常用的麦克劳林公式式的减法

复合函数麦克劳林公式为什么可以直接把u代入原公式
问题描述:
复合函数麦克劳林公式为什么可以直接把u代入原公式r t求解答,比如e^(x2)为什么可以直接把x代入,而且直接由n阶变成了2n阶的
问题解答:
只要u满足原公式的收敛区间,则可以直接代入原公式.比如e^x=1+x+x^2/2!+.的收敛区间为R,因而x可为任意实数.显然u=x^2也为实数,当然就可以代入进去了.这比求复合函数的各阶导数来得到展开公式更简便运算.
我来回答:
剩余:2000字
1/(1-x)的麦克劳林公式的收敛域是(-1,1),也就是说,该公式只能在(-1,1)内使用.你取的X超了 再问: 收敛域是什么?? 再答: 可以简单地理解公式成立的条件。
一项一项地求,一般到三阶就可以啦.没有通项表达式. 再问: 今天老师讲的有N阶啊,是有方法的。能不能在考虑一下 再答: 那只能具体函数具体分析啦。一般是先写出最外层函数的麦公式,然后将内层的函数的麦公式 带入求。 1/(1+x^8),可以先写出1/(1+y)的展式,然后将y=x^8带入即可。再问: 对啊,好像带入后老师
sin (sin x)=x - 2x^3/3! + o(x^5)
在x = 0 处无定义,因为本来ln 0就没定义,还怎么展开啊~泰勒展开是可以的,就是比较烦,一般是对ln(x+1)进行展开,有麦克劳林公式:ln(x+1) = x - x^2/2 + x^3/3 ...+(-1)^(n-1)x^n/n+... 再问: 如果用lnx展开式就算近似值,怎么计算?总会有一个展开,比如sin
img class="ikqb_img" src="http://f.hiphotos.baidu.com/zhidao/wh%3D600%2C800/sign=9fa72e1413dfa9ecfd7b5eb/9f510fb30fb1add343ad4bd1130268.jpg"
img class="ikqb_img" src="http://b.hiphotos.baidu.com/zhidao/wh%3D600%2C800/sign=cfaff8ffaa8d67c829aa20/bba1cdbe438ec0cec3fdfd0323da.jpg"
函数用泰勒公式或迈克劳林公式展开就是用一个多项式来近似的代替原来的函数,用几次多项式来代替函数就说展开成几阶.当然这种代替是有差别的,所以要加上余项才能和原来的函数相等. 至于展开到多少阶,这个要看具体的问题来决定,也就是根据具体问题看展开到多少阶能满足要求.是否满足要求这就是余项来决定. 按你的理解,对余弦函数,四阶
sinx=x-x³/3!+.sin(sinx)=sinx-sin³x/3!+.=x-x³/3!+.-【x-x³/3!+.】³/3!+.=x-2x³/3!+.
f(x)=f(x0)+f'(x0)*(x-x0)+f''(x0)/2!*(x-x0)^2+...+f(n)(x0)/n!*(x-x0)^n (泰勒公式,最后一项中n表示n阶导数)f(x)=f(0)+f'(0)*x+f''(x)/2!*x^2+...+f(n)(0)/n!*x^n (麦克劳林公式公式,最后一项中n表示n阶
*2 再除2然后把1-x^2变为(1-x)(1+x)最后拆成两个分式的减法形式然后就是套公式拉~哈哈
应该不行吧,泰勒公式只是用多项式近似替代函数,存在误差,先展开再平方会将误差扩大,使之不再能近似替代原先的函数.
f(0)=1 f'(x)=3(2x-3)(x^2-3x+1)^2, f'(0)=-9 f''(x)=6(x^2-3x+1)^2+6(x^2-3x+1)(2x-3)^2, f''(0)=60 f'''(x)=12(x^2-3x+1)(2x-3)+6(2x-3)^3+24(x^2-3x+1)(2x-3) f'''(0)=-
f(x) = ln(1+x)f'(x) = 1/(1+x)f''(x) = -1/(1+x)^2f'''(x) = 2/(1+x)^3f^(n)(x) = [(-1)^(n+1)]n!/(1+x)^(n+1)
x->0时,cosx=1-x²/2!+x^4/24+o(x^4),e^{-x²/2}=1-x²/2+(-x²/2)²/2!+o(x^4)=1-x²/2+x²/8+o(x^4)所以cosx-e^{-x²/2}=-x^4/12+o(x^4)~-
本题,分母是等价于x^3的所以,分子展开到3阶即可.经验,开始的时候,先多展开几阶,比如5~6阶,看看可以抵消哪些,等到题目量上去了,也就有经验了
首先要搞清楚(1+x)^α和cosx的泰勒展开式 (1+x)^α=1+αx+α(α-取前2项,即得cosx=1-(1/2)x^2+o(x^3) 第一个等号到第二个等号
f(x)=e^sinx,f(0)=1 f'(x)=e^sinx×cosx,f'(0)=1 f''(x)=e^sinx×cosx×cosx-e^sinx×sinx,f''(0)=1 所以,e^sinx=1+x+1/2×x^2+o(x^2)--------余项有两种形式,o(x^2)为Peano型余项,Lagrange型余
因为SINX为奇函数,其偶次项都为0.
也许感兴趣的知识麦克劳林公式有这种说法?
问题描述:
麦克劳林公式有这种说法?求f(x)=1/(1+x) 在x=0处的泰勒展开公式?参考答案给的解释是等价于麦克劳林公式,但我想说的时麦克劳林公式是泰勒公式里x0=0啊,x和x0等价?而且书上另一种在泰勒公式里的x→0的情况才被视为麦克劳林公式?这是怎么个回事?是我理解不深,还是题目有逻辑错误?求大虾解释,并附上充分的理由!
问题解答:
首先泰勒公式是f(x)=∑f(n)(x0)(x-x0)^i / i!右边的x0是给定的基准点,意思就是能在0处展开,也能在1处展开,能在任何你想要的地方展开假如我们x0就取0,得到f(x)=∑f(n)(0)(x)^i / i!这个就是麦克劳林展开.这个就是泰勒在0处展开得到的式子.泰勒公式里有两个变量一个是x,另一个是x0,x和x0是两个概念,x0就是自变量展开的基准点,x才是真正的自变量
我来回答:
剩余:2000字
根据意思在括号里写aabb式词语:某种说法挂在口头(口口声声 ) 人来人往很热闹(熙熙攘攘 )
絮絮叨叨、熙熙攘攘、战战兢兢、完完全全
前者是对的 1.“一般过去时”是指句子的时态 2.动词有“过去式”; “一般过去式”应该是说“(动词)过去分词的一般式” 1)“(动词)过去分词的一般式”即 Vpp/done 2) “(动词)过去分词的将来式”即to be done 3) “(动词)过去分词的进行式”即being done
sin (sin x)=x - 2x^3/3! + o(x^5)
在x = 0 处无定义,因为本来ln 0就没定义,还怎么展开啊~泰勒展开是可以的,就是比较烦,一般是对ln(x+1)进行展开,有麦克劳林公式:ln(x+1) = x - x^2/2 + x^3/3 ...+(-1)^(n-1)x^n/n+... 再问: 如果用lnx展开式就算近似值,怎么计算?总会有一个展开,比如sin
img class="ikqb_img" src="http://f.hiphotos.baidu.com/zhidao/wh%3D600%2C800/sign=9fa72e1413dfa9ecfd7b5eb/9f510fb30fb1add343ad4bd1130268.jpg"
img class="ikqb_img" src="http://b.hiphotos.baidu.com/zhidao/wh%3D600%2C800/sign=cfaff8ffaa8d67c829aa20/bba1cdbe438ec0cec3fdfd0323da.jpg"
函数用泰勒公式或迈克劳林公式展开就是用一个多项式来近似的代替原来的函数,用几次多项式来代替函数就说展开成几阶.当然这种代替是有差别的,所以要加上余项才能和原来的函数相等. 至于展开到多少阶,这个要看具体的问题来决定,也就是根据具体问题看展开到多少阶能满足要求.是否满足要求这就是余项来决定. 按你的理解,对余弦函数,四阶
sinx=x-x³/3!+.sin(sinx)=sinx-sin³x/3!+.=x-x³/3!+.-【x-x³/3!+.】³/3!+.=x-2x³/3!+.
f(x)=f(x0)+f'(x0)*(x-x0)+f''(x0)/2!*(x-x0)^2+...+f(n)(x0)/n!*(x-x0)^n (泰勒公式,最后一项中n表示n阶导数)f(x)=f(0)+f'(0)*x+f''(x)/2!*x^2+...+f(n)(0)/n!*x^n (麦克劳林公式公式,最后一项中n表示n阶
Saturday was my birthday.
*2 再除2然后把1-x^2变为(1-x)(1+x)最后拆成两个分式的减法形式然后就是套公式拉~哈哈
应该不行吧,泰勒公式只是用多项式近似替代函数,存在误差,先展开再平方会将误差扩大,使之不再能近似替代原先的函数.
f(0)=1 f'(x)=3(2x-3)(x^2-3x+1)^2, f'(0)=-9 f''(x)=6(x^2-3x+1)^2+6(x^2-3x+1)(2x-3)^2, f''(0)=60 f'''(x)=12(x^2-3x+1)(2x-3)+6(2x-3)^3+24(x^2-3x+1)(2x-3) f'''(0)=-
f(x) = ln(1+x)f'(x) = 1/(1+x)f''(x) = -1/(1+x)^2f'''(x) = 2/(1+x)^3f^(n)(x) = [(-1)^(n+1)]n!/(1+x)^(n+1)
x->0时,cosx=1-x²/2!+x^4/24+o(x^4),e^{-x²/2}=1-x²/2+(-x²/2)²/2!+o(x^4)=1-x²/2+x²/8+o(x^4)所以cosx-e^{-x²/2}=-x^4/12+o(x^4)~-
本题,分母是等价于x^3的所以,分子展开到3阶即可.经验,开始的时候,先多展开几阶,比如5~6阶,看看可以抵消哪些,等到题目量上去了,也就有经验了
首先要搞清楚(1+x)^α和cosx的泰勒展开式 (1+x)^α=1+αx+α(α-取前2项,即得cosx=1-(1/2)x^2+o(x^3) 第一个等号到第二个等号
f(x)=e^sinx,f(0)=1 f'(x)=e^sinx×cosx,f'(0)=1 f''(x)=e^sinx×cosx×cosx-e^sinx×sinx,f''(0)=1 所以,e^sinx=1+x+1/2×x^2+o(x^2)--------余项有两种形式,o(x^2)为Peano型余项,Lagrange型余
也许感兴趣的知识北京理工大学数学考研大纲及参考书阅读http://img.mp.sohu.com/upload/ee64cca8acffa4be280fd4_th.jpg数学一直是考研同学们非常头疼的问题,同时数学学好也是非常拉分的,所以凯程晶晶老师整理了北京理工大学数学考研的大纲,分享给考研有需要的同学们。
  考试科目:高等数学、线性代数、概率论与数理统计
第一部分:考试内容及要求
  一、函数、极限、连续
  考试内容
  函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数基本初等函数的性质及其图形初等函数简单应用问题的函数关系的建立
  数列极限与函数极限的定义及其性质函数的左极限与右极限无穷小和无穷大的概念及其关系无穷小的性质及无穷小的比较极限的四则运算极限存在的两个准则:单调有界准则和夹逼准则两个重要极限
  函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质
  考试要求
1.理解函数的概念,掌握函数的表示法,并会建立简单应用问题中的函数关系式。
2.了解函数的有界性、单调性、周期性和奇偶性。
3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念。
4.掌握基本初等函数的性质及其图形,了解初等函数的概念。
5.理解极限的概念,理解函数左极限与右极限的概念,以及函数极限存在与左、右极限之间的关系。
6.掌握极限的性质及四则运算法则。
7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法。
8.理解无穷小、无穷大的概念,掌握无穷小的比较方法,会用等价无穷小求极限。
9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型。
10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理)及其简单应用。
  二、一元函数微分学
  考试内容
  导数和微分的概念导数的几何意义和物理意义函数的可导性与连续性之间的关系平面曲线的切线和法线基本初等函数的导数导数和微分的四则运算复合函数、反函数、隐函数以及参数方程所确定的函数的微分法高阶导数?一阶微分形式的不变性。
  微分中值定理洛必达(L’Hospital)法则函数单调性的判别函数的极值函数图形的凹凸性、拐点及渐近线函数图形的描绘函数最大值和最小值弧微分曲率的概念曲率半径。
  考试要求
1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,理解函数的可导性与连续性之间的关系。
2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分。
3.了解高阶导数的概念,会求简单函数的高阶导数。
4.会求分段函数的一阶、二阶导数。
5.会求隐函数和由参数方程所确定的函数以及反函数的导数。
6.理解并会用罗尔定理、拉格朗日中值定理,了解柯西中值定理。
7.?理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其简单应用。
8.会用导数判断函数图形的凹凸性,会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形。
9.掌握用洛必达法则求未定式极限的方法。
10.了解曲率和曲率半径的概念,会计算曲率和曲率半径。
  三、一元函数积分学
  考试内容
  原函数和不定积分的概念不定积分的基本性质基本积分公式定积分的概念和基本性质定积分中值定理积分上限的函数及其导数牛顿—莱布尼茨(Newton-Leibniz)公式不定积分和定积分的换元积分法与分部积分法简单有理函数、三角函数的有理式和无理函数的积分广义积分概念定积分的应用。
  考试要求
1.理解原函数概念,理解不定积分和定积分的概念。
2.掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法。
3.会求简单有理函数、三角函数有理式及无理函数的积分。
4.理解积分上限的函数,会求它的导数,掌握牛顿—莱布尼茨公式。
5.了解广义积分的概念,会计算简单的广义积分。
6.掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积、平行截面面积为已知的立体体积、功等)。
  四、向量代数和空间解析几何
  考试内容
  向量的概念向量的线性运算向量的数量积和向量积向量的混合积两向量垂直、平行的条件两向量的夹角向量的坐标表达式及其运算单位向量方向数与方向余弦曲面方程和空间曲线方程的概念平面方程、直线方程平面与平面、平面与直线、直线与直线的以及平行、垂直的条件点到平面和点到直线的距离球面母线平行于坐标轴的柱面旋转轴为坐标轴的旋转曲面的方程常用的二次曲面方程及其图形空间曲线的参数方程和一般方程空间曲线在坐标平面上的投影曲线方程
  考试要求
1.理解空间直角坐标系,理解向量的概念及其表示。
2.掌握向量的运算(线性运算、数量积、向量积、混合积),了解两个向量垂直、平行的条件。
3.理解单位向量、方向数与方向余弦、向量的坐标表达式,掌握用坐标表达式进行向量运算的方法。
4.掌握平面方程和直线方程及其求法。
5.会求平面与平面、平面与直线、直线与直线之间的夹角。
6.会求点到直线以及点到平面的距离。
7.了解曲面方程和空间曲线方程的概念。
8.了解常用二次曲面的方程及其图形,会求以坐标轴为旋转轴的旋转曲面及母线平行于坐标轴的柱面方程。
9.了解空间曲线的参数方程和一般方程.了解空间曲线在坐标平面上的投影,并会求其方程。
  五、多元函数微分学
  考试内容
  多元函数的概念二元函数的几何意义二元函数的极限和连续的概念?有界闭区域上二元连续函数的性质多元函数偏导数和全微分多元复合函数、隐函数的求导法二阶偏导数方向导数和梯度空间曲线的切线和法平面曲面的切平面和法线二元函数的二阶泰勒公式多元函数的极值和条件极值多元函数的最大值、最小值及其简单应用
  考试要求
1.理解多元函数的概念,理解二元函数的几何意义。
2.了解二元函数的极限与连续性的概念,以及有界闭区域上连续函数的性质。
3.理解多元函数偏导数和全微分的概念,会求全微分。
4.理解方向导数与梯度的概念并掌握其计算方法。
5.掌握多元复合函数一阶、二阶偏导数的求法。
6.了解隐函数存在定理,会求多元隐函数的偏导数。
7.了解空间曲线的切线和法平面及曲面的切平面和法线的概念,会求它们的方程。
8.了解二元函数的二阶泰勒公式。
9.理解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题。
  六、多元函数积分学
  考试内容
  二重积分、三重积分的概念及性质二重积分与三重积分的计算和应用两类曲线积分的概念、性质及计算两类曲线积分的关系格林(Green)公式平面曲线积分与路径无关的条件已知全微分求原函数两类曲面积分的概念、性质及计算两类曲面积分的关系高斯(Gauss)公式斯托克斯(STOKES)公式散度、旋度的概念及计算?曲线积分和曲面积分的应用
  考试要求
1.理解二重积分、三重积分的概念,了解重积分的性质。
2.掌握二重积分的计算方法(直角坐标、极坐标),会计算三重积分(直角坐标、柱面坐标、球面坐标)。
3.理解两类曲线积分的概念,了解两类曲线积分的性质及两类曲线积分的关系。
4.掌握计算两类曲线积分的方法。
5.掌握格林公式并会运用平面曲线积分与路径无关的条件,会求全微分的原函数。
6.了解两类曲面积分的概念、性质及两类曲面积分的关系,掌握计算两类曲面积分的方法,会用高斯公式、斯托克斯公式计算曲面、曲线积分。
7.了解散度与旋度的概念,并会计算。
8.会用重积分、曲线积分及曲面积分求一些几何量与物理量(平面图形的面积、体积、曲面面积、弧长、质量、重心、转动惯量、引力、功及流量等)。
  七、无穷级数
  考试内容
  常数项级数的收敛与发散的概念收敛级数的和的概念级数的基本性质与收敛的必要条件几何级数与p级数以及它们的收敛性正项级数收敛性的判别法交错级数与莱布尼茨定理任意项级数的绝对收敛与条件收敛函数项级数的收敛域与和函数的概念幂级数及其收敛半径、收敛区间(指开区间)和收敛域幂级数的和函数幂级数在其收敛区间内的基本性质??简单幂级数的和函数的求法初等函数幂级数展开式??函数的傅里叶(Fourier)系数与傅里叶级数狄利克雷(Dirichlet)定理函数在上的傅里叶级数函数在上的正弦级数和余弦级数
  考试要求
1.理解常数项级数收敛、发散以及收敛级数的和的概念,掌握级数的基本性质及收敛的必要条件。
2.掌握几何级数与p级数的收敛与发散的条件。
3.掌握正项级数收敛性的比较判别法和比值判别法,会用根值判别法。
4.掌握交错级数的莱布尼茨判别法。
5.了解任意项级数绝对收敛与条件收敛的概念,以及绝对收敛与条件收敛的关系。
6.了解函数项级数的收敛域及和函数的概念。
7.理解幂级数的收敛半径的概念、并掌握幂级数的收敛半径、收敛区间及收敛域的求法。
8.了解幂级数在其收敛区间内的一些基本性质(和函数的连续性、逐项微分和逐项积分),会求简单幂级数在收敛区间内的和函数,并会由此求出某些数项级数的和。
9.了解函数展开为泰勒级数的充分必要条件。
10.掌握麦克劳林展开式,会用它们将一些简单函数间接展开成幂级数。
11.了解傅里叶级数的概念和狄利克雷收敛定理,会将定义在上的函数展开为傅里叶级数,会将定义在上的函数展开为正弦级数与余弦级数,会写出傅里叶级数的和的表达式。
  八、常微分方程
  考试内容
  常微分方程的基本概念变量可分离的方程齐次微分方程一阶线性微分方程伯努利(Bernoulli)方程全微分方程线性微分方程解的性质及解的结构定理二阶常系数齐次线性微分方程简单的二阶常系数非齐次线性微分方程?微分方程简单应用
  考试要求
1.了解微分方程及其解、阶、通解、初始条件和特解等概念。
2.掌握变量可分离的方程及一阶线性方程的解法。
3.会解齐次方程、伯努利方程和全微分方程。
4.理解线性微分方程解的性质及解的结构定理。
5.掌握二队常系数齐次线性微分方程的解法。
6.会解自由项为多项式、指数函数、正弦函数、余弦函数,以及它们的和与积的二阶常系数非齐次线性微分方程。
7.会用微分方程解决一些简单的应用问题。
  线性代数
  一、行列式
  考试内容
  行列式的定义和基本性质行列式按行(列)展开定理
  考试要求
1.了解行列式的定义,掌握行列式的性质。
2.会用行列式的性质和行列式按行(列)展开定理计算行列式。
  二、矩阵
  考试内容
  矩阵的定义矩阵的线性运算矩阵的乘法方阵的幂方阵乘积的行列式矩阵的转置逆矩阵的定义及性质矩阵可逆的充分必要条件伴随矩阵矩阵的初等变换初等矩阵矩阵的秩矩阵的等价分块矩阵及其运算
  考试要求
1.理解矩阵的定义,了解对角矩阵、数量矩阵、单位矩阵、三角矩阵、对称矩阵及反对称矩阵的定义及其性质。
2.掌握矩阵的线性运算、乘法、转置及其运算规律,了解方阵的幂及方阵乘积的行列式。
3.理解逆矩阵的定义,掌握逆矩阵的性质及矩阵可逆的充分必要条件,理解伴随矩阵的定义,会用伴随矩阵求逆矩阵。
4.了解矩阵的初等变换、初等矩阵及矩阵等价的定义,理解矩阵的秩的定义,掌握用初等变换求逆矩阵和矩阵的秩的方法。
5.了解分块矩阵的定义,掌握分块矩阵的运算法则。
  三、向量
  考试内容
  向量的定义向量的线性组合与线性表示向量组的线性相关与线性无关向量组的极大线性无关组等价向量组向量组的秩及其与矩阵的秩之间的关系向量的内积线性无关向量组的正交规范化方法
  考试要求
1.了解向量的定义,掌握向量的加法和数乘运算。
2.理解向量的线性组合与线性表示、向量组线性相关、线性无关的定义,掌握向量组线性相关、线性无关的有关性质及判别方法。
3.理解向量组的极大线性无关组及向量组的秩的定义,掌握向量组的极大线性无关组及秩的求法。
4.了解向量组等价以及矩阵的秩与其行(列)向量组的秩之间的关系。
5.了解向量的内积的定义,掌握线性无关向量组正交规范化的施密特(Schmidt)正交化方法。
  四、线性方程组
  考试内容
  线性方程组的高斯(Gauss)消元法、克莱姆(Cramer)法则齐次线性方程组有非零解的充分必要条件非齐次线性方程组有解的充分必要条件齐次线性方程组的基础解系和通解非齐次线性方程组的通解
  考试要求
1.掌握解线性方程组的高斯消元法、克莱姆法则。
2.理解齐次线性方程组有非零解的充分必要条件以及非齐次线性方程组有解的充分必要条件。
3.理解齐次线性方程组的基础解系及解的结构,掌握齐次线性方程组的基础解系和通解的求法。
4.理解非齐次线性方程组解的结构,掌握非齐次线性方程组通解的求法。
五、矩阵的特征值与特征向量
  考试内容
  矩阵的特征值与特征向量的定义和性质相似矩阵的定义与性质矩阵可相似对角化的充分必要条件以及相似对角矩阵实对称矩阵的特征值、特征向量以及相似对角矩阵
  考试要求
1.理解矩阵的特征值与特征向量的定义,掌握矩阵的特征值的性质以及矩阵的特征值与特征向量的求法。
2.理解矩阵相似的定义、相似矩阵的性质以及矩阵可相似对角化的充分必要条件,掌握矩阵相似对角化的方法。
3.掌握实对称矩阵的特征值与特征向量的性质及其相似对角化的方法。
  六、二次型
  考试内容
  二次型及其矩阵表示合同变换与合同矩阵二次型的秩二次型的标准形、规范形惯性定理用正交变换和配方法化二次型为标准形二次型及其矩阵的正定性
  考试要求
1.了解二次型的定义,会用矩阵表示二次型,了解二次型的秩、合同变换以及合同矩阵的定义,了解二次型的标准形、规范形的定义以及惯性定理。
2.会用正交变换以及配方法化二次型为标准形。
3.理解正定二次型、正定矩阵的定义,会判定它们的正定性。
  概率论与数理统计
  一.随机事件与概率
  考试内容
  随机事件与样本空间事件的关系与运算完备事件组概率的概念概率的基本性质古典型概率几何型概率条件概率概率的基本公式事件的独立性独立重复试验
  考试要求
1.了解样本空间(基本事件空间)的概念,理解随机事件的概念,掌握事件的关系及运算。
2.理解概率、条件概率的概念,掌握概率的基本性质.会计算古典概率和几何型概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式以及贝叶斯公式。
3.理解事件的独立性概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念,掌握计算有关事件概率的方法。
  二.随机变量及其分布
  考试内容
  随机变量随机变量的分布函数的概念及其性质离散型随机变量的概率分布连续型随机变量的概率密度常见随机变量的分布随机变量函数的分布
  考试要求
1.理解随机变量的概念;理解分布函数的概念及其性质;会计算与随机变量相联系的事件的概率。
2.理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布、超几何分布、泊松(Poisson)分布及其应用。
3.了解泊松定理的结论和应用条件,会用泊松分布近似表示二项分布。
4.理解连续型随机变量及其概率密度的概念,掌握均匀分布、正态分布、指数分布及其应用。
5.会求随机变量函数的分布。
  三.多维随机变量及其分布
  考试内容
  多维随机变量及其概率分布二维离散型随机变量的概率分布边缘分布和条件分布二维连续型随机变量的概率密度、边缘密度和条件密度随机变量的独立性和不相关性常见二维随机变量的分布两个及两个以上随机变量函数的分布
  考试要求
1.理解多维随机变量的分布的概念和基本性质。
2.理解二维离散型随机变量的概率分布、边缘分布和条件分布;理解二维连续型随机变量的概率密度、边缘密度和条件密度,会求与二维随机变量相关事件的概率。
3.理解随机变量的独立性和不相关概念,掌握离散型和连续型随机变量的独立的条件;理解随机变量的独立性和不相关的关系。
4.会根据两个随机变量的联合分布求其函数的分布;会根据多个独立的随机变量的联合分布求其函数的分布。
  四.随机变量的数字特征
  考试内容
  随机变量的数学期望(均值)、方差、标准差及其性质,随机变量函数的数学期望,矩、协方差、相关系数及其性质
  考试要求
1.理解随机变量的数字特征(数学期望、方差、标准差、矩、协方差、相关系数)的概念,会运用数字特征的基本性质,并掌握常用分布的数字特征。
2.会求随机变量函数的数学期望。
  五.大数定律和中心极限定理
  考试内容
  切比雪夫(Chebyshev)不等式切比雪夫大数律伯努利(Bernoulli)大数律辛钦(Khinchine)大数律棣莫弗-拉普拉斯(DeMoivre-Laplace)定理列维-林德伯格(Levy-Lindberg)定理
  考试要求
1.了解切比雪夫不等式。
2.了解切比雪夫大数律、伯努利大数律和辛钦大数律(独立同分布随机变量的大数律)。
3.了解棣莫弗-拉普拉斯中心极限定理(二项分布以正态分布为极限分布)、列维-林德伯格中心极限定理(独立同分布随机变量列的中心极限定理),并会用相关定理近似计算有关事件概率。
  六.数理统计的基本概念
  考试内容
  总体个体简单随机样本统计量样本均值样本方差和样本矩-分布t分布F分布分位数正态总体的常用抽样分布
  考试要求
1.理解总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念。
2.了解产生-变量、t变量、F变量的典型模式;理解标准正态分布-分布、t分布、F分布的分位数,会查相应的数值表。
3.掌握正态总体的抽样分布:样本均值、样本方差、样本矩、样本均值差、样本方差比的抽样分布。
  七.参数估计
  考试内容
  点估计的概念,估计量和估计值,矩估计法,最大似然估计法,估计量的评选标准,区间估计的概念,单个正态总体的均值的区间估计,单个正态总体的均值的区间估计,单个正态总体的均值的区间估计,单个正态总体的方差和标准差的区间估计,两个正态总体的均值差和方差比的区间估计
  考试要求
1.理解参数的点估计、估计量和估计值的概念;了解估计量的无偏性、有效性(最小方差性)和一致性(相合性)的概念,并会验证估计量的无偏性;会利用大数定律证明估计量的一致性。
2.掌握矩估计法(一阶、二阶矩)和最大似然估计法。
3.掌握正态总体的均值、方差、标准差、矩以及与其相联系的数字特征的置信区间(双侧和单侧)的求法。
4.掌握两个正态总体的均值差和方差比及相关数字特征的置信区间的求法。
  八.假设检验
  考试内容
显著性检验,假设检验的两类错误,单个及两个正态总体的均值和方差的假设检验
  考试要求
1.理解显著性检验的基本思想,掌握假设检验的基本步骤,了解假设检验可能产生的两类错误。
2.了解单个及两个正态总体的均值和方差的假设检验。
 第二部分:考试方法和考试时间
数学考试采用闭卷、笔试形式,考试时间为180分钟
  第三部分:试卷结构
  (一)题分试卷满分为150分
  (二)内容比例
  高等教学约60%;线性代数约20%;概率论与数理统计20%
  (三)题型比例
  填空题与选择题约40%
  解答题(包括证明题)约60%
  参考书目:
  同济大学数学系编《高等数学》的第六版,上下册,高等教育出版社,2007年;
  孙良,闫桂峰编,《线性代数》,高等教育出版社,2016年;
盛骤,谢式千,潘承毅,《概率论与数理统计》,高等教育出版社,2008年
凯程是王牌的经济学考研机构,拥有海量的经济学考研资料。对考研有任何疑问的学生可以加老师【微信】jjxkaoyan ,【QQ】 ,【微信公众号】kaichengjjx,2019经济学考研互动学习群:,需要进【19考研答疑群】的,可以私聊老师哦
凯程晶晶老师祝愿同学们考研顺利!

我要回帖

更多关于 常见函数麦克劳林公式 的文章

 

随机推荐