绳子需要花费多少能量:绳子张力越大,为了使它伸长就需要消耗越多能量。一根橡皮筋之所以有张力是因为要使它伸长,你必须花费能量来重排它的分子:如果分子容易重排(需要花费能量很少),张力就小;如果重排分子需要很多能量,张力就大。但我们还有另外一种方法可以延长绳子,不用重排已有绳子内的分子,而是新造一段绳子然后连接到旧绳子的尾端。用这种方法延长绳子所消耗的能量等于新造的那一段绳子所包含的能量,由著名的公式E=mc2给出——新造绳子的质量(m)乘以光速平方(c2)。
  从耗费能量的角度来看,这是一种相当不经济的方法,但同时也是最保险的方法。它规定了延长绳子所需能量的上限,而这也正是绳子张力的上限。绳子的张力永远不可能超过单位长度的绳子质量乘以光速的平方(也许你会想到把两根绳子扭在一起令强度加倍。但同时,它的重量也加倍了,所以不会提高“张力—重量比”。)
  材料强度的基本极限给科技进步留下了很大的空间。这个极限强度是钢材强度的数千亿倍,大约也是碳纳米管的数亿倍。但同样,这也意味着我们不可能无限地提升材料性能。就如同我们提升推进速度的努力必将终止于光速一样,我们制造更结实材料的努力也必将终止于这个极限。
  根据某些理论的猜想,有一种绳子材料能恰好达到这个极限,这意味着它是所有材料中最结实的。这种材料从未在实验室中被发现过,有些科学家甚至怀疑它是否存在,但有些科学家毕生都在致力研究它。这个自然界最结实的绳子也许永远也不会被发现,但它已经有了自己的名字:弦。那些研究弦的人——弦理论家认为,弦是物质最基本的组成成分。对于我们来说,它是否基本不重要,它的强度才是最重要的。
  弦很结实。一根和鞋带一样长、一样重的弦可以吊起珠穆朗玛峰。由于最艰巨的工程挑战需要最结实的材料,如果我们希望在黑洞周围建造太空电梯,我们最好的选择就是弦;碳纳米管失败了,但基本的弦也许能够成功。如果还有什么材料能胜任这个任务的话,那就是弦;反过来说,如果弦也不能胜任的话,那黑洞就安全了。
  然而,尽管弦很结实了,但还是不够结实。可以说它处在“足够结实”的边缘。稍微再结实一点,那么即使在黑洞周围建造太空电梯也是很容易的事;只要再脆弱一点,弦就会由于自身的重量而断裂,这个计划就毫无希望了。弦恰好处在这个临界点上,一根用弦制作的绳子,如果悬挂在黑洞上方并垂到黑洞表面的话,它的强度恰好可以维系自身的重量,没有余力再挂上电梯和货物。这样的绳子可以支撑它自身,但要以舍弃电梯轿厢为代价。
  这样的事实意味着,黑洞是无法开发利用的。自然本身的规律限制了我们的建筑材料,即使有一根绳子可以到达黑洞稠密的热大气,我们也无法高效地采集能源。由于弦的强度处在临界值,我们只能把一根稍短的绳子伸进黑洞稀薄的上层大气中提取有限的能量。
  但这样低效率的开采并不比单纯的等待好多少:黑洞的寿命仍然是m3量级,与不加干预的情况一样。通过获取偶尔游荡在四周的光子,我们可以将黑洞的寿命缩减一点点,但这样的能量提取无法达到工业规模,不能让我们饥饿的文明得到满足。
  在这种情况下,有限的光速一直是我们的对头。由于我们不能运动得比光快,我们无法突破黑洞的事件视界。由于我们无法从燃料中获取多于mc2的能量,我们注定要将目光投向黑洞。但又由于绳子的强度不可能大于光速的平方乘以单位长度的质量,我们又无法充分获取黑洞的能量。
  当太阳消失以后,我们将生活在永恒的冬天中。我们也许会注意到黑洞热大气中储藏的庞大能源,但获取这样的能源必须承担巨大的风险。如果过于急切或过于深入地向黑洞下手,非但不能从黑洞那里夺取辐射粒子,手里用来捞粒子的“箱子”反而会被黑洞夺走。
  等待我们的,注定是个非常寒冷的冬天吗?本文来自:环球科学
特别声明:本文转载仅仅是出于科普传播信息的需要,并不意味着代表本网站观点或证实其内容的真实性;如其他媒体、网站或个人从本网站转载使用,须保留本网站注明的“来源”,并自负版权等法律责任;作者如果不希望被转载或其它相关事宜,请与我们接洽。
经验告诉我,此刻,在你我沿着这条路走......
几名技术员待在球形空间站内监测星际磁......
《科幻世界》官方微信了解最新资讯
人工智能写科幻小说,和作家写科幻小说有什么不一样?
德国概念设计师Paul Siedler的场景创作,宏大气派。\n
《静音》是一部 Netflix 电影。尽管 Netflix 过去一年在原创电影上的表现并不如预期,但是《静音》仍让人颇为期待
所有这些时刻,终将流逝在时光中,一如眼泪,消失在雨中。——《银翼杀手》\n
最近,美国最大的经济研究机构——全国经济研究所(NBER,全美超过一半的诺奖经济学得主都曾是该机构的成员)发布了一份报告,全面分析了 1990 到 2007 年的劳动力市场情况。\n
J·J·艾布拉姆斯显然有很多科洛弗电影在他那神秘的盒子里。\n
打开微信,点击底部的“发现”,使用“扫一扫”即可将网页分享至朋友圈。
普通登录手机动态密码登录
忘记密码?
没有账号?立即注册
发送动态密码
没有账号?立即注册
第三方账号登录
手机号码/注册邮箱/注册
发送验证码
我已阅读并同意
已有账号,登录
我已阅读并同意
已有账号,登录
第三方账号登录
& 版权所有:中国数字科技馆
未经书面许可任何人不得复制或镜像
京ICP备号 京公网安备号
信息网络传播视听节目许可证0111611号
国家科技基础条件平台

我要回帖

更多关于 弦理论和m理论 的文章

 

随机推荐