为什么什么是哈密顿函数数是H=T+V?

已知函数f(x)=sinπ2x.任取t∈R.记函数f(x)在区间[t.t+1]上的最大值为Mt.最小值为mt.记h(t)=Mt-mt.则关于函数h(t)有如下结论:①函数h(t)为偶函数,②函数h(t)的值域为[1-22.1],③函数h(t)的周期为2,④函数h(t)的单调增区间为[2k+12.2k+32].k∈Z.其中正确的结论有 .(填上所有正确的结论序号) 题目和参考答案——精英家教网——
暑假天气热?在家里学北京名师课程,
& 题目详情
已知函数f(x)=sinπ2x,任取t∈R,记函数f(x)在区间[t,t+1]上的最大值为Mt,最小值为mt,记h(t)=Mt-mt.则关于函数h(t)有如下结论:①函数h(t)为偶函数;②函数h(t)的值域为[1-22,1];③函数h(t)的周期为2;④函数h(t)的单调增区间为[2k+12,2k+32],k∈Z.其中正确的结论有.(填上所有正确的结论序号)
考点:命题的真假判断与应用,函数的值域,函数的单调性及单调区间,函数奇偶性的判断
专题:函数的性质及应用
分析:可先求出函数f(x)的最小正周期为4,由周期性得到h(t+4)=Mt-mt=h(t),说明h(t)是周期为4的函数,然后探索-2≤t≤2的函数f(x)的最值,以及h(t)的解析式,最后画出它的部分图象,通过图象观察分析得到性质,从而判断正确的结论.
解:∵f(x)=sinπx2的最小正周期为2ππ2=4,∴Mt+4=Mt,mt+4=mt,∴h(t+4)=Mt+4-mt+4=Mt-mt=h(t),即h(t)是周期为4的函数,∴对该函数的性质研究,只须探索t∈[-2,2]的性质即可.画出函数f(x)=sinπx2的部分图象,如右图,当-2≤t<-1.5,时,f(x)在区间[t,t+1]上的最小值为-1,最大值为f(t)=sinπt2,∴h(t)=1+sinπt2;当-1.5≤t<-1时,f(x)在区间[t,t+1]上的最小值为-1,最大值为f(t+1)=sinπt+π2=cosπt2,∴h(t)=1+cosπt2;当-1≤t<0时,f(x)在区间[t,t+1]上的最小值为f(t)=sinπt2,最大值为f(t+1)=sinπt+π2=cosπt2,∴h(t)=cosπt2-sinπt2;当0≤t<12时,f(x)在区间[t,t+1]上的最小值为sinπt2,最大值为1,∴h(t)=1-sinπt2;当12≤t<1时,f(x)在区间[t,t+1]上的最小值f(t+1)=sinπt+π2=cosπt2,最大值为1,∴h(t)=1-cosπt2;当1≤t<2时,f(x)在区间[t,t+1]上的最小值为f(t+1)=sinπt+π2=cosπt2,最大值为f(t)=sinπt2,∴h(t)=sinπt2-cosπt2.画出h(t)的部分图象,如右图,综上可知,该函数没有奇偶性,函数的值域为[1-22,2],函数的最小正周期为2,函数的单调增区间为[2k+12,2k+32],k∈Z,故①②错,③④正确.故答案为:③④.
点评:本题主要考查函数的周期性以及应用,根据周期性探索一个周期的情况,分别讨论每一个区间的情况:求出最值,写出函数式,最后通过图象得到有关性质,同时考查函数的最值和单调性、奇偶性,是一道难题.
练习册系列答案
科目:高中数学
已知集合A={x|-1<2x+1<5},集合B={x|y=lg(1-x2)},则(  )
A、A⊆BB、B⊆AC、A∪B=BD、A∩B=A
科目:高中数学
已知算数z满足(1+i)z=-1+5i,则z=.
科目:高中数学
设等差数列{an}的前n项和为Sn,若S4=11,S12=9,则S20=.
科目:高中数学
已知函数f(x)=-x2-2x,x≤0ln(x+1),x>0,则方程f(x)=1的解集是.
科目:高中数学
正四棱锥的底面面积为4,侧面积为5,则它的体积为.
科目:高中数学
如图所示,在⊙O上半圆中,AC=a,CB=b,CD⊥AB,请你利用CD≤OD写出一个含有a,b的不等式.
科目:高中数学
已知一个几何体的三视图及有关数据如图所示,则该几何体的体积为(  )
A、23B、433C、3D、233
科目:高中数学
设数列{an}为等差数列,若a1+a3+a13+a15=120,则a8=(  )
A、60B、30C、20D、15
精英家教网新版app上线啦!用app只需扫描书本条形码就能找到作业,家长给孩子检查作业更省心,同学们作业对答案更方便,扫描上方二维码立刻安装!
请输入姓名
请输入手机号伽利略·伽利莱(Galileo Galilei,1564年2月15日-1642年1月8日),意大利物理学家、数学家、天文学家及哲学家,科学革命中的重要人物。其成就包括改进望远镜和其所带来的天文观测,以及支持哥白尼的日心说。伽利略被誉为“现代观测天文学之父”、“现代物理学之父”、“科学之父”及“现代科学之父”。&&
史蒂芬·霍金说,“自然科学的诞生要归功于伽利略,他这方面的功劳大概无人能及。” 阿尔伯特·爱因斯坦称他为现代科学之父
伽利略为牛顿的牛顿运动定律第一、第二定律提供了启示。他非常重视数学在应用科学方法上的重要性,特别是实物与几何图形符合程度到多大的问题。
伽利略认为选择得当的数学证明可以用来探索任何牵涉到定量性的问题。伽利略为自己提出的第一套力学问题,是那些牵涉到尺度效果的问题。在考察尺度效果时,伽利略研究了物质的数量,即后来叫做质量的量,后来又以同样方式探索了牵涉到时间测量和速度测量的动力学问题。伽利略所研究的中心问题就是在重力影响下的落体运动问题,推翻了亚里士多德关于不同重量的物体下落速度不同的论点。
根据亚里士多德的物理学,保持物体以匀速运动的是力的持久作用。但是伽利略的实验结果证明物体在引力的持久影响下并不以匀速运动,而是每次经过一定时间之后,在速度上有所增加。物体在任何一点上都继续保有其速度并且被引力加剧。如果没有了引力,物体将仍旧以它在那一点上所获得的速度继续运动下去。这就是惯性原理。这个原理阐明物体只要不受到外力的作用,就会保持其原来的静止状态或匀速运动状态不变。
从惯性原理,伽利略发展了抛射体的飞行轨迹理论,从而表明数学证明在科学上的价值。他考察了一个球以匀速滚过桌面,再从桌边沿一根曲线轨道落到地板上的动作。在这条坠落轨道上的任何一点,球都具有两种速度:一个是沿水平面的速度,根据惯性原理始终保持匀速,另一个是垂直的速度,受引力的影响而随着时间加快。在水平方向,球在同等时间内越过同等距离,但是在垂直的方向,球越过的距离则和时间的平方成正比。这样的关系决定球走出的轨迹形式,即一种半抛物线,因此,一个物体以四十五度角抛出时,距离将最远。
伽利略发展一些仪器。他制造了第一个温度计来测量温度,而且用摆来测量时间,伽利略还改良了折射式望远镜,并使用望远镜进行天文观测。
1609年,伽利略听说荷兰米德尔堡的眼镜商-汉斯·立浦喜(Hans Lippershey)造出了“望远镜”,可以将远距离的东西放大,于是伽利略研究了合成镜片的光学性质,造了几具改进的望远镜自用。他用新式的望远镜进行天文观测,发现太阳上有黑子,月亮表面的坑洞,并根据其边缘影子的长度测算它们的高度。他还发现银河是由许多的恒星组成。此外,伽利略还发现了金星的相,即金星也跟月球一样有相位的变化,会从新月状逐渐变为满月;他也发现了木星的四颗卫星。这些发现都支持哥白尼的日心说,并严重地挑战了当时罗马教会所认可的托勒密古希腊天文观与地心说。他将这些发现汇集撰写关于托勒密和哥白尼两大世界体系的对话,意图平复反对的声浪,以避免教会的制裁。1615年伽利略受到罗马宗教法庭的传讯,在法庭上他被迫作出承认自己错误的声明。
1741年伽利略被正式平反,教皇本笃十四世授权出版他的所有科学著作。1992年10月31日,教宗若望·保禄二世对伽利略事件的处理方式表示遗憾。
牛顿运动定律
艾萨克·牛顿爵士,FRS(Sir Isaac Newton,1643年1月4日-1727年3月31日,)[ 儒略历:1642年12月25日-1727年3月20日]是一位英格兰物理学家、数学家、天文学家、自然哲学家和炼金术士。他在1687年发表的论文《自然哲学的数学原理》里,对万有引力和三大运动定律进行了描述。这些描述奠定了此后三个世纪里物理世界的科学观点,并成为了现代工程学的基础。他通过论证开普勒行星运动定律与他的引力理论间的一致性,展示了地面物体与天体的运动都遵循着相同的自然定律;为太阳中心说提供了强有力的理论支持,并推动了科学革命。&&&&
在力学上,牛顿阐明了动量和角动量守恒的原理。在光学上,他发明了反射式望远镜,并基于对三棱镜将白光发散成可见光谱的观察,发展出了颜色理论。他还系统地表述了冷却定律,并研究了音速。
在数学上,牛顿与戈特弗里德·莱布尼茨分享了发展出微积分学的荣誉。他也证明了广义二项式定理,提出了“牛顿法”以趋近函数的零点,并为幂级数的研究作出了贡献。
在2005年,英国皇家学会进行了一场“谁是科学史上最有影响力的人”的民意调查,在被调查的皇家学会院士和网民投票中,牛顿被认为比阿尔伯特·爱因斯坦更具影响力。
牛顿运动定律:
牛顿第一定律(亦称惯性定律)指出,一个静止状态的物体趋向于保持静止状态,而在匀速运动中的物体趋向于保持匀速状态,除非受到合外力的作用。
牛顿第二定律指出,作用于一个物体上的作用力F等于其动量p随时间的变化率。在数学上,可写成。假定式中的质量为常量,则可消去的第一项。将加速度定义为,则可得出著名的等式。这说明了一个物体的加速度与作用在物体上的合力成正比,与其质量成反比。在米-千克-秒的度量衡系统下,质量的单位为千克,加速度为米每二次方秒,力为牛顿(为纪念他而命名)。
牛顿第三定律指出,每个作用力都有一个等值反向的反作用力。
两个物体之间的作用力F和反作用力F′,沿同一直线,大小相等,方向相反,分别作用在两个物体上。
威廉·哈密顿
威廉·哈密顿爵士(Sir William Rowan Hamilton,1805年8月4日-1865年9月2日),爱尔兰数学家、物理学家及天文学家。哈密顿最大的成就在于发现了四元数,并将之广泛应用于物理学各方面。哈密顿对光学、动力学和代数的发展提供了重要的贡献。他的成果后来成为量子力学中的主干。&&
哈密顿力学是哈密顿于1833年建立的经典力学的重新表述,它由拉格朗日力学演变而来。拉格朗日力学是经典力学的另一表述,由拉格朗日于1788年建立。哈密顿力学与拉格朗日力学不同的是前者可以使用辛空间而不依赖于拉格朗日力学表述。关于这点请参看其数学表述。
适合用哈密顿力学表述的动力系统称为哈密顿系统。
哈密顿原理
(Hamilton principle )
  适用于受理想约束的完整保守系统的重要积分变分原理。威廉·卢云·哈密顿于1834年发表。其数学表达式为:&
  式中L=T-V为拉格朗日函数,T 为系统的动能,V为它的势函数。哈密顿原理可叙述为:拉格朗日函数从时刻t1到t2的时间积分的变分等于零。它指出,受理想约束的保守力学系统从时刻t1的某一位形转移到时刻t2的另一位形的一切可能的运动中,实际发生的运动使系统的拉格朗日函数在该时间区间上的定积分取驻值,大多取极小值。由哈密顿原理可以导出拉格朗日方程。哈密顿原理不但数学形式紧凑,且适用范围广泛。如替换L的内容,就可扩充用于电动力学和相对论力学。此外,也可通过变分的近似算法,用哈密顿原理直接求解力学问题。
W.R.1834N+1(q1,q2,…,qNt),L(q,,t)1
q(1)q(2) δ)q(2)=q(1)=0,
哈密顿正则方程
经典力学中一组描写系统运动的一阶微分方程组。是W.R.哈密顿于1834年提出的,又称哈密顿方程或正则方程。哈密顿正则方程为 (1)& 哈密顿正则方程式中H称为哈密顿函数,是广义动量pi和广义坐标qi及时间t的函数。H由式 (2)& 哈密顿正则方程确定。括号外边的角标表示式中的妜i应该用N个方程pi= 解出N 个 妜i为 (E1,E2,…,EN;q1,q2,…,qN;t)的N 个函数,然后代入式(2)就得到哈密顿函数H。&&&哈密顿正则方程对于直角坐标变换到广义坐标的变换式虽然显含时间t,但是动能的表示式不明显地包含t,此时
H=T2-T0+V, 式中T2和T0可说明如下:用(E1,E2,…,EN;q1,q2,…,qN;t)表示的动能式T=T2+T1+T0,式中T2、T1和T0分别表示广义动量的二次齐次式、一次齐次式和不含广义动量的项。   
如果直角坐标变换到广义坐标的变换式不显含t,势函数V也不显含t,则 T=T2,H=T+V。  
 即对于保守系统,哈密顿函数是系统总机械能用广义动量表示的公式。   
正则方程式(1)是2N个一阶微分方程组,而拉格朗日方程是N个二阶微分方程组,都只适用于完整系统(见约束)的动力学方程组。 &&
&哈密顿正则方程由于式(1)的左边不再有变数q和p的导数,所以方程(1)成为如下形式的方程组
保守系统的正则方程在天体力学和经典统计力学中有重要的应用。在天体力学中从可解的二体问题出发,逐渐添加其他星球的引力,可以把所用的哈密顿函数H,从简单改变成较复杂的 H┡。这是天体力学中的摄动法,用来解决考虑太阳和各种行星、卫星的引力作用下的行星运动,由此可制定行星和月球的星历表,在统计力学中的刘维定理就是应用正则方程推导出来的。
《维基百科》及《百度百科》
多体问题是指找出已知初始位置、速度和质量的多个物体在经典力学情况下的后续运动。
Charles Delaunay--18601867900
N体问题可以用一句话写出来:在三维空间中给定N个质点,如果在它们之间只有万有引力的作用,那么在给定它们的初始位置和速度的条件下,它们会怎样在空间中运动。
最简单的例子就是太阳系中太阳,地球和月球的运动。在浩瀚的宇宙中,星球的大小可以忽略不记,所以我们可以把它们看成质点。如果不计太阳系其他星球的影响,那么它们的运动就只是在引力的作用下产生的,所以我们就可以把它们的运动看成一个三体问题。
  天体力学中的基本力学模型。研究三个可视为质点的天体在相互之间万有引力作用下的运动规律问题。这三个天体的质量、初始位置和初始速度都是任意的。在一般三体问题中,每一个天体在其他两个天体的万有引力作用下的运动方程都可以表示成3个二阶的常微分方程,或6个一阶的常微分方程。因此,一般三体问题的运动方程为十八阶方程,必须得到18个积分才能得到完全解。然而,目前还只能得到三体问题的10个初积分,因此还远不能解决三体问题。&&
研究三体问题的方法分类
由于三体问题不能严格求解,在研究天体运动时,都只能根据实际情况采用各种近似的解法,研究三体问题的方法大致可分为3类:第一类是分析方法,其基本原理是把天体的坐标和速度展开为时间或其他小参数的级数形式的近似分析表达式,从而讨论天体的坐标或轨道要素随时间的变化;第二类是定性方法,采用微分方程的定性理论来研究长时间内三体运动的宏观规律和全局性质;第三类是数值方法,这是直接根据微分方程的计算方法得出天体在某些时刻的具体位置和速度。这三类方法各有利弊,对新积分的探索和各类方法的改进是研究三体问题中很重要的课题。
三体问题的数学推断
事实上,根据牛顿(Issac Newton)万有引力定理和牛顿第二定律,我们可以得到:   
m1(d2 q1i/dt2)= k m1 m2
/(q2i - q1i)(r312) + km1 m3
/(q3i - q1i)(r313)   
m2(d2 q2i/dt2)= k m2 m1
/(q1i - q2i)(r321) + km2 m3
/(q3i - q2i)(r323)   
m3(d2 q3i/dt2)= k m3 m1
/(q1i - q3i)(r331) + km3 m2
/(q2i - q3i)(r332) ( i =1,2,3 )   
其中m i 是质点的质量,k 是万有引力常数,r ij 是 两个质点 m i 和 m
j 之间的距离,而 q i1 , q i2 , q i3 则是质点 m i 的空间坐标。所以三体问题在数学上就是这样九个方程的二阶常微分方程组再加上相应的初始条件。(事实上根据方程组本身的对称性和内在的物理原理,方程可被简化以减少变量个数)。而N体问题的方程也是类似的一个 N2 个方程的二阶常微分方程组。   
当 N=1 时,单体问题是个平凡的方程。单个质点的运动轨迹只能是直线匀速运动。当 N=2 的时候 (二体问题),问题就不那么简单了。但是方程组仍然可以化简成一个不太难解的方程,任何优秀的理科大学生大概都能轻易解出来。简单来说这时两个质点的相对位置始终在一个圆锥曲线上,也就是说如果我们站在其中一个质点上看另一个质点,那么另一个质点的轨道一定是个椭圆,抛物线,双曲线的一支或者直线。二体问题又叫开普勒(Johannes Kepler)问题,它是在1710年被瑞士数学家约翰伯努利(Johann Bernoulli) 首先解决的。N体问题的提出大概可以追溯到上千年前,但是这一问题的第一个完整的数学描述(象使用上面这样的微分方程)是出现在牛顿的“自然哲学的数学原理”(Philosophiae Naturalis Prinicipia Mathematica,1687年出版)一书中。在他的著作中,牛顿成功地运用微积分证明了开普勒的天文学三大定律,但是奇怪的是他的书里并没有给出二体问题的解,尽管这两者是紧密相关的,而且现在的人们还是相信牛顿当时完全有能力自己给出二体问题的解。
至于三体问题或者更一般的N体问题(N大于二),在被提出以后的二百年里,被十八和十九世纪几乎所有著名的数学家都尝试过,但是问题的进展是微乎其微的。尽管在失败的尝试中微分方程的理论被不断地发展成为一门更成熟的数学分支,但是对于这些发展的源头-----N体问题,人们还是知道的太少了。终于在十九世纪末期,也就是希尔伯特做他的著名演讲前几年,人们期待的重大突破出现了……&&
三体问题的特殊情况:1.三星成一直线,边上两颗围绕当中一颗转;2.三星成三角形,围绕三角形中心旋转;3.两颗星围绕第三颗星旋转;4.三个等质量的物体在一条8字形轨道上运动。&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&
《百度百科》
附:三体问题
先说一下什么叫三体。用物理语言来说,在一个惯性参考系中有N个质点,求解这N个质点的运动方程就是N体问题。参考系是惯性参考系,也就是说不受系统外的力的作用,所有的作用力都来自于体系内的这N个质点之间。在天体力学里面,我们通常就只考虑万有引力。&&&
用数学语言来说,经典力学的N体问题模型就是,在三维平直空间里有N个质点,每个质点的质量都已知而且不会变化。在初始时刻,所有质点的位置和速度都已知。每个质点都只受到来自其它质点的万有引力,引力大小由牛顿的同距离平方成反比的公式描述。要求解的就是,任意一个时刻,某个质点的位置。&&& &&
N=2,就是二体问题。N=3,也就是我们要说的三体问题了。&&
N=2的情况,早在牛顿时候就已经基本解决了。学过中学物理后,大家都会知道,两个质点在一个平面上绕着共同质心作圆锥曲线运动,轨道可以是圆、椭圆、抛物线或者双曲线。&&&
然而三体运动的情况就糟糕得多。攻克二体问题后,牛顿很自然地开始研究三体问题,结果也是十分自然的——头痛难忍。牛顿自述对付这种头痛的方法是:用布带用力缠紧脑袋,直至发晕为止—虽则这个办法治标不治本而且没多少创意,然而毕竟还是有效果的。&&&
其实,三体运动已经是对物理实际简化得很厉害了。比如说对质点,自转啦、形状啦我们统统不用考虑。但是只要研究实际的地球运动,就已经比质点复杂得多。比如说,地球别说不是点,连球形都不是,粗略看来是个赤道上胖出来一圈的椭球体。于是,在月球引力下,地球的自转轴方向就不固定,北极星也不会永远是那一颗。而考虑潮汐作用时,地球都不能看成是“硬”的了,地球自转也因此越来越慢。&&&
然而即使是极其简化了的三体问题,牛顿、拉格朗日、拉普拉斯、泊松、雅可比、庞加莱等等大师们为这个祭坛献上了无数脑汁也未能将它攻克。&&&&&
当然,努力不会完全白费的,许多有效的近似方法被鼓捣了出来。对于太阳系,摄动理论就是非常有效的解决问题的近似方法。而对于地月系统,则可以先把地球和月球看作是二体系统,再考虑太阳引力的影响。“月亮绕着地球转,地球绕着太阳转”的理论计算已经作得非常精确,上下几千年的日食月食都能很好地预测。而对一颗受到行星引力干扰的彗星,人们也能算出一段时间内很精确的轨道,比如天文学家可以提前几年就预测出彗星撞木星。而且,太阳系的稳定性也在很大程度上得到了证明,比如说大行星的轨道变化大体上是周期性的,不会始终单向变化下去直到行星系统解体。&&&
为了解三体问题,那就考虑再简化些吧。认为一个质点的质量非常小,从而它对其它两个质点的万有引力可以忽略。这样一来,三体问题就简化成了“限制性三体问题”。实际上,这个简化等于是先解一个二体问题,然后再加入一个质量很小的质点,再解这个质点在二体体系中的运动方程。& &&
然而,即使这样也还是太复杂了。于是,再作简化,就得到了“平面限制性三体问题”,就是要求三个质点都在同一个平面上。然而,即使是对这样极度简化的模型,也还是没有解析通解,也就是得到一个普遍适用的公式是不可能的。&&&
对“平面限制性三体问题”再作简化,认为两个大质点作圆周运动,就是“平面圆型限制性三体问题”。1772年,拉格朗日在这种限制条件下找到了5个特解,也就是著名的拉格朗日点。比如下面这张图上,木星和太阳连线上有L1,L2,L3三个拉格朗日点,而在木星轨道上则有L4,L5这两个点,和太阳以及木星构成等边三角形。L1,L2,L3是不稳定的,如果小质点离开这三个点,就会越跑越远。L4,L5则是稳定的。&&&
本来,拉格朗日点多少显得有点象数学游戏,但是自然界证明,稳定解在太阳系里确实存在实例。对于木星来说,L4和L5上各有一群小行星,就是著名的特洛伊群和希腊群小行星。&&&
& &&从数学方法来说,解2体问题的方法是解微分方程组,通过求积分的方式可以圆满解决,得到解析解。很自然的,物理学家和数学家们也用这种方法去对付三体问题。1772年,拉格朗日就已经把三体问题的18个方程简化成了只有6个。然而,进步到此为止了。19世纪末期的研究更是给了数学家们一连串打击。布伦斯(1887),庞加莱(1889)和潘勒斯(1898)年给出了一个比一个更严格的证明,堵死了求积分的许多途径。1941年西格尔干脆证明了代数积分法的死刑,宣布找到足够的代数积分是不可能的。当然,三体问题的数学研究不是除了失败外就一无所有,它还是带来了许多新发现,比如混沌理论就是从它的废墟中诞生的。&&&&
当然,我们还只是谈到了牛顿力学。如果考虑到广义相对论的修正,那就更糟糕了,连二体问题都只有近似解。而且,广义相对论的二体问题也不稳定,由于发射引力波损失能量,两个星体迟早会撞在一起,虽说要等的时间可能比宇宙寿命还长。&&
在牛顿的经典力学体系里面,对三体问题的简化可以用下面这张图大体表示一下(在这里把月球火箭的轨道计算作为一个三体运动的一个实际应用的例子,实际上比三体运动还要复杂)&&
&二十世纪50年代后,数学家们多了一个新帮手:计算机。于是,两个新办法出来了,一个是用级数表示积分(简单代数积分不指望了),另一个则干脆是使用数值方法求近似解。&&
级数解在理论上获得了很大成功,比如在限制性圆型三体问题中,已经证明了所需要的积分是存在的(但是另一方面早就证明了用代数公式是不能表达的)。这些积分可以用幂级数表达,而且证明了幂级数是收敛的。但是这些幂级数收敛得太慢了,比如对拉格朗日点,为了达到可以接受的精度,至少要取10^80000项!而整个宇宙中的粒子数也就10^80个的样子。&&
计算机的加盟使人们对三体问题不是那么无助了。虽然没有代数公式,但用数值算法硬算的结果,精确性也不错。比如,发射飞船去探测其他行星就是典型的三体问题,旅行者2号说去海王星就一定到得了。再比如,太阳系大行星4000万年内的运动也算了出来,至少往后这段时间,太阳系的行星系统还不至于散架。&&
让我们看看三体问题的大致现状吧:&&
1.目前的研究主要集中在限制性三体问题,因为比较简化,而且有实用价值。&&
2.对于限制性三体问题,通过级数法证明了解的存在性(这已经是非常大的成果了)。而且,天体力学的定性分析和天文观测(比如地球上繁衍了几十亿年的生命)都证明了限制性三体体系的稳定解的存在性。&&
3.用解决二体问题的方法,也就是代数积分的方法被确认不可能解决三体问题。&&
4.用计算机进行较长期的三体问题的数值计算是成功的。&&
5.三体问题的算法还大有可改进之处。毕竟,10^80000项的计算是太过于可怕了。&&
回到《三体》小说,有了“秦始皇”的“人计算机系统” ,算个简化的三体问题还是可以的。不过,如果是小说中那种三个太阳的质量差不多,而且相互距离也差不多的情况,他们面对的三体问题就不能简化为限制性三体问题,计算的难度要大很多。不过,用计算机算出比较短时间的预测应该是可行的。毕竟,天气预报不一定非得要知道明年今天的具体天气,能比较准确知道一周天气就不错了(通常我们还只听听明天是否下雨呢)。三体人知道是不是该“脱水”或者“浸泡”就已经很有好处了。用观测不断修正预测,至少对小的“乱世代”不用害怕了。&& &&
当然,如果三体文明只是在I/II类文明的层次,不能通过移走恒星来釜底抽薪地解决三体问题。那么,“但重要的是改变世界”这句话就仍然是正确到了残酷的地步,预测出“三星凌空”也无助于逃脱毁灭。&&
到目前为止,我们一直在用纸、笔还有计算机讨论三体问题,用的都是演绎法。但不要忘了,科学方法里还有另一件更重要的武器:归纳法。我们可以用观察和实验,看看实际中的三体会是什么样子。&&
由于在我们日常的尺度上,万有引力弱得可以忽略,只有到了天文尺度上,引力才显出它的威力,比如地球把我们拉在地上不放。所以,在普通的实验室里面实现三体系统是不行的。我们只能把视线转向天空,去考察大自然为我们安排了什么样的实例。&&
当然,象我们已经看到的,在太阳系里,已经充分表现了限制性三体问题是有稳定解的。但是,就基本同量级的三体又如何呢?我们可以来看看恒星。&&
银河系里的恒星不下一千亿颗,象太阳这样独居的恒星其实是少数。恒星们总的来说还是喜欢热闹的。双星的数量非常多,而且很多都已经是几十亿年的老伴侣了(比如下面要谈到的南门二A/B),等于从实验上证明了二体系统的稳定性。&&
而三合星也不少见,但是一般都是一对双星再搭上一个远距离的单星。同样,更多数量恒星组成的聚星,也多是由双星和单星组合而成的。应该说这也强烈地暗示了,大自然也认为三体系统是不稳定的。毕竟,银河系里的三体并不是理想的三体系统,一则恒星可以相撞而合并,二来,一旦一颗恒星被抛出太远,它就可能脱离体系而主要由银河系的整体引力而控制了。通过这两种方式,三体系统就变成了稳定的二体系统了。&&
当然,还有“四边形聚星”这种系统,恒星彼此质量相近,距离也都差不多。最著名的一个例子就是猎户座大星云M42中心的四边形聚星(用5厘米左右的望远镜,放大率50~100倍就可以分辨开)。值得注意的是,这些四边形聚星都非常年轻,比如猎户座四边形聚星,年龄就只有几百万年,对于天文学来说,这完全是婴儿期。没有发现年老的四边形聚星,说明大自然认为这种构型也不稳定,总归会瓦解掉。&&
猎户座大星云M42的中心区,图中央的4颗亮星就是猎户座四边形聚星&&
&&& 有意思的是,N值再增大,比如N=100级别的疏散星团或者N=10万级别的球状星团,又是非常稳定的力学体系了,年龄超过几十亿年乃至百亿年的这些星团比比皆是。当然,过于密集的结果就是碰撞很多,球状星团中央就有大量碰撞后合并而成的亮星。&&
昴星团(M45),年龄约5000万年,算是相当年轻的疏散星团,约有100颗成员星居住的行星所在的系统的“生活原型”就是半人马座α(南门二)三合星系统在地球的夜空中,南门二是全天第三亮星(仅次于天狼星和老人星),视亮度达到-0.27等。不过,对于大部分中国人来说,看到南门二的机会不大。南门二太靠南了(赤纬-60度),考虑到光污染,北回归线以北的人不要指望能在地平线上看到它。(红岸那个地方应该是收不到南门二的信号的,当然小说总可以引入其它机制)用不大的望远镜就可以把南门二分解成两颗亮星,两颗星的角距离在2000年时候约为14”,是我们看到的太阳的视直径的1/120不到,大概是人眼分辨率的四分之一。而南门二的第三个成员,有名的比邻星,就不是容易看到的了。它的亮度很暗,相当于肉眼能看到最暗恒星的百分之一,必须用相当大的望远镜才能看到。比邻星离开两颗主星的距离也很远,视距离有2.2度,比太阳视直径的4倍还要多。&&
&我们先简单看一下这三颗恒星的物理数值,并且和我们的太阳比较一下。&&
到地球距离(光年) 目视星等 绝对星等 表面温度 总光度(太阳=1) 半径(太阳=1) 质量(太阳=1)&&
A:4.35 0.01 4.38
1.2 1.10&&
B:4.35 1.34 5.72
0.84 0.91&&
C:4.22 11.05 15.49
7 0.19 0.11&&
(光度和目视亮度其实还是很有区别的,在此马马虎虎混淆一下)&&
明显的,比邻星离我们比两个大哥哥要近不少。南门二是已知离太阳最近的恒星系统(距离更近而且还不被发现的可能性不大,《超新星纪元》里面那样一颗巨星实际上是躲不过天文学家的),比邻星就成了除太阳以外离我们最近的恒星。“海内存知己,天涯若比邻”,它就得到了这么一个富有诗意的中文名字。当然我们下面将要看到,这个名字实在不适合它,它和太阳实在是一点也不像,和“知己”相去太远了。南门二的老大倒是和太阳非常相似。&&
先说明一下天文学家是怎么得到三兄弟的这些数据的。恒星目视星等是可以直接测量的。南门二离我们很近,用三角视差方法就可以很精确地测出距离。事实上,南门二是最早被测出距离的恒星(当然太阳除外),但是由于在南非观测它的英国天文学家亨德森要等到回到英国后才能发表观测数据,结果1838年,德国天文学家贝塞耳在柯尼斯堡观测的天鹅座61号星抢到了第一的座次。有了距离和目视亮度,就可以很容易地算出绝对亮度。&&
恒星的表面温度,则可以通过研究恒星的光谱来确定。根据黑体辐射定律(比如斯忒藩定律或者普朗克公式),恒星亮度和表面温度的4次方成正比,而且亮度和恒星的表面积成正比(也就是和半径的平方成正比)。所以,根据已经测到的数据,得出三兄弟的半径也不难。&&
测质量相比之下就要麻烦不少。南门二的老大和老二是一对离得比较近的双星,平均距离23个天文单位(地球到太阳的平均距离),绕行的周期则是大约80年。有了轨道数据(当然不止这两个数据),从牛顿力学就可以算出南门二A和B的质量的精确数值。&&
而比邻星的质量就难测多了。比邻星这个小弟兄目前离两个哥哥太远了,大约有0.2光年,相当于A,B两星平均距离的500倍以上,而且其质量又小。所以,靠测量比邻星的引力对南门二A,B的影响来确定其质量是不行的。目前采用的比邻星质量是个推测值,按照理论模型和其他类似亮度和温度的恒星的质量来估计,得到了一个很小的质量,只比太阳的十分之一稍大些。&&
南门二的A,B两星以椭圆轨道在互相绕行,下面是它们轨道的图示(这里还加上了一个假想的地球)。
它们的轨道相当扁,偏心率大约0.5。图中它们都在“近日点”。当然不用担心它们会相撞,它们的运动周期一致,是同步的。离得最近时候是11个天文单位(比太阳到土星稍远),相距最远时候则达到35个天文单位(比太阳到海王星稍远)。因为它们的轨道平面不是正对着我们的,从地球上观测,以南门二A为参考点,南门二B将描出下图所示的一个很扁的椭圆。&& &&
& &&为了更好的领略南门二的风景,我们就发动时空传送机器(用《流浪地球》的那种变态的地球发动机?太土老冒了吧),把我们的地球传送过去实地旅游一番吧。&&
南门二A星是老大,和太阳非常相似,事实上,它是太阳周围三十光年内和太阳最相似的恒星了。如果真的说“海内存知己,天涯若比邻”,那对它是非常合适的。既然如此,那就给我们一个回家的感觉,把地球安置在离南门二A一个天文单位的圆形轨道上吧。&&
啊,这将是一场灾难。不要忘了,南门二A的质量比太阳大10%,亮度则要大51%。现在只不过多排放了一些温室气体,造成的全球变暖就已经搞得人心惶惶了。如果太阳增亮一半,那地球上简直就要寸草不生了。&&
“第XXX代文明在酷热中毁灭了,原因是时空穿越的位置设定错误……”
不行,我们要补救一下,把地球挪远一些,离南门二A的距离增大到1.23个天文单位,这样,南门二A提供给地球的光照就和太阳一模一样了,我们仍然能有一个气候适宜,生命繁盛的地球。&&
轨道情况让我们相当满意,因为南门二B虽然离得相当近,但是最近时候的距离仍然比到南门二A的距离要大将近9倍,因此,对地球的轨道干扰也不大。可以指望地球可以在圆轨道上过着相当稳定的生活。&&
现在是白天,先让我们赞美“万物生长靠太阳”。抬头看去,南门二A和我们原来熟悉的那个太阳相比,看上去要稍微小了些(视直径小了大概2.5%),如果我们没有忘了把月亮也原封不动地拖过来,那么在这里就不会看到日环食了,只会是日全食或者日偏食。但是因为南门二A的表面温度比太阳高了一点点(太阳的表面温度是5700K),所以它的表面显得要更亮些。粗心一点的话,你不会觉得太阳已经换了一个。一年比我们现在长了三四个月,但区别也不算太大。&&
如果时辰凑巧的话,我们还可以在晴空中看到一个明亮的“飞星”,这就是南门二B。它的亮度在南门二A这个“太阳”的1/300到1/3000的范围内变化,取决于当前它离我们有多远。当然,老师们会向你强调不能用肉眼直接看太阳,同样他们还会强调也不要用肉眼直接看“飞星”。因为南门二B的亮度仍然到了刺目的地步,相当于月亮亮度的倍,足以伤害你的眼睛了。&&
当“飞星”最亮的时候(也就是最近的时候),可以看到它并不是“星”,而是一个小太阳,直径大约是太阳的十分之一,可以看出一个小小的圆面。最暗的时候,肉眼就看不出什么结构了,看上去就是一颗非常亮的星星,但是在望远镜下,它的圆面依然可见,和真实世界中我们看木星差不多大。但不论如何,它的亮度之大,都足以保证即使是在白天,我们也能很容易地看到它。&&
太阳下山了,让我们看看星空吧。呃,怎么天还这么亮,什么星星都看不到?原来“飞星”还没下山呢。“飞星”亮度达到月亮的1000~100倍,在它的照耀下的“夜空”仍然非常明亮,如同我们常见的阴天,而地面的亮度和写字楼里面没什么两样,尽可以看书写字。由于南门二B的表面温度要比太阳低不少,它的颜色是橙黄色的,在“飞星”的照耀下,天空和大地如同被城市街道旁的高压钠灯照亮,沐浴在一片温和的橙色光辉中。&&
如果对“飞星”的运行感兴趣,我们就得对它进行长时间观测。它的运行有如太阳系里的外行星的运行规律,每80年(换算成南门二A的“地球年”当然只有大概60“年”)在天球上相对于恒星背景运行一圈,而且每“年”都会有两次“飞星不动”的现象。当然,这并不是什么大灾难的前兆,只不过是地球的运行方向此时正好朝向或者背离南门二B而已。持续时间也不过几天,和太阳系里外行星运动的“留”实际上是同一回事。&& &&
其实,南门二B也是不错的人类安身之所,虽然说亮度只有太阳的一半不到。但是只要离得近些就好了。金星的轨道就是个很不错的选择。同样,这样一个轨道也是相当稳定的,在上面我们可以看到一个比较大的橙色太阳,还有一颗黄色的,更亮更大的“飞星”。&&
&&& 扯远了,回到我们这个地球上来吧。现在,“飞星”也下山了,这次,真正的夜晚终于来临了,点点繁星洒满了夜空。假设你熟悉星空(现在城市的孩子真可怜,银河大概从来没见过),这里的星空将是相当熟悉的,没有特别大的变化。这也是当然的,毕竟从太阳到南门二A,我们的位置只移动了4.35个光年,并不是很大的距离。仔细观察,有几颗醒目的亮星的位置变化不小,比如天狼星。那是因为这些恒星离太阳的距离也很近(天狼星是8.6光年),移动4光年带来的变化就不能忽视了。不过,最大的变化是很明显的,这里的半人马座的最亮星不见了。哦,还想找南门二么?那两个家伙都已经下山了。另外,这里的仙后座多了一颗光辉灿烂的黄色亮星,能排到全天十大亮星内。不要迷惑,这颗亮星就是我们所来之处:温和而伟大的太阳。如果你是位天文学家,想考察太阳是否有行星的话,作为从那里过来的移民,我可以告诉你,太阳最大的行星叫木星,从南门二这里看,它离开太阳的角距离最大时候也不到4",亮度只有21等,只有太阳亮度的一亿分之一左右。直接观测可能有些困难,但是用天体测量的方法,你应该可以发现太阳的运行轨迹有点波浪形,从而推断行星的存在。&&
&&& 太阳是颗温和的恒星。它已经维持目前的亮度50亿年了,还将维持50亿年。其亮度在这100亿年里会缓慢增加,但是不会超过一倍。在人类有关于太阳的天文观测记载以来,在可见光区域,它的亮度改变从未超过千分之一。南门二A,B也是这样的温和的恒星,稳定而可靠,有着漫长的寿命。等等,不是说南门二是个三合星系统么,老三哪里去了?比邻星——南门二C实在是太暗了。即使是现在处于南门二A的地球上,南门二C离开我们的距离只有大约0.2光年(约12000个天文单位),仍然是亮不到哪里去。在夜空的繁星中,比邻星不过是一颗很不起眼的暗淡的红色恒星,肉眼勉强可以看到而已。由于表面温度太低,它的颜色是红色的,实际上,它的绝大部分能量都是以我们看不见的红外线方式发出来的。但是,偶尔它也会突然引人瞩目。比邻星是一颗耀星,有时候在几分钟内亮度可以突然增加几倍,变成一颗相当明亮的星星,然后又在几分钟后迅速暗淡下去。除此之外,普通人根本不会察觉到比邻星和其它恒星有什么区别。而天文学家们会很快注意到它的距离很近,而且运行“相当”快――大约50万年到200万年就可以绕着南门二A和B转一圈。(偷偷说一句,不要太信任天文学家了[mood10],看看,仅仅是要他们测一个简单的周期数据,误差就可以达到4倍。而且,还有人认为比邻星只是个过路的,根本不是南门二的一部分。)&&
现在回头来看,南门二虽然是个三合星系统,但是这个三体并不复杂,因为小弟弟离得实在太远了(是老大、老二之间距离的近600倍)。这个体系实际上是由一对很近的双星加上一个很远的单星组成的。单星对双星的运动没有多大影响,而在处理单星的运动时,双星完全可以当成一个天体来对待。所以这个三体,用两次二体问题就可以解决得相当好。我们假想的地球完全可以舒舒服服过日子。&& &&
这么看来,南门二应该是一个产生生命,甚至是智慧生命的好地方。可惜,就目前我们所掌握的观测和理论来说,这个可能性都不存在。原因很简单,按我们目前的认识,生命总归要产生于行星之上(那些更奇妙的生物,实在是完全出于想象,就不讨论了)。而从观测上,还没有发现南门二A/B拥有行星的任何迹象。从行星形成理论上,南门二A/B是比较近距的双星,在恒星形成阶段,它们的引力会彼此干扰,使得尘埃和气体没有机会凝聚起来形成行星,接下来再把这些物质清扫一空。相应的太阳系里的例子是,木星内侧的小行星带里,就没能形成一颗大行星,而木星还时不时把一些倒霉的小家伙拉过来变成卫星或者干脆吃下去。&&
南门二A/B虽然都足够明亮,而且稳定又长寿,和太阳一样适合生命,但却一开始就丧失了产生生命的舞台。如果人类要飞出太阳系,向宇宙移民,南门二倒也是一个不错的选择。不过这将是一场自助游,我们得自备一颗行星带过去。&&
&&& 顺便说说,如果我们的太阳真的寿数已尽(比如《流浪地球》里面那样),那么南门二可否当作避难所呢?很可惜的是,如果我们目前对恒星的观测和理论是对的话,结论还是不行。恒星的稳定期和它的质量是负相关的,质量越大寿命越短(体重超标的弟兄们还是减点肥吧)。南门二A的质量比太阳稍微大那么一点儿,意味着它的寿命也会比太阳短一点。而且,从观测到的各项指标看,南门二比太阳本来就要老上一点。这么看来,太阳不行了的时候,南门二A已经先顶不住了。&&
而当太阳(以及南门二A)到达晚年时候会怎么样呢?内部核反应的加剧和氦燃烧的进行(《流浪地球》里面那样戏剧化的氦闪就不要轻信了),使得太阳半径膨胀数百倍,超过地球轨道的半径。表面温度下降到4000K不到,但是由于面积大大增加,总的亮度会超过现在的太阳的1000倍。这时的太阳就成为一颗典型的红巨星。离得近的行星会被干脆气化,远的也难逃被烤焦的命运。&&
如果南门二A变成红巨星,即使是南门二B旁边的行星也会被烤焦(就算“脱水”也不行)。而且,南门二A膨胀后接近于洛希半径,南门二B将会乘机剥掉它的外皮并据为己有。此时,灼热的气体、尘埃和带电粒子大量地由南门二A喷出,然后被南门二B吞噬。这将是一幅很壮观的景象,不过对生命来说,则是毁灭性的。&&
当然,如果人类能够避免迅速的毁灭,撑到那么久远的未来,这种灾变兴许就根本不算回事了。那个时候,也许我们早就可以玩弄恒星于指端了。& &
不敢高声语,恐惊天上人&&
我们已经被科幻小说中的外星人吓得够厉害了。与其相信良好的愿望,还是实力更可靠。毕竟我们好像都不太信三体人“必然拥有更高的文明和道德水准”,连叶文洁都不太确信。&&
那么,我们本能的反应应该是“关起门来搞发展”,外星人找上门来那算是没办法认倒霉了,至少我们别去招惹他们。就像叶文洁在红岸收到的第一个三体人发来的信号,要她不要再发出任何信号了。这个想法,李白早就说得很明白了:“危楼高百尺,手可摘星辰。不敢高声语,恐惊天上人。”&&
可惜,即使是对于一个只具有人类目前技术水准,比如拥有阿西雷博射电望远镜的外星文明来说,我们现在就开始集体“失声”也来不及了。我们已经把自己暴露得够充分了。晚了,现在想躲起来已经太晚了。&&
直径305米的阿西雷博射电望远镜,目前世界上最大的射电望远镜。镜面是固定式的,通过移动悬挂在空中的接受装置,可以观测到比较大的天区。&&
&&& 阿西雷博射电望远镜地处加勒比海上的波多黎各岛上的一个小盆地。利用地形,4万块铝板在这个小盆地中拼接起来,构成一个固定的抛物面天线。从遥远的宇宙中传来的无线电波经过天线的反射,会聚在悬挂在天线上方的接收装置上。这个看起来不大的接收装置到天线底部的高度是140米,重达900吨,里面还带着大量冷却用的液氦。接收装置是可以移动的,这样,就不至于只能观测头顶上那一个点,而是可以观测比较大的一片天区。&&
这个固定式的射电望远镜直径达到305米,是目前最大的,接收面积相当于十几个足球场。相比之下,最大的可转动射电望远镜则是美国国立射电天文台新建成的110*100米望远镜,位于西弗吉尼亚州绿岸(叶文洁的“红岸”就对应于这里)。这种大个子的射电望远镜也常常被称为行星雷达站,因为它们常常用来作行星际的雷达观测,比如发射电波到金星,再接收返回的电波。通过这种观测,可以测定金星的距离(顺便验证一下广义相对论),测定金星的自转周期,画出金星的表面地图。&&
至于说到射电望远镜的接收灵敏度,一个例子是1972年发射的先驱者10号探测器,它的发射天线直径2.7米,发射功率只有8瓦(比普通25瓦灯泡都小得多),而且由于电池电力下降而逐渐减小。但是在它在2003年因缺电而彻底丧失联络之前,已经飞到了122亿公里之外,而在这个距离上,地球的几个直径60米级别的射电望远镜仍然和它保持着联系。正因为如此,现在射电天文观测的主要困难在于环境噪声,比如绿岸天文台内及其周边是严格禁止普通汽车的,汽车只能使用柴油机。因为汽油机的火花塞的电火花会产生频率很广的电波,虽然似乎是毫不起眼的小火花,但也足以干扰到射电望远镜的工作。&&
相比之下,阿西雷博的发射功率达到1兆瓦(当然比红岸的25兆瓦还是小好多)。再加上良好的定向性和窄频,其通讯能力之强可想而知。用德雷克的话来说,如果在银河系(直径十万光年)的另一端也有一架阿西雷博望远镜,选择好方向和频率,地球和它完全可以实现无线电通讯。&&
说到德雷克,在外星文明探测上他是开路者。1960年,正是他在绿岸天文台启动了奥兹玛(OZMA)计划,用26米射电望远镜探测外星生物的射电信号。探测目标是鲸鱼座τ星(天仓五)和波江座ε星(天苑四),这是两颗类似太阳的单星,距离都是11光年左右,共监测了200小时。结果是可以想见的,没有发现外星信号,倒是收到了人类自己的干扰信号。德雷克还和卡尔·萨根一起提出了著名的德雷克方程(也称绿岸方程),描述银河系中可能存在的文明数量。&&
如果我们把阿西雷博的发射方向设定为南门二,而且此时正好有位观测者在用射电望远镜观测太阳方向,而且使用的频率也是这个频率,那么他会发现什么呢?在他的射电望远镜中,阿西雷博发出的信号将是全宇宙最强的信号,比太阳信号要强一百万倍。人类不需要妄自菲薄,纵然我们并非有多么先进,但我们仍然可以在宇宙中强有力地表现我们的存在。
来源:网络& 作者:佚名
馆藏&40277
TA的最新馆藏
喜欢该文的人也喜欢

我要回帖

更多关于 哈密顿量 的文章

 

随机推荐