高中数学解析几何专题,第一小问。几何题

数学大题从来只做第一问?
数学一直是个令学生头疼的科目,在这之中又以高中数学为甚,总让学生感觉自己好像学了假数学,当看到考卷上的最后几个大题,基本处于懵的状态。
高中数学在熟记公式的基础上,对于做椭圆、双曲线、函数等的组合题还需要强大的逻辑思维能力,当然,加上巧妙的解题技巧就更简单了。
很多同学在做这类题的时候,除了基本上除了第一问,后面的就不会做了,简直白白丢分。今天要跟大家分享的是数学大题的答题策略和冷技巧,在答题时根据题目以及自身的理解能力进行分析,你会发现数学大题也不是想象中那么难做!
策略一·分散解答
化繁为简 能做多少算多少
大题解题策略:将难题分解为一系列的步骤,或者是一个个小问题,先解决问题的一部分,能解决多少就解决多少,能演算几步就写几步,尚未成功不等于失败。因为那些解题层次明显的题目,或者是已经程序化了的方法,每进行一步得分点的演算都可以得分,最后结论虽然未得出,但分数却已过半,这叫“大题巧拿分”。
策略二·跳步解答
左右逢源 会做哪问做哪问
解题过程中卡在某一过渡环节上是常见的.这时,我们可以先承认中间结论,往后推,看能否得到结论.若题目有两问,第(1)问想不出来,可把第(1)问当作“已知”,先做第(2)问,跳一步解答。
考场策略 本题第(1)问较易,考生不难解答,第(2)问中①由于计算大,考试时间有限,是对考生能力的一种挑战,但②却较易解答,所以考生也可以先做②保障本题的得分率,若考试时间充足可以继续做①,这是解决本题的一个明智之举。
策略三·逆向解答
逆水行舟 往往也能解决问题
对一个问题正面思考发生思维受阻时,用逆向思维的方法去探求新的解题途径,往往能得到突破性的进展.顺向推有困难就逆推,直接证有困难就反证。
策略四·退步解答
以退为进 列出相关内容就能得分
“以退求进”是一个重要的解题策略.对于一个较一般的问题,如果你一时不能解决所提出的问题,那么,你可以从一般退到特殊,从抽象退到具体,从复杂退到简单,从整体退到部分,从参变量退到常量,从较强的结论退到较弱的结论.总之,退到一个你能够解决的问题,通过对“特殊”的思考与解决,启发思维,达到对“一般”的解决。
数学大题冷技巧
三角函数题
第一步一般都是需要将三角函数化简成标准形式y=Asin(ωx+φ),接下来按题做就行了,注意二倍角的降幂作用以及辅助角(合一)公式,周期公式,对称轴、对称中心、单调区间、最大值、最小值都是用整体法求解。求最值时通过自变量的范围推到里面整体u=ωx+φ的范围,然后可以直接画y=sinu的图像,避免画平移的图像。这部分题还有一种就是解三角形的问题,运用正弦定理、余弦定理、面积公式,通常有两个方向,即角化成边和边化成角,得根据具体问题具体分析哪个方便一些,遇到复杂的题就把未知量列成未知数,根据定理列方程组,然后解方程组即可。
技巧:三角函数第二题,如求a(cosB+cosC)/(b+c)cosA之类的先边化角,然后把第一题算出的角边的值结合特殊值法带入求解,比如已解出角A等于60&直接假设B和C都等于60&带入求解,省时省力!
立体几何题
证明题注意各种证明类型的方法(判定定理、性质定理),注意引辅助线,一般都是对角线、中点、成比例的点、等腰等边三角形中点等等,理科如果证明不出来直接用向量法也是可以的。计算题主要是体积,注意将字母换位(等体积法);线面距离用等体积法。理科还有求二面角、线面角等,用建立空间坐标系的方法(向量法)比较简单,注意各个点的坐标的计算,不要算错。
技巧:空间几何证明过程中有一步实在想不出,就把没用过的条件直接写上,然后得出想要得到的那个结论即可。如果第一题真心不会做直接写结论成立,则第二题可以直接用这个结论!用几何法的同学建议先随便建立个空间直角坐标系,做错了还有2分可以得!立体几何中第二问叫你求正余弦值之类的问题,一般都用向量法!如果求角度则几何法简单!
概率与统计题
概率与统计题主要有频率分布直方图,注意纵坐标(频率/组距)。求概率的问题,文科列举,然后数数,别数错、数少了啊,概率=满足条件的个数/所有可能的个数;理科用排列组合算数。独立性检验根据公式算K方值,细心计算别出错,会查表,用1减查完的概率。回归分析,根据数据代入公式(公式中各项的意义)即可求出回归直线方程,注意 点满足回归直线方程。理科还有随机变量分布列问题,注意列表时把可能取到的所有值都列出,然后分别算概率,最后检查所有概率和是否是1,不是1说明你概率算错或者随机变量少列了。
数列题的话,注意等差、等比数列通项公式、前n项和公式;证明数列是等差或等比直接用定义法(后项减前项为常数/后项比前项为常数),求数列通项公式,如为等差或等比直接代公式即可,其它的一般注意类型采用不同的方法(已知Sn求an、已知Sn与an关系求an(前两种都是利用an=Sn-Sn-1,注意讨论n=1、n>1)、累加法、累乘法、构造法(所求数列本身不是等差或等比,需要将所求数列适当变形构造成新数列,通过构造一个新数列使其为等差或等比,便可求其通项,再间接求出所求数列通项);数列的求和第一步要注意通项公式的形式,然后选择合适的方法(直接法、分组求和法、裂项相消法、错位相减法、倒序相加法等)进行求解。如有其它问题,注意放缩法证明,还有就是数列可以看成一个以n为自变量的函数。
函数题,第一步别忘了先看下定义域,一般都得求导,求单调区间时注意与定义域取交。看看题型,将题型转化一下,转化到你学过的内容(利用导数判断单调性(含参数时要利用分类讨论思想,一般求导完通分完分子是二次函数的比较多,讨论开口a=0、a&0、a&0和后两种情况下 , )、求极值(根据单调区间列表或画图像简图)、求最值(所有的极值点与两端点值比较)等),典型的有恒成立问题、存在问题(注意与恒成立问题的区别),不管是什么都要求函数的最大值或最小值,注意方法以及比较定义域端点值,注意函数图象(数形结合思想:求方程的根或解、曲线的交点个数)的运用。证明有关的问题可以利用证明的各种方法(综合法、分析法、反证法、理科的数学归纳法)。多问的时候注意后面的问题一般需要用到前面小问的结论。抽象的证明问题别光用眼睛在那看,得设出里面的未知量,通过设而不求思想证明问题。
圆锥曲线题
圆锥曲线题,第一问求曲线方程,注意方法(定义法、待定系数法、直接求轨迹法、反求法、参数方程法等等)。一定检查下第一问算的数对不,要不如果算错了第二问做出来了也白算了。
第二问有直线与圆锥曲线相交时,记住“联立完事用联立”,第一步联立,根据韦达定理得出两根之和、两根之积、因一般都是交于两点,注意验证判别式&0,设直线时注意讨论斜率是否存在。第二步也是最关键的就是用联立,关键是怎么用联立,即如何将题里的条件转化成你刚才联立完的x1+x2和x1x2,然后将结果代入即可。
弦长问题:代入弦长公式;
定比分点问题:根据比例关系建立三点坐标之间的一个关系式(横坐标或纵坐标),再根据根与系数的关系建立圆锥曲线上的两点坐标的两个关系式,从这三个关系式入手解决。
点对称问题:利用两点关于直线对称的两个条件,即这两点的连线与对称轴垂直和这两点的中点在对称轴上
定点问题:直线y=kx+b过定点即找出k与b的关系,如b=5k+7,然后将b代入到直线方程y=kx+5k+7=k(x+5)+7即可找出定点(-5,7);
定值问题:基本思想是函数思想,将要证明或要求解的量表示为某个合适变量(斜率、截距或坐标)的函数,通过适当化简,消去变量即得定值。
最值或范围问题:基本思想还是函数思想,将要求解的量表示为某个合适变量(斜率、截距或坐标)的函数,利用函数求值域的方法(首先要求变量的范围即定义域—别忘了得 ,然后运用求值域的各种方法—直接法、换元法、图像法、导数法、均值不等式法(注意验证“=”)等)求出最值(最大、最小),即范围也求出来了)。抽象的证明问题别光用眼睛在那看,得设出里面的未知量,通过设而不求思想证明问题。
技巧:圆锥曲线中最后一题往往联立起来很复杂导致k算不出,这时你可以先联立,后算得尔塔,用一下韦达定理,列出题目要求解的表达式,最后用特殊值法强行算出k,剩下的问题就要看你的时间和个人能力了。
选修题我只说下参数方程与极坐标,各种曲线的参数方程的标准形式要记准,里面谁是参数,以及各量的意义以及参数的几何意义,一般都是先画成直角坐标,再变成直角坐标题意,有的题要用到参数方程里参数的几何意义来解题(注意直线参数方程只有是标准的参数方程才能用t的几何意义,要不会差一个倍数,弦长|AB|=|t1-t2|,|PA||PB|=|t1t2|(注意P点得是你参数方程里前面的(a,b),只有这样联立后的参数t才表示PA、PB),这时会简单许多。极坐标也是,先化成直角坐标再解题,这样就简单了。
数学大题的第二问一般都是和别人拉开分数差距的关键,而且如果能够做出第二问的话也会大大增加对数学学习的成就感。总之,希望大家能够认真学习这篇推送中介绍的解题技巧,让自己的数学分数能够更上一层楼。
责任编辑:
声明:本文由入驻搜狐号的作者撰写,除搜狐官方账号外,观点仅代表作者本人,不代表搜狐立场。
升学e网通、升学助考一网通
升学e网通、升学助考一网通
今日搜狐热点(zhuxiaomo)
(钟离诗桦)
(其雨其雨)
第三方登录:高中数学典型例题解析(第七章平面解析几何初步1)
我的图书馆
高中数学典型例题解析(第七章平面解析几何初步1)
第七章& 平面解析几何初步
§7.1直线和圆的方程
一、知识导学 
1.两点间的距离公式:不论A(1,1),B(2,2)在坐标平面上什么位置,都有d=|AB|=,特别地,与坐标轴平行的线段的长|AB|=|2-1|或|AB|=|2-1|.
2.定比分点公式:定比分点公式是解决共线三点A(1,1),B(2,2),P(,)之间数量关系的一个公式,其中λ的值是起点到分点与分点到终点的有向线段的数量之比.这里起点、分点、终点的位置是可以任意选择的,一旦选定后λ的值也就随之确定了.若以A为起点,B为终点,P为分点,则定比分点公式是.当P点为AB的中点时,λ=1,此时中点坐标公式是.
3.直线的倾斜角和斜率的关系
(1)每一条直线都有倾斜角,但不一定有斜率.
(2)斜率存在的直线,其斜率与倾斜角α之间的关系是=tanα.
4.确定直线方程需要有两个互相独立的条件。直线方程的形式很多,但必须注意各种形式的直线方程的适用范围.
为直线的斜率
b为直线的纵截距
倾斜角为90°的直线不能用此式
() &为直线上的已知点,为直线的斜率
倾斜角为90°的直线不能用此式
(),()是直线上两个已知点
与两坐标轴平行的直线不能用此式
为直线的横截距
b为直线的纵截距
过(0,0)及与两坐标轴平行的直线不能用此式
,,分别为斜率、横截距和纵截距
A、B不全为零
5.两条直线的夹角。当两直线的斜率,都存在且·≠ -1时,tanθ=,当直线的斜率不存在时,可结合图形判断.另外还应注意到:“到角”公式与“夹角”公式的区别.
6.怎么判断两直线是否平行或垂直?判断两直线是否平行或垂直时,若两直线的斜率都存在,可以用斜率的关系来判断;若直线的斜率不存在,则必须用一般式的平行垂直条件来判断.
(1)斜率存在且不重合的两条直线1∶, 2∶,有以下结论:
①1∥2=,且b1=b2
②1⊥2·= -1
(2)对于直线1∶,2 ∶,当1,2,1,2都不为零时,有以下结论:
②1⊥212+12 = 0
③1与2相交≠
④1与2重合==
7.点到直线的距离公式.
(1)已知一点P()及一条直线:,则点P到直线的距离d=;
(2)两平行直线1: , 2: 之间的距离d=.
8.确定圆方程需要有三个互相独立的条件。圆的方程有两种形式,要知道两种形式之间的相互转化及相互联系
(1)圆的标准方程:,其中(,b)是圆心坐标,是圆的半径;
(2)圆的一般方程:(>0),圆心坐标为(-,-),半径为=.
二、疑难知识导析 
1.直线与圆的位置关系的判定方法.
(1)方法一 直线:;圆:.
一元二次方程
(2)方法二 直线: ;圆:,圆心(,b)到直线的距离为
2.两圆的位置关系的判定方法.
设两圆圆心分别为O1、O2,半径分别为1,2,|O1O2|为圆心距,则两圆位置关系如下:
|O1O2|&1+2两圆外离;
|O1O2|=1+2两圆外切;
| 1-2|&|O1O2|&1+2两圆相交;
|=|1-2|两圆内切;
0&| O1O2|&|
1-2|两圆内含.
三、经典例题导讲 
[例1]直线l经过P(2,3),且在x,y轴上的截距相等,试求该直线方程.
错解:设直线方程为:,又过P(2,3),∴,求得a=5
∴直线方程为x+y-5=0.
错因:直线方程的截距式: 的条件是:≠0且b≠0,本题忽略了这一情形.
正解:在原解的基础上,再补充这样的过程:当直线过(0,0)时,此时斜率为:,
∴直线方程为y=x
综上可得:所求直线方程为x+y-5=0或y=x .
[例2]已知动点P到y轴的距离的3倍等于它到点A(1,3)的距离的平方,求动点P的轨迹方程.
错解:设动点P坐标为(x,y).由已知3
化简3=x2-2x+1+y2-6y+9
当x≥0时得x2-5x+y2-6y+10=0
当x<0时得x2+ x+y2-6y+10=0 .& ②
错因:上述过程清楚点到y轴距离的意义及两点间距离公式,并且正确应用绝对值定义将方程分类化简,但进一步研究化简后的两个方程,配方后得
(x-)2+(y-3)2 = &①&&&& 和&& (x+)2+(y-3)2 =
两个平方数之和不可能为负数,故方程②的情况不会出现.
正解: 接前面的过程,∵方程①化为(x-)2+(y-3)2 =
,方程②化为(x+)2+(y-3)2 =
- ,由于两个平方数之和不可能为负数,故所求动点P的轨迹方程为: (x-)2+(y-3)2 =
[例3]m是什么数时,关于x,y的方程(2m2+m-1)x2+(m2-m+2)y2+m+2=0的图象表示一个圆?
错解:欲使方程Ax2+Cy2+F=0表示一个圆,只要A=C≠0,
得2m2+m-1=m2-m+2,即m2+2m-3=0,解得m1=1,m2=-3,
∴当m=1或m=-3时,x2和y2项的系数相等,这时,原方程的图象表示一个圆
错因:A=C,是Ax2+Cy2+F=0表示圆的必要条件,而非充要条件,其充要条件是:
A=C≠0且<0.
正解:欲使方程Ax2+Cy2+F=0表示一个圆,只要A=C≠0,
得2m2+m-1=m2-m+2,即m2+2m-3=0,解得m1=1,m2=-3,
(1)当m=1时,方程为2x2+2y2=-3不合题意,舍去.
(2)当m=-3时,方程为14x2+14y2=1,即x2+y2=,原方程的图形表示圆.
[例4]自点A(-3,3)发出的光线L射到x轴上,被x轴反射,其反射光线所在直线与圆x2+y2-4x-4y+7=0相切,求光线L所在的直线方程.
错解:设反射光线为L′,由于L和L′关于x轴对称,L过点A(-3,3),点A关于x轴的对称点A′(-3,-3),于是L′过A(-3,-3).
  设L′的斜率为k,则L′的方程为y-(-3)=k[x-(-3)],即kx-y+3k-3=0,
已知圆方程即(x-2)2+(y-2)2=1,圆心O的坐标为(2,2),半径r=1
因L′和已知圆相切,则O到L′的距离等于半径r=1
  整理得12k2-25k+12=0
解得k=  L′的方程为y+3=(x+3)
  即4x-3y+3=0  因L和L′关于x轴对称
  故L的方程为4x+3y+3=0.
错因:漏解
正解:设反射光线为L′,由于L和L′关于x轴对称,L过点A(-3,3),点A关于x轴的对称点A′(-3,-3), 于是L′过A(-3,-3).
  设L′的斜率为k,则L′的方程为y-(-3)=k[x-(-3)],即kx-y+3k-3=0,
  已知圆方程即(x-2)2+(y-2)2=1,圆心O的坐标为(2,2),半径r=1
  因L′和已知圆相切,则O到L′的距离等于半径r=1
  整理得12k2-25k+12=0
  解得k=或k=
  L′的方程为y+3=(x+3);或y+3=(x+3)。
  即4x-3y+3=0或3x-4y-3=0
  因L和L′关于x轴对称
  故L的方程为4x+3y+3=0或3x+4y-3=0.
[例5]求过直线和圆的交点,且满足下列条件之一的圆的方程:
(1)过原点;(2)有最小面积.
解:设所求圆的方程是:
&&&&&&&&&&&&&&&&
(1)因为圆过原点,所以,即
故所求圆的方程为:.
(2)将圆系方程化为标准式,有:
当其半径最小时,圆的面积最小,此时为所求.
故满足条件的圆的方程是.
点评:(1)直线和圆相交问题,这里应用了曲线系方程,这种解法比较方便;当然也可以待定系数法。(2)面积最小时即圆半径最小。也可用几何意义,即直线与相交弦为直径时圆面积最小.
[例6](06年辽宁理科)已知点A(),B()(≠0)是抛物线上的两个动点,O是坐标原点,向量满足||=||.设圆C的方程为
(1)证明线段AB是圆C的直径;
(2)当圆C的圆心到直线的距离的最小值为时,求的值.
解:(1)证明 ∵||=||,∴()2=()2,
 整理得:=0  ∴+=0
设M()是以线段AB为直径的圆上的任意一点,则=0
故线段AB是圆C的直径.
(2)设圆C的圆心为C(),则
又∵+=0 ,=-
∵≠0,∴≠0
所以圆心的轨迹方程为
设圆心C到直线的距离为d,则
当=时,d有最小值,由题设得=
四、典型习题导练 
1.直线截圆得的劣弧所对的圆心角为&
&&&(&&&&& )
&&& A.&&&&B.&&&&&&&C.&&&&&&&&D.
2.已知直线x=a(a>0)和圆(x-1)2+y2=4相切
,那么a的值是(&&& )
A.5&& &&&B.4 &&&&&C.3 &&&&&D.2
3. 如果实数x、y满足等式(x-2)2+y2=3,则的最大值为:&&&&&&&&&&&&&
4.设正方形ABCD(A、B、C、D顺时针排列)的外接圆方程为x2+y2-6x+a=0(a&9),C、D点所在直线l的斜率为.
(1)求外接圆圆心M点的坐标及正方形对角线AC、BD的斜率;
(2)如果在x轴上方的A、B两点在一条以原点为顶点,以x轴为对称轴的抛物线上,求此抛物线的方程及直线l的方程;
(3)如果ABCD的外接圆半径为2,在x轴上方的A、B两点在一条以x轴为对称轴的抛物线上,求此抛物线的方程及直线l的方程.
5.如图,已知圆C:(x+4)2+y2=4。圆D的圆心D在y轴上且与圆C外切。圆 D与y轴交于A、B两点,点P为(-3,0).
(1)若点D坐标为(0,3),求∠APB的正切值;
(2)当点D在y轴上运动时,求∠APB的正切值的最大值;
(3)在x轴上是否存在定点Q,当圆D在y轴上运动时,∠AQB是定值?如果存在,求出点Q坐标;如果不存在,说明理由.
§7.2圆锥曲线
一、知识导学 
1.椭圆定义:在平面内,到两定点距离之和等于定长(定长大于两定点间的距离)的动点的轨迹.
2.椭圆的标准方程:,&()
3.椭圆的第二定义:一动点到定点的距离和它到一条定直线的距离的比是一个内常数,那么这个点的轨迹叫做椭圆. 其中定点叫做焦点,定直线叫做准线,常数就是离心率
椭圆的第二定义与第一定义是等价的,它是椭圆两种不同的定义方式.
4.椭圆的准线方程
对于,左准线;右准线.
对于,下准线;上准线.
5.焦点到准线的距离(焦参数)
椭圆的准线方程有两条,这两条准线在椭圆外部,与短轴平行,且关于短轴对称.
6.椭圆的参数方程.
7.双曲线的定义:平面内到两定点的距离的差的绝对值为常数(小于)的动点的轨迹叫双曲线.&
即. 这两个定点叫做双曲线的焦点,两焦点间的距离叫做焦距.
8.双曲线的标准方程及特点:
(1)双曲线的标准方程有焦点在x轴上和焦点y轴上两种:
& 焦点在轴上时双曲线的标准方程为:(,);
焦点在轴上时双曲线的标准方程为:(,)
(2)有关系式成立,且.
其中与b的大小关系:可以为.
9.焦点的位置:从椭圆的标准方程不难看出椭圆的焦点位置可由方程中含字母、项的分母的大小来确定,分母大的项对应的字母所在的轴就是焦点所在的轴. 而双曲线是根据项的正负来判断焦点所在的位置,即项的系数是正的,那么焦点在轴上;项的系数是正的,那么焦点在轴上.
10.双曲线的几何性质:
(1)范围、对称性&
由标准方程,从横的方向来看,直线x=-,x=之间没有图象,从纵的方向来看,随着x的增大,y的绝对值也无限增大,所以曲线在纵方向上可无限伸展,不像椭圆那样是封闭曲线. 双曲线不封闭,但仍称其对称中心为双曲线的中心.
顶点:,特殊点:
实轴:长为2,& 叫做半实轴长. 虚轴:长为2b,b叫做虚半轴长.
双曲线只有两个顶点,而椭圆则有四个顶点,这是两者的又一差异.
(3)渐近线
过双曲线的渐近线() .
(4)离心率
双曲线的焦距与实轴长的比,叫做双曲线的离心率. 范围:
双曲线形状与e的关系:,e越大,即渐近线的斜率的绝对值就大,这时双曲线的形状就从扁狭逐渐变得开阔. 由此可知,双曲线的离心率越大,它的开口就越阔.&&
11. 双曲线的第二定义:到定点F的距离与到定直线的距离之比为常数的点的轨迹是双曲线.&
其中,定点叫做双曲线的焦点,定直线叫做双曲线的准线.& 常数e是双曲线的离心率.
12.双曲线的准线方程:
对于来说,相对于左焦点对应着左准线,相对于右焦点对应着右准线;
焦点到准线的距离(也叫焦参数).
对于来说,相对于上焦点对应着上准线;相对于下焦点对应着下准线
13. 抛物线定义:
平面内与一个定点F和一条定直线的距离相等的点的轨迹叫做抛物线.
定点F叫做抛物线的焦点,定直线叫做抛物线的准线.
二、疑难知识导析 
椭圆、双曲线、抛物线同属于圆锥曲线,它们的定义、标准方程及其推导过程以及简单的几何性质都存在着相似之处,也有着一定的区别,因此,要准确地理解和掌握三种曲线的特点以及它们之间的区别与联系
1.等轴双曲线
定义:实轴和虚轴等长的双曲线叫做等轴双曲线,这样的双曲线叫做等轴双曲线.& 等轴双曲线的性质:(1)渐近线方程为:;(2)渐近线互相垂直;(3)离心率.
2.共渐近线的双曲线系
如果已知一双曲线的渐近线方程为,那么此双曲线方程就一定是:或写成&.
3.共轭双曲线
以已知双曲线的实轴为虚轴,虚轴为实轴,这样得到的双曲线称为原双曲线的共轭双曲线.& 双曲线和它的共轭双曲线的焦点在同一圆上. 确定双曲线的共轭双曲线的方法:将1变为-1.
4.抛物线的几何性质
因为p>0,由方程可知,这条抛物线上的点M的坐标(x,y)满足不等式x≥0,所以这条抛物线在y轴的右侧;当x的值增大时,|y|也增大,这说明抛物线向右上方和右下方无限延伸.
(2)对称性
以-y代y,方程不变,所以这条抛物线关于x轴对称,我们把抛物线的对称轴叫做抛物线的轴.
抛物线和它的轴的交点叫做抛物线的顶点.在方程中,当y=0时,x=0,因此抛物线的顶点就是坐标原点.
(4)离心率
抛物线上的点M与焦点的距离和它到准线的距离的比,叫做抛物线的离心率,用e表示.由抛物线的定义可知,e=1.
19.抛物线的焦半径公式:
三、经典例题导讲 
[例1]设双曲线的渐近线为:,求其离心率.
错解:由双曲线的渐近线为:,可得:,从而
剖析:由双曲线的渐近线为是不能确定焦点的位置在x轴上的,当焦点的位置在y轴上时,,故本题应有两解,即:
[例2]设点P(x,y)在椭圆上,求的最大、最小值.
错解:因&∴,得:,同理得:,故& ∴最大、最小值分别为3,-3.
剖析:本题中x、y除了分别满足以上条件外,还受制约条件的约束.当x=1时,y此时取不到最大值2,故x+y的最大值不为3.其实本题只需令,则,故其最大值为,最小值为.
[例3]已知双曲线的右准线为,右焦点,离心率,求双曲线方程.
错解一: 故所求的双曲线方程为
错解二: &由焦点知
故所求的双曲线方程为
错因: 这两个解法都是误认为双曲线的中心在原点,而题中并没有告诉中心在原点这个条件。由于判断错误,而造成解法错误。随意增加、遗漏题设条件,都会产生错误解法.
解法一: &设为双曲线上任意一点,因为双曲线的右准线为,右焦点,离心率,由双曲线的定义知& 整理得
解法二: 依题意,设双曲线的中心为,
&&解得& ,所以&
故所求双曲线方程为&
[例4]设椭圆的中心是坐标原点,长轴在轴上,离心率,已知点到这个椭圆上的最远距离是,求这个椭圆的方程.
错解:依题意可设椭圆方程为
设椭圆上的点到点的距离为,
所以当时,有最大值,从而也有最大值。
,由此解得:
于是所求椭圆的方程为
错因:尽管上面解法的最后结果是正确的,但这种解法却是错误的。结果正确只是碰巧而已。由当时,有最大值,这步推理是错误的,没有考虑到的取值范围.事实上,由于点在椭圆上,所以有,因此在求的最大值时,应分类讨论.
正解:若,则当时,(从而)有最大值.
于是从而解得.
所以必有,此时当时,(从而)有最大值,
所以,解得
于是所求椭圆的方程为
[例5]从椭圆,(&b&0)上一点M向x轴所作垂线恰好通过椭圆的左焦点F1,A、B分别是椭圆长、短轴的端点,AB∥OM.设Q是椭圆上任意一点,当QF2⊥AB时,延长QF2与椭圆交于另一点P,若⊿F1PQ的面积为20,求此时椭圆的方程.
解:本题可用待定系数法求解.
∵b=c, =c,可设椭圆方程为.
∵PQ⊥AB,∴kPQ=-,则PQ的方程为y=(x-c),
代入椭圆方程整理得5x2-8cx+2c2=0,
根据弦长公式,得,
又点F1到PQ的距离d=c
故所求椭圆方程为.
[例6]已知椭圆:,过左焦点F作倾斜角为的直线交椭圆于A、B两点,求弦AB的长.
解:a=3,b=1,c=2;&& 则F(-2,0)
由题意知:与联立消去y得:
设A(、B(,则是上面方程的二实根,由违达定理,
,又因为A、B、F都是直线上的点,
点评:也可利用“焦半径”公式计算.
[例7](06年全国理科)设P是椭圆短轴的一个端点,Q为椭圆上的一个动点,求|PQ|的最大值.
解: 依题意可设P(0,1),Q(),则|PQ|=,又因为Q在椭圆上,所以,,|PQ|2==
因为≤1,>1,若≥,则≤1,当时,|PQ|取最大值;若1<<,则当时,|PQ|取最大值2.
[例8]已知双曲线的中心在原点,过右焦点F(2,0)作斜率为的直线,交双曲线于M、N 两点,且=4,求双曲线方程.
解:设所求双曲线方程为,由右焦点为(2,0).知C=2,b2=4-2
则双曲线方程为,设直线MN的方程为:,代入双曲线方程整理得:(20-82)x2+122x+54-322=0
&设M(x1,y1),N(x2,y2),则, .
故所求双曲线方程为:.
点评:利用待定系数法求曲线方程,运用一元二次方程的根与系数关系将两根之和与积整体代入,体现了数学的整体思想,也简化了计算,要求学生熟练掌握.
四、典型习题导练 
1. 设双曲线两焦点为F1、F2,点Q为双曲线上除顶点外的任一点,过F1作∠F1QF2的平分线的垂线,垂足为P,则点P的轨迹是  (&&&&&
A.椭圆的一部分&& B.双曲线的一部分
C.抛物线的一部分& D.圆的一部分.
2.已知点(-2,3)与抛物线y2=2px(p>0)的焦点 的距离是5,则p=&&&&&&&&&&&&
3.平面内有两定点上,求一点P使取得最大值或最小值,并求出最大值和最小值.
4.已知椭圆的离心率为.(1)若圆(x-2)2+(y-1)2=与椭圆相交于A、B两点且线段AB恰为圆的直径,求椭圆方程;(2)设L为过椭圆右焦点F的直线,交椭圆于M、N两点,且L的倾斜角为600,求的值.
5.已知抛物线方程为,直线过抛物线的焦点F且被抛物线截得的弦长为3,求p的值.
6.线段AB过x轴正半轴上一点M(m,0)(m&0),端点A、B到x轴距离之积为,以x轴为对称轴,过A,O,B三点作抛物线.
(1)求抛物线方程;
(2)若的取值范围.
§7.3& 点、直线和圆锥曲线
一、知识导学 
1.点M(x0,y0)与圆锥曲线C:f(x,y)=0的位置关系
已知(a>b>0)的焦点为F1、F2, (a>0,b>0)
的焦点为F1、F2,(p>0)的焦点为F,一定点为P(x0,y0),M点到抛物线的准线的距离为d,则有:
上述结论可以利用定比分点公式,建立两点间的关系进行证明.
2.直线∶Ax+B+C=0与圆锥曲线C∶f(x,y)=0的位置关系:
直线与圆锥曲线的位置关系可分为:相交、相切、相离.对于抛物线来说,平行于对称轴的直线与抛物线相交于一点,但并不是相切;对于双曲线来说,平行于渐近线的直线与双曲线只有一个交点,但并不相切.这三种位置关系的判定条件可引导学生归纳为:
设直线:Ax+By+C=0,圆锥曲线C:f(x,y)=0,由
消去y(或消去x)得:ax2+bx+c=0,△=b2-4ac,(若a≠0时),
△>0相交&&&&&
△<0相离&&&&&
注意:直线与抛物线、双曲线有一个公共点是直线与抛物线、双曲线相切的必要条件,但不是充分条件.
二、疑难知识导析 
1.椭圆的焦半径公式:(左焦半径),(右焦半径),其中是离心率。 焦点在y轴上的椭圆的焦半径公式: &( 其中分别是椭圆的下上焦点).
焦半径公式的两种形式的区别只和焦点的左右有关,而与点在左在右无关.& 可以记为:左加右减,上减下加.
2.双曲线的焦半径
定义:双曲线上任意一点M与双曲线焦点的连线段,叫做双曲线的焦半径.
焦点在x轴上的双曲线的焦半径公式:
焦点在y轴上的双曲线的焦半径公式:
&&&&( 其中分别是双曲线的下上焦点)
3.双曲线的焦点弦:
定义:过焦点的直线割双曲线所成的相交弦。
焦点弦公式:
当双曲线焦点在x轴上时,
过左焦点与左支交于两点时: ;
过右焦点与右支交于两点时:。
当双曲线焦点在y轴上时,
过左焦点与左支交于两点时:;
过右焦点与右支交于两点时:。
4.双曲线的通径:
定义:过焦点且垂直于对称轴的相交弦.& .
5.直线和抛物线
(1)位置关系:
相交(两个公共点或一个公共点);相离(无公共点);相切(一个公共点).
联立,得关于x的方程
当(二次项系数为零),唯一一个公共点(交点);
若,两个公共点(交点);
,一个公共点(切点);
,无公共点& (相离).
(2)相交弦长:
弦长公式:.
(3)焦点弦公式:
抛物线, .
抛物线, .
抛物线, .
(4)通径:
定义:过焦点且垂直于对称轴的相交弦.& 通径:.
(5)常用结论:
TA的最新馆藏
喜欢该文的人也喜欢

我要回帖

更多关于 高中数学立体几何大题 的文章

 

随机推荐