mosmos管是不是场效应管管的电压放大倍数是多少

MOS管功率放大器电路图_百度百科
声明:百科词条人人可编辑,词条创建和修改均免费,绝不存在官方及代理商付费代编,请勿上当受骗。
MOS管功率放大器电路图
MOS管功率放大器电路图是由电路模块、带阻滤波模块、模块、放大模块、模块以及模块组成。
MOS管功率放大器电路图系统设计
电路实现简单,功耗低,性价比很高。该电路,图1所示是其组成框图。电路稳压电源模块为系统提供能量;要实现50Hz频率点输出功率衰减;电压放大模块采用两级放大来将小信号放大,以便为功率放大提供足够电压;功率放大模块主要提高负载能力;模块便于信号采集;显示模块则实时显示功率和整机效率。
系统组成框图
MOS管功率放大器电路图硬件电路设计
MOS管功率放大器电路图带阻滤波电路的设计
采用组成的二阶的阻带范围为40~60 Hz,其电路如图2所示。带阻滤波器的性能参数有ω0或f0,带宽BW和Q。越高,阻带越窄,效果越好。
二阶带阻滤波电路
MOS管功率放大器电路图放大电路的设计
电压可选用两个INA128芯片来对进行放大。若采用一级放大,当放大倍数较大时,电路可能不稳定,故应采用两级放大,并在级间采用电路,图3所示是其电路图。图中,INA128具有低漂移和低噪声等性能指标,且放大倍数设置简单,只用一个外部电阻就能改变放大倍数。图3中1、8脚跨接的电阻就是用来调整放大倍率,4、7脚需提供正负相等的工作电压,2、3脚输入要放大的电压,并从6脚输出放大的电压值。5脚则是参考基准,如果接地,则6脚的输出即为与地之间的相对电压。
MOS管功率放大器电路图功率放大电路的设计
往往要求其驱动负载的能力较强,从能量控制和转换的角度来看,功率放大电路与其它在本质上没有根本的区别,只是功放既不是单纯追求输出高电压,也不是单纯追求输出大电流,而是追求在电源电压确定的情况下,输出尽可能大的功率。
本电路采用两个构成的功率放大电路,其电路如图4所示。此电路分别采用一个N沟道和一个P沟道对接而成,其中RP2和RP3为,用来调节电路的。fT放大电路上限频率的关系为:fT≈fhβh,系统阶跃相应的tr与放大电路上限频率的关系为:trfh=0.35。
功率放大电路
对于OCL放大器来说,一般有:PTM≈0.2POM,其中为单管的最大管耗,POM为最大不失真输出管耗。根据计算,并考虑到项目要求,本设计选用IRF950和IRF50来实现放大。
MOS管功率放大器电路图AD转换电路的设计
此工作可由内部的10位AD完成,但实验发现,单片机的10位AD芯片的处理效果不是很好。因此本设计采用了两个芯片来对负载输出的信号进行转换,并使用单片机控制计算,然后送入其和效率。
AD1674是一片高速12位逐次比较型A/D转换器,该芯片内置双极性电路构成的混合集成转换器,具有外接元件少,功耗低,精度高等特点,并具有自动校零和自动极性转换功能,故只需外接少量的电阻和即可构成一个完整的A/D转换器。是推出的16位高速,其转换速度快,好,精度高。AD8326和A1674的电路连接图分别如图5和图6所示。
MOS管功率放大器电路图显示电路
本电路采用来实时显示输出的功率、供给的功率和整机效率。该液晶具有屏幕反应速度快、高、功耗低等优点。可以实现友好的人机交互。为了简化电路,本设计采用。并在的控制下,按照要求的格式显示接收到的数据和。图7为电路的连接图。其中D0~D7为数据口,R/W为液晶读写信号,E是。
液晶显示器电路
MOS管功率放大器电路图系统软件设计
由于本系统是的放大,要求能测量并显示、整机效率等信息,所以要用到。AD芯片测量的,所以,测量的电压数据进行比较,以获得最大电压值,此值即为正弦信号的最大值。而要想得到正弦信号的有效值,就要对最大值进行处理,从而获得有效值。这样,就可以将电源的输出功率和供给功率,根据计算出其数值,并将测得的数据用液晶适时的显示出来。
因此,本系统软件实现的功能应当可以实现对正弦信号有效值的测量;同时能够通过液晶准确显示输出功率和系统供给功率和整机效率。
图8所示是本系统软件的设计。
软件设计流程功率MOS场效应晶体管_百度百科
声明:百科词条人人可编辑,词条创建和修改均免费,绝不存在官方及代理商付费代编,请勿上当受骗。
功率MOS场效应晶体管
功率MOS场效应晶体管,即MOSFET,其原意是:MOS(Metal Oxide Semiconductor金属氧化物半导体),FET(Field Effect Transistor场效应晶体管),即以金属层(M)的栅极隔着氧化层(O)利用电场的效应来控制半导体(S)的场效应晶体管。
功率MOS场效应晶体管分类
功率MOS场效应晶体管也分为结型和绝缘栅型,但通常主要指绝缘栅型中的MOS型(Metal Oxide Semiconductor FET),简称功率MOSFET(Power MOSFET)。结型功率场效应晶体管一般称作静电感应(Static Induction Transistor——SIT)。其特点是用栅极电压来控制漏极电流,简单,需要的驱动功率小,开关速度快,工作频率高,热稳定性优于GTR,但其容量小,耐压低,一般只适用于不超过10kW的电力电子装置。
功率MOS场效应晶体管种类
功率MOS场效应晶体管的种类:按导电沟道可分为P沟道和N沟道。按栅极电压幅值可分为;耗尽型;当栅极电压为零时漏源极之间就存在导电沟道,增强型;对于N(P)沟道器件,栅极电压大于(小于)零时才存在导电沟道,功率MOSFET主要是N沟道增强型。
功率MOS场效应晶体管结构
功率MOSFET的内部结构和电气符号如图1所示;其导通时只有一种极性的载流子(多子)参与导电,是单极型。导电机理与小功率mos管相同,但结构上有较大区别,小功率MOS管是横向导电器件,MOSFET大都采用垂直导电结构,又称为VMOSFET(Vertical MOSFET),大大提高了MOSFET器件的耐压和耐电流能力。功率MOSFET为多元集成结构,如国际整流器公司(International Rectifier)的HEXFET采用了六边形单元;西门子公司(Siemens)的SIPMOSFET采用了正方形单元;公司(Motorola)的TMOS采用了矩形单元按“品”字形排列。
功率MOS场效应晶体管工作原理
截止:漏源极间加正电源,栅源极间电压为零。P基区与N漂移区之间形成的PN结J1反偏,漏源极之间无电流流过。  导电:在栅源极间加正电压UGS,栅极是绝缘的,所以不会有栅极电流流过。但栅极的正电压会将其下面P区中的空穴推开,而将P区中的少子—电子吸引到栅极下面的P区表面  当UGS大于UT(开启电压或阈值电压)时,栅极下P区表面的电子浓度将超过空穴浓度,使P型半导体反型成N型而成为反型层,该反型层形成N沟道而使PN结J1消失,漏极和源极导电。
功率MOS场效应晶体管基本特性
功率MOS场效应晶体管静态特性
其转移特性和输出特性如图2所示。
漏极电流ID和栅源间电压UGS的关系称为MOSFET的转移特性,ID较大时,ID与UGS的关系近似线性,曲线的斜率定义为跨导Gfs  MOSFET的漏极伏安特性(输出特性):截止区(对应于GTR的截止区);饱和区(对应于GTR的放大区);非饱和区(对应于GTR的饱和区)。电力MOSFET工作在开关状态,即在截止区和非饱和区之间来回转换。电力MOSFET漏源极之间有寄生二极管,漏源极间加反向电压时器件导通。电力MOSFET的通态电阻具有正温度系数,对器件并联时的均流有利。
功率MOS场效应晶体管动态特性
其测试电路和开关过程波形如图3所示。
开通过程;开通延迟时间td(on) —up前沿时刻到uGS=UT并开始出现iD的时刻间的时间段;  上升时间tr— uGS从uT上升到MOSFET进入非饱和区的栅压UGSP的时间段;  iD稳态值由漏极电源电压UE和漏极负载电阻决定。UGSP的大小和iD的稳态值有关,UGS达到UGSP后,在up作用下继续升高直至达到稳态,但iD已不变。  开通时间ton—开通延迟时间与上升时间之和。  关断延迟时间td(off) —up下降到零起,Cin通过Rs和RG放电,uGS按指数下降到UGSP时,iD开始减小为零的时间段。  下降时间tf— uGS从UGSP继续下降起,iD减小,到uGS   关断时间toff—关断延迟时间和下降时间之和。
功率MOS场效应晶体管开关速度
MOSFET的开关速度和Cin充放电有很大关系,使用者无法降低Cin,但可降低驱动电路内阻Rs减小时间常数,加快开关速度,MOSFET只靠多子导电,不存在少子储存效应,因而关断过程非常迅速,开关时间在10—100ns之间,工作频率可达100kHz以上,是主要电力电子器件中最高的。
场控器件静态时几乎不需输入电流。但在开关过程中需对输入充放电,仍需一定的驱动功率。开关频率越高,所需要的驱动功率越大。
功率MOS场效应晶体管动态性能的改进
在器件应用时除了要考虑器件的电压、电流、频率外,还必须掌握在应用中如何保护器件,不使器件在瞬态变化中受损害。当然晶闸管是两个双极型晶体管的组合,又加上因大面积带来的大电容,所以其dv/dt能力是较为脆弱的。对di/dt来说,它还存在一个导通区的扩展问题,所以也带来相当严格的限制。
功率MOSFET的情况有很大的不同。它的dv/dt及di/dt的能力常以每纳秒(而不是每微秒)的能力来估量。但尽管如此,它也存在动态性能的限制。这些我们可以从功率MOSFET的基本结构来予以理解。
图4是功率MOSFET的结构和其相应的等效电路。除了器件的几乎每一部分存在电容以外,还必须考虑MOSFET还并联着一个二极管。同时从某个角度看、它还存在一个寄生晶体管。(就像IGBT也寄生着一个晶闸管一样)。这几个方面,是研究MOSFET动态特性很重要的因素。
首先MOSFET结构中所附带的本征二极管具有一定的雪崩能力。通常用单次雪崩能力和重复雪崩能力来表达。当反向di/dt很大时,二极管会承受一个速度非常快的脉冲尖刺,它有可能进入雪崩区,一旦超越其雪崩能力就有可能将器件损坏。作为任一种PN结二极管来说,仔细研究其动态特性是相当复杂的。它们和我们一般理解PN结正向时导通反向时阻断的简单概念很不相同。当电流迅速下降时,二极管有一阶段失去反向阻断能力,即所谓反向恢复时间。PN结要求迅速导通时,也会有一段时间并不显示很低的电阻。在功率MOSFET中一旦二极管有正向注入,所注入的少数载流子也会增加作为多子器件的MOSFET的复杂性。
功率MOSFET的设计过程中采取措施使其中的寄生晶体管尽量不起作用。在不同代功率MOSFET中其措施各有不同,但总的原则是使漏极下的RB尽量小。因为只有在漏极N区下的横向电阻流过足够电流为这个N区建立正偏的条件时,寄生的双极性晶闸管才开始发难。然而在严峻的动态条件下,因dv/dt通过相应电容引起的横向电流有可能足够大。此时这个寄生的双极性晶体管就会起动,有可能给MOSFET带来损坏。所以考虑瞬态性能时对功率MOSFET器件内部的各个电容(它是dv/dt的通道)都必须予以注意。   瞬态情况是和线路情况密切相关的,这方面在应用中应给予足够重视。对器件要有深入了解,才能有利于理解和分析相应的问题。 [1]
功率MOS场效应晶体管与双极型功率晶体管对比
功率MOSFET场效应管从驱动模式上看,属于电压型驱动,驱动电路的设计比较简单,所需驱动功率很小。采用功率MOSFET场效应作为开关电源中的功率开关,在启动或稳态工作条件下,功率MOSFET场效应管的峰值电流要比采用双极型功率晶体管小得多。功率场效应管与双极型功率晶体管之间的特性比较如下:  1. 驱动方式:场效应管是驱动,电路设计比较简单,驱动功率小;功率晶体管是电流驱动,设计较复杂,驱动条件选择困难,驱动条件会影响开关速度。  2. 开关速度:场效应管无少数载流子存储效应,温度影响小,开关工作频率可达150KHz以上;功率晶体管有少数载流子存储时间限制其开关速度,一般不超过50KHz。  3. 安全工作区:功率场效应管无二次击穿,安全工作区宽;功率晶体管存在二次击穿现象,限制了安全工作区。  4. 导体电压:功率场效应管属于高电压型,导通电压较高,有正温度系数;功率晶体管无论耐电压的高低,导体电压均较低,具有负温度系数。  5. 峰值电流:功率场效应管在开关电源中用做开关时,在启动和稳态工作时,峰值电流较低;而功率晶体管在启动和稳态工作时,峰值电流较高。  6. 产品成本:功率场效应管的成本略高;功率晶体管的成本稍低。  7. 热击穿效应:功率场效应管无热击穿效应;功率有热击穿效应。  8. 开关损耗:场效应管的开关损耗很小;功率晶体管的开关损耗比较大。 [2]
[引用日期]
[引用日期]【图文】场效应管及其基本放大电路_百度文库
两大类热门资源免费畅读
续费一年阅读会员,立省24元!
场效应管及其基本放大电路
大小:814.50KB
登录百度文库,专享文档复制特权,财富值每天免费拿!
你可能喜欢您所在位置: &
&nbsp&&nbsp&nbsp&&nbsp
MOS场效应管.doc 7页
本文档一共被下载:
次 ,您可全文免费在线阅读后下载本文档。
下载提示
1.本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
2.该文档所得收入(下载+内容+预览三)归上传者、原创者。
3.登录后可充值,立即自动返金币,充值渠道很便利
需要金币:150 &&
MOS场效应管.doc
你可能关注的文档:
··········
··········
MOS场效应管
即金属-氧化物-半导体型场效应管,英文缩写为MOSFET(Metal-Oxide-Semiconductor Field-Effect-Transistor),属于绝缘栅型。其主要特点是在金属栅极与沟道之间有一层二氧化硅绝缘层,因此具有很高的输入电阻(最高可达1015Ω)。它也分N沟道管和P沟道管,符号如图1所示。通常是将衬底(基板)与源极S接在一起。根据导电方式的不同,MOSFET又分增强型、耗尽型。所谓增强型是指:当VGS=0时管子是呈截止状态,加上正确的VGS后,多数载流子被吸引到栅极,从而“增强”了该区域的载流子,形成导电沟道。耗尽型则是指,当VGS=0时即形成沟道,加上正确的VGS时,能使多数载流子流出沟道,因而“耗尽”了载流子,使管子转向截止。
以N沟道为例,它是在P型硅衬底上制成两个高掺杂浓度的源扩散区N+和漏扩散区N+,再分别引出源极S和漏极D。源极与衬底在内部连通,二者总保持等电位。图1(a)符号中的前头方向是从外向电,表示从P型材料(衬底)指身N型沟道。当漏接电源正极,源极接电源负极并使VGS=0时,沟道电流(即漏极电流)ID=0。随着VGS逐渐升高,受栅极正电压的吸引,在两个扩散区之间就感应出带负电的少数载流子,形成从漏极到源极的N型沟道,当VGS大于管子的开启电压VTN(一般约为+2V)时,N沟道管开始导通,形成漏极电流ID。
国产N沟道MOSFET的典型产品有3DO1、3DO2、3DO4(以上均为单栅管),4DO1(双栅管)。它们的管脚排列(底视图)见图2。
MOS场效应管比较“娇气”。这是由于它的输入电阻很高,而栅-源极间电容又非常小,极易受外界电磁场或静电的感应而带电,而少量电荷就可在极间电容上形成相当高的电压(U=Q/C),将管子损坏。因此了厂时各管脚都绞合在一起,或装在金属箔内,使G极与S极呈等电位,防止积累静电荷。管子不用时,全部引线也应短接。在测量时应格外小心,并采取相应的防静电感措施。下面介绍检测方法。
1.准备工作
测量之前,先把人体对地短路后,才能摸触MOSFET的管脚。最好在手腕上接一条导线与大地连通,使人体与大地保持等电位。再把管脚分开,然后拆掉导线。
2.判定电极
将万用表拨于R×100档,首先确定栅极。若某脚与其它脚的电阻都是无穷大,证明此脚就是栅极G。交换表笔重测量,S-D之间的电阻值应为几百欧至几千欧,其中阻值较小的那一次,黑表笔接的为D极,红表笔接的是S极。日本生产的3SK系列产品,S极与管壳接通,据此很容易确定S极。
3.检查放大能力(跨导)
将G极悬空,黑表笔接D极,红表笔接S极,然后用手指触摸G极,表针应有较大的偏转。双栅MOS场效应管有两个栅极G1、G2。为区分之,可用手分别触摸G1、G2极,其中表针向左侧偏转幅度较大的为G2极。
目前有的MOSFET管在G-S极间增加了保护二极管,平时就不需要把各管脚短路了。
VMOS场效应管
VMOS场效应管(VMOSFET)简称VMOS管或功率场效应管,其全称为V型槽MOS场效应管。它是继MOSFET之后新发展起来的高效、功率开关器件。它不仅继承了MOS场效应管输入阻抗高(≥108W)、驱动电流小(左右0.1μA左右),还具有耐压高(最高可耐压1200V)、工作电流大(1.5A~100A)、输出功率高(1~250W)、跨导的线性好、开关速度快等优良特性。正是由于它将电子管与功率晶体管之优点集于一身,因此在电压放大器(电压放大倍数可达数千倍)、功率放大器、开关电源和逆变器中正获得广泛应用。
众所周知,传统的MOS场效应管的栅极、源极和漏极大致处于同一水平面的芯片上,其工作电流基本上是沿水平方向流动。VMOS管则不同,从图1上可以看出其两大结构特点:第一,金属栅极采用V型槽结构;第二,具有垂直导电性。由于漏极是从芯片的背面引出,所以ID不是沿芯片水平流动,而是自重掺杂N+区(源极S)出发,经过P沟道流入轻掺杂N-漂移区,最后垂直向下到达漏极D。电流方向如图中箭头所示,因为流通截面积增大,所以能通过大电流。由于在栅极与芯片之间有二氧化硅绝缘层,因此它仍属于绝缘栅型MOS场效应管。
国内生产VMOS场效应管的主要厂家有877厂、天津半导体器件四厂、杭州电子管厂等,典型产品有VN401、VN672、VMPT2等。表1列出六种VMOS管的主要参数。其中,IRFPC50的外型如图3所示。
下面介绍检测VMOS管的方法。
1.判定栅极G
将万用表拨至R×1k档分别测量三个管脚之间的电阻。若发现某脚与其字两脚的电阻均呈无穷大,并且交换表笔后仍为无穷大,则证明此脚为G极,因为它和另外两个管脚是绝缘的。
2.判定源极S、漏极D
由图1可见,在源-漏之间有一个PN结,因此根据PN结正、反向电阻存在差异,可识别S极与D极。用交换表
正在加载中,请稍后...

我要回帖

更多关于 mos管是不是场效应管 的文章

 

随机推荐