自然资源的分类启示350

参考文献:
上篇论文: 下篇论文:
400-675-1600 您现在的位置:&&>>&&>>&&>>&大自然的启示作文300字:蜘蛛的启示正文
大自然的启示作文300字:蜘蛛的启示
大自然的启示作文300字:蜘蛛的启示
作者/编辑:佚名
大的300字:蜘蛛的启示
在大自然中们给了我们许多启示,使现在我们的变得十分方便,。可我还是觉得,还有一些动物给了我们启示,但是我们没有发现它给我们什么启示,没有去发现它去创造它。其实,远在天近在眼前。
在我们的生活中,蚊虫是我们讨厌的。不仅叮我们,还偷吃我们的东西。怎样才能防止呢?其实,蜘蛛已经给了我们答案。它可以用蜘蛛网把蚊虫吸上去,我想跟据蜘蛛结网的原理,发名一种名叫蜘蛛网地毯的毛毯,《》()。
蜘蛛网地毯其实和蜘蛛网的原理是一样的,它们都可以把害虫吸在上面。蜘蛛网地毯还有三大好处,一、是可以消灭害虫、老鼠等有害物。二、色彩鲜艳以便用来装饰和部置房间。三、可以吸灰尘是吸尘器二代。
蜘蛛网地毯把害虫黏住后,它会开始慢慢消化。只需十秒,害虫老鼠全部都灰飞烟灭了。蜘蛛网地毯颜色繁多,样式齐全。颜色花绿绿的、还有大红大红的。它吸尘,只要被它铺到的区域的尘埃通通吸尽,只要三分钟家里就会变得一尘不染。
动物真是人类的好!希望你们能多多我们,让我们的生活更加方便,让科技更加发达。
东莞市莞长33号东华小学二校区张春灶
有稿费投稿,禁止转载。你也可以参加有稿费投稿
大自然的启示作文300字:蜘蛛的启示2    〖预览〗 给大自然的一封感恩信_感恩节的作文700字 敬爱的大自然: 我是你最忠诚的粉丝,这是我为你写的一封信。 一座座高山挺拔耸立,一条条河流川流不息。一根根大树拔地而起,一个个生命奇异诞生&&所有的所有,都是大自然鬼斧神工的创造,那超于万物的想象之力,太过让人震撼,自然,是你给了我一切的一切。 西藏西南部的珠穆朗玛峰,新疆北部天山与青海交界处的昆仑山,都是你一手拔起,是你让我们人类有&站得高,看得远。&是你让我们人类能够触摸那天空的蓝云。 汹涌的长江,惊骇的黄河,唯美黑龙江,富裕的珠江&&那是你身体的血脉,是你用你的血液,哺育着我们人类,哺育着所有生灵,我们要感谢您--大自然。 森林被誉为动植物的自然家园,也是你一手的神作。每天起床,打开窗户,深深呼一口气,那沁人心醉的氧气,为我新的一天提供活力。要是没有你的神作,那么世界将会覆灭,所有的生命将会化为虚无,一切的一切都离不开大自然的您。但是我们这些卑微的人类,却还未有珍惜你们的作品,砍伐森林,掠夺自然资源,为了自己的利益不顾世界的感受,我也只能默默哀念,或许有一天他们回头发现,他们留下来的,不止是世界的毁灭,还有那传承千古的罪名。 达尔文的《物种起源》正是为你而书写,解开的生物的来源,为人类的思……【】大自然的启示作文300字:蜘蛛的启示3    〖预览〗自然是什么?是&春眠不觉晓,处处闻啼鸟&的生机景象?&接天莲叶无穷碧,映日荷花别样红&的魅力?或者说是&千里冰封,万里雪飘&的壮观呢?我认为,好多景象处处都是,应该从学会发现景象,发现自然。自然是地球交给我们保护的,如果我们不注意环境的保护,未来将不再有清澈的湖水,茂盛的树林,更不会有小动物们的欢歌笑语。我想,每个人都注重环境卫生,少开车,多种树,不乱丢垃圾,地球会变得更好。我希望可以看到云层在空中飘渺,小鸟在天空翱翔,太阳公公普照着大地,湖水清澈见底,闪着光,草地时绿的,像摊子。几朵花像宝石似的镶嵌在绿毯上的美丽景象。这样五彩缤纷的景象是我最梦寐以求的。&最美的风景叫文明&,这样的广告语可不少,中国是个拥有5000年历史文化的国家,有着很多的名胜古迹,这些古迹正在被破坏,总有人在上边乱涂乱画,破坏那里的环境,总会有人在上面乱涂乱画,破坏那里的环境,应当杜绝这种行为的发生,让风景更加美丽,更让我们的地球&&我们共同的家园更加美好。有这样一幅图片,夕阳西下,湖水是黑色的,充满了&彩虹&般的油,一片片的与死在岸边,有的还在挣扎着,无数的水藻飘到岸边。原本生机勃勃的湖水已变得不堪一提……【】大自然的启示作文300字:蜘蛛的启示4    〖预览〗我们生活在一定的区域里,少不了的,不仅仅是生物,还有环境。人们自认为而今的生活平稳安乐,垃圾便随便乱丢。我想,如果再来阵风,轻轻地慰问过大街小巷,卷起的可不正是那北方的九月飞雪吗?纷纷洒洒似柳絮,但,雪终究不是真的,而人们也丝毫没有悔过。你难道没有听到鱼儿的凄厉的惨叫吗?绵长似蛇的河流盘踞于工厂附近。不过短短几日,河水变得漆黑。如墨一般,一映,仿佛可以了却人心,穿透贪婪。鱼儿翻腾着身子,露出白花花的肚皮,用尾鳍狠狠地拍打水面&&它们受够了这种生活!然而这有什么用呢?不过垂死挣扎罢了。你难道不曾仔细地看过,你脚下的土地,伤口反反复复地开裂?结痂后,泛滥的洪水,粗粝的沙石,又把她伤得体无完肤,血肉模糊。她孕育树木生灵,庇护飞鸟走兽。她曾经有着丰腴的身材,温柔慈爱的笑靥。她总是将甘露和光辉洒向众生,在人们入睡时编织一个个如雾似幻的梦。大地母亲&&不错,正是她。而今她已不同彼时,她日渐地消瘦着,人们砍伐树木&&她得忍受肌肤之苦;人们大肆开垦土地&&她的发丝变得干枯而脆弱。那么,今天你做到了不随手扔垃圾吗?做到了少使用一次性用具了吗?人类真矛盾,平时杀牛杀猪脸色都不会变,现在轮到自己了反而那么紧张。人类变成了寄生兽。人类拥有大脑,会独……【】大自然的启示作文300字:蜘蛛的启示5    〖预览〗   【母题解说】&&人与自然类   古人云:&大自然是人类的良师益友&。达芬奇说:&大自然是我们最好的老师。&爱默生说:&大自然满足了人类的一个崇高需求,即爱美之心。&一草一木,自然的美景,都被写进了华美的文章中,如《自然之歌》《春》等。山川湖泊,钟灵毓秀,无尽造化,鬼斧神工,令人惊叹,都被写入了经典的名着里,如《瓦尔登湖》《泰戈尔散文诗逊等。这些作品都让我们感受到了大自然的美。   一草一木皆世界,一草一木总关情。人们所赖以生存的自然,有自然环境,也有经过我们人工改造的人文自然。我们应该感恩自然,在自然的恩惠下,我们得到无穷的馈赠。我们每个人都应该带上一份对自然的责任,付出一个个保护自然的切实行动。近来来高考作文散文阅读在思想上直指&人与自然&这一主题,主要涉及三个话题:1、欣赏自然,表述自然之美。2、体悟自然,书写自然美景引发的人生感怀。3、敬畏自然,反思生态的恶化,呼吁人类善待万物。   【题目回顾】   陶渊明在&采菊东篱下,悠然见南山&的情境中觅得了闲适淡远;王维在&明月松间照,清泉石上流&的意境中找到了静谧空灵;朱自清在月下荷塘的朦胧之美中……【】大自然的启示作文300字:蜘蛛的启示6    〖预览〗生机勃勃的春天过去了,烈日炎炎的夏天来到了,夏天是万物生长的季节,各种声音是自然的音乐盒,像天天都在举行音乐会,仔细聆听那些声音你一定会感觉到它的美妙与神奇。  &哗啦啦,哗啦啦&这是什么声音?外面下起了倾盆大雨,那雨猛烈极了,霎时间,空中仿佛狂魔乱舞,从那灰蒙蒙的云中撒下千丝万线,雨还在下着,雨柱又如一排排利箭倾斜着射向地面,又像是美妙的音乐。大风&呼呼&得刮着,闪电雷声&轰隆隆&,像演奏着交响曲。大雨过后,太阳公公也露出了灿烂的笑脸,池塘里的荷叶上蹲着几只青蛙在欢快地&呱呱&地叫着,像为这极时雨而引吭高歌,接着&扑嗵,扑嗵&跳进池塘里。傍晚,草丛里便会传来阵阵清脆悦耳的鸣叫声,听!蟋蟀们又开在演唱会了!  大自然的声音还有很多种,小鸟在枝头上&叽叽喳喳&地唱歌,母鸡带着小鸡们参观外面的世界&咕咕&地叫着,这一切汇成了天籁之声!  大自然的声音,数也数不清,只要我们用心倾听,细心听,用心领会,你定会听到其中美妙的旋律。  用心听,用心去感悟,你的世界将会更加丰富多彩!大自然就是一位位音乐大师的聚会,在大自然这座音乐大厅里,我们可以听到如莫扎特《小夜奏鸣……【】大自然的启示作文300字:蜘蛛的启示7    〖预览〗   2008年高考,多道作文题在思想内涵上直指&人与自然&这一主题。比如江西卷的新材料作文,要求考生&为田鼠或田鼠的天敌代拟一封给人类的信&,显然是从&生态平衡&方面设题的;由重庆卷的&在自然中生活&,也容易想到&天人合一&的问题。又如全国卷二关于&海龟和老鹰&的新材料作文,中心非常明确:好心的游客对幼龟的帮助看似善举,实则违背了自然之道,启示人们务必遵循自然规律。   依据笔者的认识,&人与自然&类作文主要涉及三个话题。   1.欣赏自然,表述自然之美   《普通高中语文课程标准(实验)》指出:&自然风光、文物古迹、风俗民情,国内外和地方的重要事件,学生的家庭生活以及日常生活话题等都可以成为语文课程的资源。&由此,我们不难理解为什么各种版本的语文教材中都有大量自然风光类的文章了。我们生活在神奇而美丽的大自然中,自然界蕴含着各种美:动态美和静态美互相补充,阳刚美和阴柔美兼而有之&&我们不仅要将足迹留在山水里,还要用自己的彩笔描绘大自然的如画风光。   2.体悟自然,书写自然美景引发的人生感怀   着名……【】大自然的启示作文300字:蜘蛛的启示8    〖预览〗   一.写法导引   我们生活在大自然中,雄奇的山峰,广袤的原野,欢快的溪流,深沉的海洋,都会引起我们深思;朝晖夕阳,寒来暑往,花开叶落,鸟语虫鸣,都会引起我们遐想。在沉思和遐想中,我们会有所感悟。   一花一世界,大概意思都是说任何微物,放大了看,都可以看作一个广阔无垠的世界,从任何微物中都可以发现和得到安宁快乐高山无语,但阅尽世事沧桑;大海怒吼,却源自细流无声。鲜花绽放,枯叶凋零,金蝉脱壳,蜘蛛结网。   大自然的一山一水,一草一木,无不充满智慧,深蕴哲理,富有灵性。崇尚自然,亲近自然,感悟自然,我们的生活才会更加和谐,我们的情感才会更加丰富,我们的人生才会更加精彩!   二.话题解读   生活中并不缺少美,而是缺少发现美的眼睛和善于思考的头脑。   感悟自然就要从大自然中汲取营养,汲取科学的启示,人类因而走向更美好的未来。   朱熹诗云:&半亩方塘一鉴开,天光云影共徘徊。问渠那得清如许,为有源头活水来。&朱熹从半亩方塘的清澈而想到源头活水,由此感悟出了人生的哲理。同学们在生活和学习中,面对大自然的绚丽多彩和千变万化,联系到自己的人生经历,也一定会发出许多感慨,得到许多人生的哲理。   比如以花开花落为例:含苞欲放时,你能感悟到花朵的勃勃生机,感悟到要从小树立远大的理想,准备着将来为国家为……【】
  〔大自然的启示作文300字:蜘蛛的启示〕
  大自然的启示作文300字:蜘蛛的启示所属栏目:〖 尚无数据〗
  “大自然的启示作文300字:蜘蛛的启示”相关:
  〖〗链接地址:
  读后感提供的大自然的启示作文300字:蜘蛛的启示由网友原创或转发,若大自然的启示作文300字:蜘蛛的启示侵犯了您的权益,请与本站联系,谢谢!
上一篇作文范文: 下一篇作文范文:
大自然的启示作文300字:蜘蛛的启示相关作文范文Sustainable Development 可持续发展, 9-158 http://dx.doi.org/10.12677/sd.
Published Online October 2012 (http://www.hanspub.org/journal/sd.html) International Research Advance of Industrial System Ecologization and Its Reflection* Yiping Fang Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu Email: ypfang@, ypfang2004@yahoo.ca
Received: Jul. 2nd, 2012; revised: Jul. 26th, 2012; accepted: Aug. 5th, 2012
Abstract: In line with the feature of industry’s configurator of resource, as well as controller of pollutants discharge, it is of significant importance to shift from an open loop system of “resource-product-waste” to a closed loop system of “resource-product-waste”, especially in coordin ation between industrial symbiosis and the environment, and in sustainability of industrial system. Based on the impact of industrial activities on natural ecosystem, the idea of industrial ecology has formed gradually since 1980s; therefore, the research of industrial system-based ecology is expanding continuously in international academic society. This paper summarizes the international research advances and orientations in six aspects, including industrial ecology and practical tools, ecological efficiency of industrial system, emergy analysis of industrial system, risk and vulnerability of industrial system, ecological stimulation of industrial system, cleaning and sustainability of industrial system. And author provides twofold of research reflections, which are strategically shifting from “adjustment” to “adaptation” of industrial system in research perspective, shifting from “simplicity” to “in-tegrity” in discipline base.
Keywords: Industrial S E Research A Reflection 工业系统生态化研究的国际态势 及其启示* 方一平 中国科学院成都山地灾害与环境研究所,成都 Email: ypfang@, ypfang2004@yahoo.ca
收稿日期:2012年7月2日;修回日期:2012年7月26日;录用日期:2012 年8月5日
要:根据工业既是资源配置器,又是资源消耗和污染物产生的控制体这一特征,在过程上促进从“资源–产品–废弃物”的开环流程到“资源–产品–资源”的闭环流程的转换,对产业共生关系和环境协调,促进工业系统的可持续发展具有重要意义。针对工业活动对自然生态系统的影响,20 世纪80 年代末逐步形成了工业生态学(IE)的思想,20 世纪 90 年代以来,国际学术界对工业系统降低环境影响、提高生态化水平的调控研究不断拓展,文章从工业生态学理论和应用工具、工业系统生态效率、工业系统能值、工业系统风险和脆弱性、工业系统生态模拟、工业系统绿色化和持续性管理等 6个方面的研究进展进行了梳理和总结,在此背景下,获得了工业系统生态化研究的战略视野由“调整”转向“适应”、工业系统生态化研究的学科基础由“单一”转向“综合”的重要启示。
关键词:工业系统;生态化;国际研究进展;启示
*基金项目:国家自然科学基金项目(No. )资助。 Copyright & 2012 Hanspub 149
工业系统生态化研究的国际态势及其启示 Copyright & 2012 Hanspub 150
1. 引言 针对工业活动对自然生态系统的影响[1],20 世纪80 年代末逐步形成了工业生态学(IE)的思想,20世纪90 年代以来,国际学术界对工业系统降低环境影响、提高生态化水平的调控研究不断拓展,形成了工业生态学理论工具、工业系统生态效率、工业系统能值、工业系统脆弱性、工业系统生态模拟、工业系统持续性管理等 6个方面的研究内容和方向。 2. IE理论和应用工具研究 工业生态学(IE)理论涉及领域主要包括概念、对象方法等[2-9]。1995 年B. Allenby和T. Graedel[9]出版了第一部 IE 专著,形成了与物质、能量、信息流相关的概念及生态、经济系统相互耦合的思想。R. Lifset和T. Graedel[10]将工业生态学领域的核心要素归纳为6个方面:生物类比(The Biological Analogy)、使用系统观(The Use of System Perspectives)、技术变化的作用(The Role of Technological Change)、公司的角色(The Role of Companies)、低物质化和生态效率(De- mariterialisation and Eco-Efficiency)、超前的研究和实践(Forward Looking Research and Practice)。J. Korho- nen[11]利用K. H. Robert等[12]人的研究框架,将 IE概念和原理进行了有效结合;P. H. Templet[13]创建了表达工业系统物质能量和产品、服务间的数量关系工具,突出了工业的系统属性、多样性和结构特性;T. E. Casavant 和R. P. C&t&[14]将理学分析方法与工具引入工业生态分析,强调自然与社会科学工具在工业系统应用中的互补性。在工业生态学理论的应用方面,国际上呈现出极其明显的两个方向:一是基于产品的系统研究(Product-Based Systems Approach),该类研究关注产品的影响,考虑生命周期过程,测度物质、能量与相关企业、过程、产品的输入输出关系,为工业系统运行管理和政策开发提供有用的信息;二是基于地理的系统研究(Geographical Systems Approach),该类研究惯于关注工业企业和参与机构在地理空间上的集聚,通过物质、能量以及副产品交换等紧密合作关系形成工业生态系统[15-17]。从基于产品系统方向看,工业生态学理论的应用主要集中在包括企业、工业部门、服务领域等在内的生命周期评价(Life Cycle As- sessment,LCA),即从原料、生产、废物管理整个生 命过程视角来评估潜在的环境影响和资源利用,由于考虑了自然、人类健康、资源的综合属性以及各个方面,自1990s 年代以来,LCA 工具得到广泛应用,其中较为典型的包括:UNEP/SETAC(环境毒性与化学协会)的生命周期倡议(Life Cycle Initiative),欧盟委员会的LCA 平台(The European Platform for LCA of the European Commission)(2007),国际生命周期数据参照系统(International Reference Life Cycle Data System,ILCD),以及欧盟生命周期分析革新的第 6合作行动框架(EU 6th Framework Co-Ordination Action for In- novation in Life Cycle Analysis for Sustainability,CALCAS,2009)等[18]。G. Finnveden等[18]总结了 LCA研究从目标界定、生命周期清单、生命周期影响评估到现象和结果解释四个发展阶段,为进一步理解 LCA方法的优劣势,深化 LCA 方法的应用奠定了很好的基础。从地理系统研究趋向看,工业生态学理论最重要的应用形式之一在于生态工业园区(Ecological In-dustrial Parks,EIPs)的建设,EIPs 的建设已经深入到世界的许多发展中国家和发达国家,在新的发展条件和形势下,D. Sakr等[19]根据全球 EIP 的发展现状和趋势,基于全球视野,从共生商业关系(Symbiotic Business Relationship)、经济附加值(Added Economic Value)、意识和资源共享(Awareness and Information Sharing)、政策和规制框架(Policy and Regulatory Framework)、组织和制度设置(Organization and Insti- tutional Setups)、技术因素(Technical Factors)、能力均衡(Balance between Capabilities)等7个方面对世界 EIP发展的成功因素和限制因子进行了总结,为未来工业生态学建设和生态工业园区发展指明了方向。产业共生(Industrial Symbioses,ISs)则是工业生态学理论应用的另一个重要领域,体现了工业部门、相关企业在产品生产、废物利用、能源共享等方面可能存在的合作以及地理相近性,依据工业生态学理论开展 ISs 的研究也十分广泛[20-27],按照以上诸多学者的观点,产业共生从长期的经济利益关系中建立了合作伙伴关系,与此同时,各方创造了包括生产、经济等利益,企业通过能源串联、副产品多级利用等降低了交通成本、生产成本以及产品的市场价格[27]。实际上,在全球尺度,联合国环境署(UNEP)[28,29]已经把EIPs 和ISs 的开发建设作为持续生产系统的有力工具,早在 1997 年,
工业系统生态化研究的国际态势及其启示 [53]、食品[54-56]、纺织[57]、化工[58]、矿产冶金与金属加工[59-62]、建 材 [63,64]等。区域应用方面的研究代表包括:P. Mickwitz等[65]、D.
Z. Li等[66]学者对区域和城市水平生态效率应用研究,N. Jollands等[67]对新西兰、S. Erkko[68]对芬兰、R. L. Burritt和C. Saka[69]对日本、R. C&t&[70]对加拿大、Y. Zhang和Z. F. Yang[71]对中国深圳、R. van Berkel[72]对澳大利亚、M. B. Fern&ndez-Vi&&等[73]对委内瑞拉等国家和地区的生态效率评估。 UNEP 就发布了工业园区环境管理技术报告,并为已有园区和新的工业园区建设提供了重要导向[27]。 3. 工业系统的生态效率研究 1989 年以来,许多研究机构界定了生态效率的概念,包括乌帕塔尔(Wuppertal)研究所和世界可持续发展工商理事会(WBCSD)[30],在生态经济研究文献中,生态效率被定义为价值增量与环境破坏增量之间的比率[31]。基于联合国 2002 年世界峰会工作报告,2005年芬兰发起了持续生产和消费战略项目(Commission for Sustainable Consumption and Production (KULTU Commission) 2005),该项目的核心目标就是通过生产链提高物质效率(Material-Efficiency)和生态效率(Eco- Efficiency)[27]。许多学者则利用不同的技术方法,对工业系统生态效率进行了多角度的评估和分析研究,最具代表的方法和途经包括:过程综合[32]、火用分析[33-35]、物质流分析[36]、输入输出分析[37-40]、数据包络分析(DEA)[41]等,还有 T. Van Gerven等[42]、C. Block等[43]通过 6个关键生态效率分值,对工业部门的环境和经济综合绩效分析提出了 9个方面的指标。S. Wursthorn 等[44]从工业门类角度,划分了致癌影响(Carcinogenic Effects)、呼吸影响(Respiratory Effects)、气候变化(Climate Change)、臭氧层破坏(Ozone Layer Depletion)、生态毒性(Ecotoxicity)、酸雨化(Acidi- fication)、富营养化(Eutrophication)7类99个生态指标,详细地描述了德国工业各个部门内部的环境–经济绩效状态。尽管相关概念和指标有所差异,但均涵盖了工业系统低物质化、增加资源生产力、减少物质排放毒性、延长产品寿命的核心特质[30,45-47],由于生态效率分析方法容易调查,相关数据的获取较为简便,这些指标和方法的主要目标均体现了以系统的、综合的、协调的方式为工业系统环境绩效、经济绩效提供有用的信息,是工业系统环境和发展协调研究的重要工具[48]。另一个与工业系统生态效率关联的重要概念和方法是“解耦”(decouping)分析[48-50],解耦意味着工业系统的环境影响弱于经济绩效,即环境影响的提高和降低程度要比经济绩效的增减程度小[48],近年来工业系统环境与经济的解耦研究日趋增加。生态效率的应用方面突显了不同工业行业、不同区域研究内容的扩展和延伸[51,52],在工业行业方面,主要包括造纸 4. 工业系统的能值研究 1986 年Odum[74]首次提出能值(Emergy)这一用词(取用 Embodied 和enERGY 的前后缀),1997年Brown和Ulgiati 利用资源再生性、能值指标评估整个经济系统的持续性[75,76]。许多学者借助能值量化社会经济系统资源、服务、商品、甚至信息,评估系统的环境绩效,为社会经济系统的持续性提供适用框架[77-84 ]。H. H. Lou 等[85]利用扩展的能值方法分析了工业生态系统在不确定性条件下的环境和经济优化问题。在工业园区层次上,L. M. Wang[86,87]和Y. Geng等[88]分别将能值方法应用于工业园区的能源利用以及环境绩效和持续性分析,从园区尺度上提出了能值基础的系列评价指标,架起了园区工业系统和生态系统连接的桥梁,他们还以苏州生态工业园区、大连经济开发区等为实证对象,讨论了能值方法在园区层次应用的优劣势,他们认为,尽管该方法对数据要求较高,数据收集的难度也较大,但对于关注工业园区生态问题的管理者和行政主管者来说,能值法仍然是评估园区综合效率的有效工具。X. H. Zhang等[89]同样利用能值方法,评价了废物交换对四川省攀枝花市硫酸生产系统(SAPS )和二氧化钛生产系统(TDPS)两类工业系统持续性的影响,他们的研究表明,尽管两类系统有所差异,但废物交换明显促进了两类系统的持续性,这类研究为工业系统废物资源化,降低对自然系统环境压力带来了新的视野。类似的研究还包括 H. F. Mu等[90]对能值指标的细分,开发了工业持续性的能值评判指标,并利用环境负荷率(Environmental Loading Ratio,ELR)、能值产出率(Emergy Yield Ratio,EYR)、能值持续性指数(Emergy Index of Sustainability,EIS)等不同的能值标准指标评估工业系统的持续性水平,这些指标能够较好地反映复杂系统的结构、功能,定量分析人与Copyright & 2012 Hanspub 151
工业系统生态化研究的国际态势及其启示 自然关系效应,尤其是在工业系统的废物再利用、资源恢复和科学管理方面体现了能值分类指标的优越性。B. Zhang等[91]利用能值方法测算了我国工业自1997年至 2006年期间化石能源、矿产资源、农产品资源、进口材料等资源输入的变化,他们研究认为,在过去的 10 年内,我国工业系统的资源输入呈稳步上升趋势,不过单位工业增加值的资源投入密度呈下降趋势,总体上,目前我国工业发展主要沿用不可再生资源投入的增加、资源密集生产扩展、巨大环境压力的开发模式。 思路,在双尺度评估系统中,从厂级尺度、区域集群尺度设计了系列风险预警指标,在企业尺度,构建诸如灾害物质、关键设备运行、外部环境技术效率等评判指标,在区域尺度,量化环境、经济、社会条件、特殊的企业要素等关联的风险指标,并对江苏省 5个化学工业集群进行了案例分析。 5. 工业系统的风险和脆弱性研究 6. 工业系统的生态模拟研究 工业系统的生态模拟是工业生态学理念转向实践的重要路经,诸多学者对此展开了积极探索。以 J. Korhonen 为代表对工业生态系统实现条件进行了探索[97-99];C. Hardy和T. Graedel[100]以生态系统食物网作为切入点,分析了 19 个生态工业园区食物网系统,通过实证研究大大加深了对工业生态系统的理解;P. Desrochers[101]将工业链作为研究视角,开展工业生态系统和区域发展透视分析,论述了生产过程与工业链的关系;J. S. Baldwin[102]将工业生态系统与自然生态系统进行比拟,在他的研究中,强调了工业系统发展的系统结构和组织特征。C. H. Huo和L. H. Cai[103]依据生态工业系统的最大流原则(MFP),利用密度函数以及神经网络方法,对生态工业系统的形成和进化机制进行了理论分析,并利用自组织特征的人工神经网络模型对卡伦堡和中国鲁北两个生态工业园区案例进行了模拟,研究不仅发现了生态工业的结构增长模式,而且模拟研究大大加深了生态工业模式进化的理解,为生态工业园区设计、改进、内部结构保护提供了新的启示。近年来,随着复杂适应系统(Complex Adaptive System)概念的出现,基于 Agent 建模(Agent- Based Modeling,ABM)方法在生态工业园区中的应用较为广泛,一般而言,复杂适应系统是基于系统内部之间以及系统内部和环境之间相互作用出现的复杂行为,即对环境变化的适应行为[104],复杂适应系统的核心理论是适应性创造了复杂性,由于生态工业系统是大量工厂自决策、相互作用、相互共生和耦合的进化结果,是较为典型的复杂适应系统[105],基于此,利用计算机技术进行多主体(Agent)的仿真方法在生态工业园区研究中得到应用,如 Z. Zhou[105]从工厂主体、消费者主体、环境主体将生态工业系统划分为三个层次。K. Cao等[106]利用ABM 模型,探讨了生态工业系统演进过程,指出通过园区工厂的共生、副产品的利 近年来,脆弱性概念逐步被应用于工业系统相关的研究领域[92,93]。尽管脆弱性的概念目前还没有统一的定义,但往往与风险概念相联系,Einarsson 和Rausand[93]详细讨论了复杂工业系统内部、外部脆弱性的影响因素,分析了工业系统脆弱性和风险之间的联系和差异,初步建立了工业系统脆弱性分析和研究的框架。此后,Y. Perrodin等[94]从问题形成阶段、暴露特征阶段、影响特征阶段、最后风险阶段等风险评估研究的不同发展阶段,对工业系统的生态风险进行了系统梳理和综述,提出了未来工业系统生态风险评估应关注不同学科的交叉、优化不同模型的界面,提高不同方法的兼容性等重要研究方向。S. Anderson和B. A. Mostue[95]将风险分析和风险管理方法应用于挪威的石化工业,研究指出,针对工业综合运行(Inte- grated Operation,IO)概念而言,需要寻求其它的风险分析途径;针对人和组织问题,需要建立适当的评估方法,因为工业对技术设计问题的关注趋势十分明显,而影响主要事故风险的 IO 因素则主要是与人和组织相关的问题;针对风险评估过程而言,需要开发基于恢复的运行方法,强调日常工作的监测(Monitoring)、预期(Anticipating)、响应(Responding)以及认识(Learning);IO 概念为风险管理过程的改进提供了组织和技术两个方面的机会,包括日常工作风险分析流程的改进、风险评估在日常规划中的实际应用、与分析师和硬件安装机构的紧密沟通、技术方案在风险分析中的利用等,均体现了利用IO 来促进风险管理每一过程的思路。在L. Huang等人[96]的研究中,提出了双尺度系统评估化学工业集群环境风险的 Copyright & 2012 Hanspub 152
工业系统生态化研究的国际态势及其启示 Change 等[113]、L. C. Roca等[122],在 D. S. Change等[113]学者的研究中,从工业企业持续性尺度,采用 DEA方法对 16 类工业效率进行赋分,以此评估工业持续性的综合水平;L. C. Roca等[122]人的研究,从2008年加拿大94 个可持续发展报告,585 个不同指标中,深入分析和系统总结了加拿大各产业领域企业持续性指标的应用情况,与此相类似,从工业企业方面,许多研究者使用工业企业环境绩效来测度公司或厂矿的持续性绩效[123-128] , 在环境绩效的研究方面,有些学者还强调了企业的社会责任[127,129]。在工业持续性研究的趋势方面,K. Fischer等[130]则认为工业绿色化是工业环境地理学的研究方向,描绘了千年工业绿色网络的蓝图,将工业清洁生产、绿色生产作为关键要素开拓工业生态化新途径;U. Diwekar[131]立足传统过程向绿色过程的转变,分析工业持续性的前景、重要方向;J. Plaut[132]、H. Strebel和A. Posch[133]依据贸易和环境关系,大大开拓了工业持续性宏观管理的研究视野;在 J. S. Baldwin等[134]的研究中,则更加关注新技术和实践过程的效果,探究工业系统持续和非持续之间的本质差异,突出了新技术研究在工业持续性方面的作用、地位和方向。 用、创建新的产业链可以提升园区的持续性,内流能值(Internal-Flow Emergy,IFE)的增加可以作为生态工业系统演进方向的重要指标。C. H. Liu 等[107]围绕区域工业生态系统发展的边界障碍是什么?什么因素限制了区域工业生态系统的发展?怎么能够超越边界较好地促进工业生态系统的形成等关键问题展开了工业生态系统构建的讨论,从案例分析的角度,指出了政府对园区企业共生关系、消除部门边界障碍,促进工业生态系统成型的作用。 7. 工业系统的绿色化与持续性管理研究 工业持续性管理研究主要涵盖工业持续性的指标体系、模型、设计、评估、管理以及工业对环境压力的认知和响应等方面,如 A. Azapagic[108]、J. De- wulf[109]和IChemE[110]、L. Sokka等[111]、S. Pakarinen等[112]学者和机构对工业持续性指标的研究,从指标的构建方法上,主要包括状态–压力–响应模型、生态足迹、可持续性晴雨表(Barometer of Sustainability)、环境持续性指数等[113],持续性绩效指标、生命周期指标、持续性社会指标、环境脆弱性指数、福利指数等[114]。从指标的构建内容上,主要涵盖产业共生系统不可再生资源(金属循环、废物和副产品利用、化石能源使用)、废物排放(化学物质的限制排放量、灾害物质的排放量、废弃物排放量、废物处理和循环)、土 地 利用(森林资源开发、土地消费活动)、人类健康、生物多样性、区域社会持续性等度量指标[112,115],有些学者还从反映工业进步、社会贡献、环境管理、经济绩效等角度,对制造业竞争能力、就业贡献、环境保护和市场占有系数等进行持续指标的构造[116]。从工业行业方面,P. K. Singh等[117]为钢铁工业开发了综合持续性绩效指数方法,该方法从经济、环境、社会、技术以及组织管理 5个维度进行了考虑;另外,A. Azapagic [118]为矿产开采和加工业建立了持续性指标体系,L. Stamford 和A. Azapagic[119]在强调技术经济、环境和社会持续性问题的同时,选择了 43个指标,对英国电力工业进行了持续性评估。近年来,比较明显的国际发展趋势是,工业持续性研究进一步向更加微观的企业层次拓展,企业持续性(Corporate Sustainability)是目前文献常见的行业术语[120],实际上,许多学者将可持续发展应用到了企业层次,如R. Gr ay[121]、D. S.
8. 两点启示 从工业系统生态化研究的国际趋势和动向看,我们可以获得以下两点启示。 8.1. 工业系统生态化研究的战略视野由 “调整”转向“适应” 从国际研究现状和趋势看,关于工业生态化的很多研究大都围绕生态化评价、生态化模拟、生态效率以及调控管理展开的,当今区域生态调控的主流思想是以生态系统平衡为基本理念,以平衡管理与控制为目标指导区域生态系统发展,调控区域生态系统的演替。由于生态系统的复杂性、有限的可预测性,使得以平衡管理与控制的手段在解决一些区域性生态问题,遇到了难以解决的理论与实际问题。二十世纪90年代以来,出现了以生态系统恢复力为管理目标的生态系统适应性模式,使管理复杂的、难以预测的区域生态系统演替与发展有了新的理论与方法。从生态学演进趋势及启示看,自然进化已延续 350 亿年,现存 Copyright & 2012 Hanspub 153
工业系统生态化研究的国际态势及其启示 生态系统体现了生态系统总体功能有效性以及适应外部环境变化的能力,自然生态系统的这种演进规律,可应用于工业系统的环境管理[1,107,135-137],利用自然生态系统的功能模仿人造系统的进化对工业系统来说是一种必然趋势,这将极大地促进工业系统向更为持续的方向发展[136,138,139]。可变、适应、自然选择是生态系统进化的重要机制,工业系统同样体现了类似的特征,然而,目前工业系统的生态适应性还远没有充分得到关注和理解,这将是生态系统进化论在工业系统适应性研究中的重要目标和任务[136]。适应性源于进化生态学,包含从单个有机体到整个生态系统的适应尺度,在社会经济领域,被认为是人造系统对环境灾害和人类脆弱性的反应[140]以及对新的、正在改变的生态环境的应对潜力[141]。由于工业系统的复杂性及过程性,工业系统的生态化需要从调整和适应双重角度开展研究,关于工业系统生态化的调整,一直是许多学者关注的焦点,诸如工业系统的生态效率、能值、脆弱性、生态模拟、持续性管理以及生态化模式构建和实现途经研究等均突出了影响、评估和调整研究内涵及其维度,而调整的核心是采用命令到控制(Command-to-Control)的路径,尽管调整是实现工业系统生态化的重要手段,但空间有限[142],为此,工业系统的生态化问题需要从影响评估、调整研究向适应优先转化,从自然角度保护工业系统(适应性),而不仅仅从工业系统角度保护自然(影响评估和削减)。从工业系统演进趋势及启示看,自从第一次工业革命以来,在核心技术、生产组织方法、社会发展影响下,全球的工业生产系统通过截然不同的发展阶段得到进化[143],而工业生产系统转向生态工业系统,需要战略性的生态位管理路径来实现。从历史看,工业生产系统转化是背景要素和社会结构和制度进化、经济变量和技术需求相互作用的结果,这是决定工业系统生态适应能力的必然要素和变化趋势[143]。 究对象,但对工业系统的生态重组和构建达成一种共识:工业活动和自然环境之间的关系不是截然不同的对立,而是柔性的、渐变的和有缓冲空间的。这种有层次的时空关系表现在“适应”层面上,使工业系统环境和自然环境之间的关系以“适应”为准绳,这种柔性促进了学科之间的多界面交结,从工业生态学发展看,作为以工业生态群落理论、工业代谢理论、工业生态重组理论、工业系统进化理论为基础的工业生态学科发展的新方向、新途经,工业系统的生态化研究更多地涉及以物质减量、清洁生产等物质形态环境,由于工业集聚和布局的核心基础是空间配置,空间环境的影响也是影响工业生态适应的关键,而且这一问题不断受到关注,这些物质形态环境通过各种管理策略的制定来实现工业生态所追求的目标和价值。根据工业既是资源配置器,又是资源消耗和污染物产生的控制体这一特征,在过程上促进从“资源–产品–废弃物”的开环流程到“资源–产品–资源”的闭环流程的转换,对产业共生关系和环境进行协调,从而使工业系统更加适于产业经济可持续发展。所以,从工业生态学这一新兴学科看,工业系统的生态化研究将有效促进工业生态学科由生态重组诸要素调控、整理,向开放、主动追求工业系统与所处环境高效和谐共存的趋势发展,并更加鲜明地体现多学科交叉性、综合性、集成性的特点和优势。 从地理学发展趋势看,在宏观层面上的综合集成、孕育和滋生统一地理学的同时,微观层面的深化依然是学科发展的主流和学科前沿的集中领域[144];方法上,综合集成是解析人地关系复杂巨系统问题的有效手段,地理学面对的“人地关系地域系统”是一个非常复杂的系统,在地理学学科建设过程中“综合性”即利用系统观和整体观研究地理环境,始终是地理学最高层面的科学难点问题,技术方法层面也没有取得实质性的突破[144-146],新世纪地理学应在综合研究上要有所提高,有所突破[147];内容上,经济全球化和全球环境变化的区域合成研究、区域生态经济理论与可持续发展模式研究、不同空间尺度区域人地关系优化调控与适应途径研究等是未来地理学,尤其是人文地理学的重要研究领域和方向,而工业系统的生态化和适应,正是从多学科综合交叉和多种技术手段综合实践的战略阵地,以工业系统为切入点,以生态适应为 8.2. 工业系统生态化研究的学科基础由 “单一”转向“综合” 关于工业系统的生态化研究,涵盖了包括生态学、地理学、化学、经济学、管理学等各个学科、各个领域的专家学者,而各个学科在针对工业生态化的研究过程中,虽然有不同的研究角度、研究背景和研 Copyright & 2012 Hanspub 154
工业系统生态化研究的国际态势及其启示 视角,以区域发展为主线,开展区域人地系统动态优化调控的示范、集成整合研究[144],在此过程中,人文地理学应具有重要责任,发挥重要角色。随着工业化的推进,工业发展与自然生态系统的内在关联愈加密切,与自然生态系统的相互作用愈加强烈,探索工业系统生态化和适应性,是对工业系统承受外部环境变化能力、应对生态风险潜能、协调人–地关系的规律认识,也是对社会经济阶段和技术发展水平的轨迹映射,而认知的理论基础需要地理学、生态学、经济学等多学科的高度综合。 参考文献 (References) [1] D. Hall. Industrial harm to an ecological dream. Corporate En-vironmental Strategy, ): 379-387. [2] D. Frosch, N. Gallopoulos. Strategies for manufacturing. Sci- entific American, ): 94-102. [3] H. Tibbs. Industrial ecology: A new environmental agenda for industry. Global Business Network, 1993.
http://www.bfi.org/pdf/gbn_ecology.pdf [4] R. U. Ayres, L. Ayres. Industrial ecology-towards closing the materials cycle. Cheltenham: Edward E 0. [5] S. Erkman. Industrial ecology: A historical view. Journal of Cleaner Production, -2): 1-10. [6] M. R. Chertow. Industrial symbiosis: Literature and taxonomy. Annual Review of Energy Environment, 3-337. [7] F. den Hond. Industrial ecology: A review. Regional Environ- mental Change, ): 60-69. [8] J. Korhonen, D. Huisingh and A. S. F. Chiu. Applications of industrial ecology—An overview of the special issue. Journal of Cleaner Production, -10): 803-807. [9] T. E. Graedel, B. R. Allenby. Industrial ecology (second edition). 北京: 清华大学出版社, 2004. [10] R. Lifset, T. Graedel. Industrial ecology: Goals and definitions. In: R. U. Ayres, L. W. Ayres, Eds., A Handbook of Industrial Ecology, Cheltenham: Edward Elgar, 10. [11] J. Korhonen. Industrial ecology in the strategic sustainable de-velopment model: Strategic applications of industrial ecology. Journal of Cleaner Production, -10): 809-823. [12] K. H. Robert, B. Schmidt-Bleek, J. A. de Larderel, et al. Strate- gic sustainable development—Selection, design and synergies of applied tools. Journal of Cleaner Production, 7-214. [13] P. H. Templet. Partitioning of resources in production: An em- pirical analysis. Journal of Cleaner Production, -10): 841-853. [14] T. E. Casavant, R. P. C&t&. Using chemical process simulation to design industrial ecosystems. Journal of Cleaner Production, -10): 901-908. [15] J. Korhonen. Two paths to industrial ecology: Applying the product-based and geographical approaches. Journal of Envi- ronmental Planning and Management, -57. [16] R. Ayres, L. Ayres. Industrial ecology: Towards closing the materials cycle. Cheltenham: Edward Elgar, 1996. [17] D. Giurco, B. Cohen, E. Langham and M. Warnken. Backcasting energy futures using industrial ecology. Technological Forecast-ing and Social Change, ): 797-818. [18] G. Finnveden, M. Z. Hauschild, T. Ekvall, J. Guinee, R. Hei- jungs, S. Hellweg, A. Koehler, D. Pennington and S. Suh. Re- cent developments in life cycle assessment. Journal of Envi- ronmental Management, ): 1-21. [19] D. Sakr, L. Baas, S. El-Haggar and D. Huisingh. Critical success and limiting factors for eco-industrial parks: Global trends and Egyptian context. Journal of Cleaner Production, ): . [20] M. Chertow. Industrial symbiosis: Literature and taxonomy. Annual Review of Energy and the Environment, 3- 337. [21] M. Chertow. “Uncovering” industrial symbiosis. Journal of Industrial Ecology, ): 11-30. [22] P. Desrochers. Industrial symbiosis: The case for market coor- dination. Journal of Cleaner Production, -10): 1099- 1110. [23] N. B. Jacobsen. Industrial symbiosis in Kalundborg, Denmark— A quantitative assessment of economic and environmental as-pects. Journal of Industrial Ecology, -2): 239-255. [24] M. Mirata, T. Emtairah. Industrial symbiosis networks and the contribution to environmental innovation: The case of the Land- skrona industrial symbiosis programme. Journal of Cleaner Production, -11): 993-1002. [25] O. Salmi. Eco-efficiency and industrial symbiosis e a coun- terfactual analysis of a mining community. Journal of Cleaner Production, ): . [26] R. van Berkel, T. Fujita, S. Hashimoto and Y. Geng. Industrial and urban symbiosis in Japan: Analysis of the Eco-Town pro- gram . Journal of Environmental Management, 2009, 90: . [27] S. Lehtoranta, A. Nissinen, T. Mattila and M. Melanen. Indus- trial symbiosis and the policy instruments of sustainable con- sumption and production. Journal of Cleaner Production, 2011, 19(16): . [28] United Nations Environment Programme. The environmental management of industrial estates. Paris: Industry and Environ- ment Technical Report No. 39, 1997. [29] United Nations Environment Programme. Planning for change: Guidelines for national programmes on sustainable consumption and production, 2008. [30] M. Braungart, W. McDonough and A. Bollinger. Cradle-to- cradle design: Creating healthy emissions—A strategy for eco- effective product and system design. Journal of Cleaner Pro- duction, 37-1348. [31] M. Kortelainen. Dynamic environmental performance analysis: A Malmquist index approach. Ecological Economics, 2008, 64(4): 701-715. [32] M. El-Halwagi, M. Noureldin. Pollution prevention targets through integrated design and operation. Computers and Che- mical Engineering, -7): . [33] O. Ozdogan, M. Arikol. Energy and exergy analyses of selected Turkish industries. Energy, -80. [34] Y. Li, S. Y. Hu, D. J. Chen and D. W. Zhang. Exergy analysis on eco-industrial systems. Science in China: Series B Chemistry, ): 281-288. [35] M. T. Oladiran, J. P. Meyer. Energy and exergy analyses of en-ergy consumptions in the industrial sector in South Africa. Ap-plied Energy, ): . [36] C. Sendra, X. Gabarrell and T. Vicent. Material flow analysis adapted to an industrial area. Journal of Cleaner Production, 06-1715. [37] Y. P. Fang, H. Z. Zhou. Value flow analysis based on EAP in-dustrial chain: Case of Huaning in Xichang, Sichuan. Journal of Cleaner Production, ): 310-316. [38] R. Bailey, J. K. Allen and B. Bras. Applying ecological input- output flow analysis to material flows in industrial systems. Part I. Tracing flows. Journal of Industrial Ecology, ): 45- 68. [39] R. Bailey, B. Bras and J. K. Allen. Applying ecological input- output flow analysis to material flows in industrial systems. Part II. Flow metrics. Journal of Industrial Ecology, ): 69- 91. [40] R. Bailey, B. Bras and J. K. Allen. Measuring material cycling in industrial systems. Resources, Conservation and Recycling, ): 643-652. Copyright & 2012 Hanspub 155
工业系统生态化研究的国际态势及其启示 [41] B. Zhang, J. Bi, Z. Y. Fan, Z. W. Yuan and J. J. Ge. Eco-effi- ciency analysis of industrial system in China: A data envelop- ment analysis approach. Ecological Economics, 6- 316. [42] T. Van Gerven, C. Block, G. Geens, C. Cornelis and C. Van- decasteele. Environmental response indicators for the industrial and energy sector in Flanders. Journal of Cleaner Production, ): 886-894. [43] C. Block, T. Van Gerven and C. Vandecasteele. Industry and energy sectors in Flanders: Environmental performance and re- sponse indicators. Clean Technologies and Environmental Policy,
-51. [44] S. Wursthorn, W. R. Poganietz and L. Schebek. Economic-en- vironmental monitoring indicators for European countries: A disaggregated sector-based approach for monitoring eco-effi- ciency. Ecological Economics, ): 487-496. [45] E. A. Lowe, L. K. Evans. Industrial ecology and industrial eco-systems. Journal of Cleaner Production, -2): 47-53. [46] L. Baas. Cleaner production and industrial ecosystems, a Dutch experience. Journal of Cleaner Production, -4): 189- 197. [47] C. Cleveland, M. Ruth. Indicators of dematerialization and the materials intensity of use. Journal of Industrial Ecology, 1999, 2(3): 15-50. [48] J. Van Caneghem, C. Block, H. Van Hooste and C. Vande- casteele. Eco-efficiency trends of the Flemish industry: Decoup- ling of environmental impact from economic growth. Journal of Cleaner Production, ): . [49] Indicators to Measure Decoupling of Environmental Pressure from Economic Growth. Organisation of Economic Co-Opera- tion and Development (OECD). SG/SD(2002)1/FINAL, 2002. [50] H. F. Xu, Y. P. Fang and Y. W. Liu. Decoupling analysis of envi- ronmental pressure and economic development: A case of the industrial system in Panzhihua. International Conference on Electronics, Communications and Control (ICECC), 2011. [51] A. Bossilkov, T. Clark. Eco-efficiency in the metals industry. Perth: Centre of Excellence in Cleaner Production, 2002. [52] R. van Berkel. Cleaner production and eco-efficiency initiatives in Western Australia . Journal of Cleaner Production, 1-755. [53] G. P. Kharel, K. Charmondusit. Eco-efficiency evaluation of iron rod industry in Nepal. Journal of Cleaner Production, 2008, 16(13): . [54] J. Van Caneghem, C. Block, P. Cramm, R. Mortier and C. Van- decasteele. Improving eco-efficiency in the steel industry: The ArcelorMittal gent case. Journal of Cleaner Production, 2010, 18(8): 807-814. [55] Y. T. Wang, J. Liu, L. Hansson, K. Zhang and R. Q. Wang. Im- plementing stricter environmental regulation to enhance eco-ef- ficiency and sustainability: A case study of Shandong Province’s pulp and paper industry, China. Journal of Cleaner Production, ): 303-310. [56] N. Honkasalo, H. Rodhe and C. Dalhammar. Environmental permitting as a driver for eco-efficiency in the dairy industry: A closer look at the IPPC directive. Journal of Cleaner Production, -11): . [57] D. Maxime, M. Marcotte and Y. Arcand. Development of eco- efficiency indicators for the Canadian food and beverage indus- try. Journal of Cleaner Production, -7): 636-648. [58] A. Ingaramo, H. Heluane, M. Colombo and M. Cesca. Water and wastewater eco-efficiency indicators for the sugar cane industry. Journal of Cleaner Production, ): 487-495. [59] L. Breedveld, G. Timellini, G. Casoni, A. Fregni and G. Busani. Eco-efficiency of fabric filters in the Italian ceramic tile industry. Journal of Cleaner Production, ): 86-93. [60] K. Charmondusit, K. Keartpakpraek. Eco-efficiency evaluation of the petroleum and petrochemical group in the map Ta Phut industrial estate, Thailand. Journal of Cleaner Production, 2011, 19(2-3): 241-252. [61] R. van Berkel. Eco-efficiency in the Australian minerals proc- essing sector. Journal of Cleaner Production, -9): 772- 781. [62] R. van Berkel. Eco-efficiency in primary metals production: Context, perspectives and methods. Resources, Conservation and Recycling, ): 511-540. [63] D. Z. Li, J. Zhu, E. C. M. Hui, B. Y. P. Leung and Q. M. Li. An emergy analysis-based methodology for eco-efficiency evalua- tion of building
manufacturing. Ecolo gical
Indicators, 20 11, 11(5): . [64] G. Oggioni, R. Riccardi and R. Toninelli. Eco-efficiency of the world cement industry: A data envelopment analysis. Energy Policy, ): . [65] P. Mickwitz, M. Melanen, U. Rosenstr&m and J. Sepp&l&. Re- gional eco-efficiency indicators—A participatory approach. Jour- nal of Cleaner Production, ): 603-611. [66] D. Z. Li, E. C. M. Hui, B. Y. P. Leung, Q. M. Li and X. Xu. A methodology for eco-efficiency evaluation of residential devel- opment at city level. Building and Environment, ): 566-573. [67] N. Jollands, J. Lermit and M. Patterson. Aggregate eco-effi- ciency indices for New Zealand—A principal components analy- sis. Journal of Environmental Management, ): 293- 305. [68] S. Erkko, M. Melanen and P. Mickwitz. Eco-efficiency in the Finnish EMAS reports—A buzz word? Journal of Cleaner Pro- duction, ): 799-813. [69] R. L. Burritt, C. Saka. Environmental management accounting applications and eco-efficiency: Case studies from Japan. Jour- nal of Cleaner Production, ): . [70] R. C&t&, A. Booth and B. Louis. Eco-efficiency and SMEs in Nova Scotia, Canada. Journal of Cleaner Production, -7): 542-550. [71] Y. Zhang, Z. F. Yang. Eco-efficiency of urban material metabo- lism: A case study in Shenzhen, China. Acta Ecologica Sinica, ): . [72] R. van Berkel. Cleaner production and eco-efficiency initiatives in Western Australia . Journal of Cleaner Production, -9): 741-755. [73] M. B. Fern&ndez-Vi&&, T. G&mez-Navarro and S. F. Capuz-Rizo. Eco-efficiency in the SMEs of Venezuela. Current status and fu- ture perspectives. Journal of Cleaner Production, ): 736-746. [74] H. T. Odum. Emergy in ecosystems. In: N. Polunin, Ed., Envi- ronmental Monographs and Symposia, New York: John Wiley, 1986: 337-369. [75] M. T. Brown, S. Ulgiati. Emergy-based indices and ratios to evaluate sustainability: Monitoring economies and technology toward environmentally sound innovation. Ecological Engineer- ing, -69. [76] J. R. Siche, F. Agostinho, E. Ortega and A. Romeiro. Sustain- ability of nations by indices: Comparative study between envi- ronmental sustainability index, ecological footprint and the emergy performance indices. Ecological Economics, ): 628-634. [77] H. T. Odum. Environmental accounting. New York: Wiley, 1996. [78] M. T. Brown, R. A. Herendeen. Embodied energy analysis and emergy analysis: A comparative view. Ecological Economics, 9-235. [79] S. Ulgiati, M. T. Brown. Monitoring patterns of sustainability in natural and man-made ecosystems. Ecological Modeling, 1998, 108: 23-26. [80] M. T. Brown, S. Ulgiati. Emergy evaluation of the biosphere and natural capital. Ambio, 6-493. [81] M. T. Brown, S. Ulgiati. Emergy measures of carrying capacity to evaluate economic investments. Population and Environment, ): 471-501. [82] M. T. Brown, V. Buranakarn. Emergy indices and ratios for sustainable material cycles and recycle options. Resources Con- servation and Recycling, -22. [83] K. P. Lei, Z. S. Wang and S. S. Ton. Holistic emergy analysis of Copyright & 2012 Hanspub 156
工业系统生态化研究的国际态势及其启示 Macao. Ecological Engineering, -3): 30-43. [84] K. P. Lei, Z. S. Wang. Emergy synthesis and simulation for Macao. Energy, ): 613-625. [85] H. H. Lou, M. A. Kulkarni, A. Singh and Y. L. Huang. A game theory based approach for emergy analysis of industrial ecosys- tem under uncertainty. Clean Technologies and Environmental Policy, 6-161. [86] L. M. Wang, W. D. Ni and Z. Li. Emergy evaluation of com- bined heat and power plant eco-industrial park (CHP plant EIP). Resources, Conservation and Recycling, ): 56-70. [87] L. M. Wang, J. T. Zhang and W. D. Ni. Emergy evaluation of eco-industrial park with power plant. Ecological Modelling, -2): 233-240. [88] Y. Geng, P. Zhang, S. Ulgiati and J. Sarkis. Emergy analysis of an industrial park: The case of Dalian, China. Science of the To- tal Environment, ): . [89] X. H. Zhang, S. H. Deng, Y. Z. Zhang, G. Yang, L. Li, H. Qi, H. Xiao, J. Wu, Y. J. Wang and F. Shen. Emergy evaluation of the impact of waste exchanges on the sustainability of industrial sys- tems. Ecological Engineering, ): 206-216. [90] H. F. Mu, X. Feng and K. H. Chu. Improved emergy indices for the evaluation of industrial systems incorporating waste man- agement. Ecological Engineering, ): 335-342. [91] B. Zhang, G. Q. Chen, Q. Yang, Z. M. Chen, B. Chen and Z. Li. How to guide a sustainable industrial economy: Emergy account for resources input of Chinese industry. Procedia Environmental Sciences, -59. [92] H. D. Foster. Resilience theory and system evaluation. In: J. A. Wise, V. D. Hopkin and P. Stager, Eds., Verification and Valida- tion of Complex Systems: Human Factors Issues, NATO Ad- vances Science Institute. Series F: Computers and Systems Sci- ences, Vol. 110, Berlin: Springer Verlag, 1993. [93] S. Einarsson, M. Rausand. An approach to vulnerability analysis of complex industrial systems. Risk Analysis, ): 535- 545. [94] Y. Perrodin, C. Boillot, R. Angerville, G. Donguy and E. Em- manuel. Ecological risk assessment of urban and industrial sys- tems: A review. Science of the Total
Environment,
): . [95] S. Anderson, B. A. Mostue. Risk analysis and risk management approaches applied to the petroleum industry and their applica- bility to IO concepts. Safety Science, 2011, in press.
[96] L. Huang, W. B. Wan, F. Y. Li, B. Li, J. Yang and J. Bi. A two- scale system to identify environmental risk of chemical industry clusters. Journal of Hazardous Materials, ): 247-255. [97] J. Korhonen, S. Juha-Pekka. Analyzing the evolution of Indus- trial ecosystems: Concepts and application. Ecological Econom- ics, 9-186. [98] J. Korhonen. Industrial ecosystems-some conditions for success. The International Journal of Sustainable Development and World Ecology, -39. [99] J. Korhonen. Some suggestions for regional industrial ecosys- tems. Eco-Management and Auditing, -69. [100] C. Hardy, T. Graedel. Industrial ecosystems as food webs. Jour- nal of Industrial Ecology, -38. [101] P. Desrochers. Regional development and inter-industry recy- cling linkages: Some historical perspectives. Entrepreneurship and Regional Development, -65. [102] J. S. Baldwin, R. Murray, B. Winder and K. Ridgway. A non- equilibrium thermodynamic model of industrial development: Analogy or homology? Journal of Cleaner Production, 2004, 12(8-10): 841-853. [103] C. H. Huo, L. H. Chai. Physical principles and simulations on the structural evolution of eco-industrial systems. Journal of Cleaner Production, 95-2005. [104] C. Rammel, S. Stagl and H. Wilfing. Managing complex adap- tive systems—A co-evolutionary perspective on natural resource management. Ecological Economics, -21. [105] Z. Zhou. Study on the complex adaptive system of eco-industrial systems. Ph.D. Thesis, Department of Chemical Engineering, Beijing: Tsinghua University, 2005. [106] K. Cao, X. Feng and H. Wan. Applying agent-based modeling to the evolution of eco-industrial systems. Ecological Economics, ): . [107] C. H. Liu, C. Y. Ma and K. Zhang. Going beyond the sectoral boundary: A key stage in the development of a regional Indus- trial ecosystem. Journal of Cleaner Production, ): 42- 49. [108] A. Azapagic, S. Perdan. Indicators of sustainable development for industry: A general framework. Trans IChemE, 2000, 78(B): 243-61. [109] J. Dewulf, H. van Langenhove. Integrating industrial ecology principles into a set of environmental sustainability indicators for technology assessment. Resources, Conservation and Recy- cling, 9-432. [110] IChemE (Institute of Chemical Engineers). The sustainability metrics, sustainable development progress metrics recommend- ed for use in the process industries. AIChE Journal, ): . [111] L. Sokka, M. Melanen and A. Nissinen. How can the sustain- ability of industrial symbioses be measured? Progress of Indus- trial Ecology—An International Journal, 8-535. [112] S. Pakarinen, T. Mattila, M. Melanen, A. Nissinen and L. L. Sokka. Sustainability and industrial symbiosis—The evolution of a Finnish forest industry complex. Resource, Conservation and Recycling, ): . [113] D. S. Chang, L. C. R. Kuo and Y. T. Chen. Industrial changes in corporate sustainability performance e an empirical overview using data envelopment analysis. Journal of Cleaner Production, 2011, in press. [114] R. K. Singh, H. R. Murty, S. K. Gupta and A. K. Dikshit. An overview of sustainability assessment methodologies. Ecological Indicators, ): 281-299. [115] C. Labuschagne, A. C. Brent and R. P. G. van Erck. Assessing the sustainability performances of industries. Journal of Cleaner Production, 3-385. [116] S. X. Zeng, H. C. Liu, C. M. Ta m and Y. K. Shao. Cluster analy- sis for studying industrial sustainability: An empirical study in Shanghai. Journal of Cleaner Production, ): 1090- 1097. [117] R. K. Singh, H. R. Murty, S. K. Gupta and A. K. Dikshit. De- velopment of composite sustainability performance index for steel industry. Ecological Indicators, 5-588. [118] A. Azapagic. Developing a framework for sustainable develop- ment indicators for the mining and minerals industry. Journal of Cleaner Production, 9-662. [119] L. Stamford, A. Azapagic. Sustainability indicators for the as- sessment of nuclear power. Energy, ): . [120] R. Steurer, M. E. Langer, A. Konrad and A. Martinuzzi. Corpo- rations, stakeholders and sustainable development I: A theoretic- cal exploration of businesse society relations. Journal of Busi- ness Ethics, 3-281. [121] R. Gray. Is accounting for sustainability actually accounting for sustainability and how would we know? An exploration of nar- ratives of organisations and the planet. Accounting, Organiza- tions and Society, -62. [122] L. C. Roca, C. C. Searcy. An analysis of indicators disclosed in corporate sustainability reports. Journal of Cleaner Production, ): 103-118. [123] A. M&ller, S. Schaltegger. The sustainability balanced scorecard as a framework for eco-efficiency analysis. Journal of Industrial Ecology, ): 73-83. [124] F. Figge, T. Hahn. The cost of sustainability capital and the creation of sustainable value by companies. Journal of Industrial Ecology, ): 47-58. [125] M. Wagner. Sustainability and competitive advantage: Empirical evidence on the influence of strategic choices between environ- mental management approaches. Environmental Quality Man- agement, -48. [126] I. Holton, J. Glass and A. D. F. Price. Managing for sustainabil- Copyright & 2012 Hanspub 157
工业系统生态化研究的国际态势及其启示 Copyright & 2012 Hanspub 158 ity: Findings from four company case studies in the UK precast concrete industry. Journal of Cleaner Production, ): 152-160. [127] M. Wagner. The role of corporate sustainability performance for economic performance: A firm-level analysis of moderation ef- fects. Ecological Economics, ): . [128] K. H. Lee, R. F. Saen. Measuring corporate sustainability man- agement: A data envelopment analysis approach. International Journal of Production Economics, 2011, in press.
[129] G. Parthasarathy, R. Hart, E. D. Jamro and L. Miner. Value of sustainability: Perspectives of a chemical manufacturing site. Clean Technologies and Environmental Policy, ): 219- 229. [130] K. Fischer, S. Kamolsiripichaiporn and T. de Bruijn. From en- vironment to sustainability: The greening of industry network at the millennium. Bangkok: The 9th International Conference of the Greening of Industry Network, Sustainability at the Millen- nium: Globalization, Competitiveness and the Public Trust, 21- 24 January 2001. [131] U. Diwekar. Green process design, industrial ecology, and sus- tainability: A systems analysis perspective. Resources, Conser- vation and Recycling, 5-235. [132] J. Plaut. Industrial management for the sustaining environment. Technology in Society, 7-475. [133] H. Strebel, A. Posch. Interorganisational cooperation for sus- tainable management in industry: On industrial recycling net- works and sustainability networks. Progress in Industrial Ecol- ogy—An International Journal, ): 348-362. [134] J. S. Baldwin, P. M. Allen, B. Winder and K. Radgway. Model- ing manufacturing evolution: Thoughts sustainable industrial de- velopment. Journal of Cleaner Production, 7-902. [135] E. J. Schwarz, K. W. Steininger. Implementing nature’s lesson: The industrial recycling network enhancing regional develop- ment. Journal of Cleaner Production, -2): 47-56. [136] S. N. Nielsen. What has modern ecosystem theory to offer to cleaner production, industrial ecology and society? The views of an ecologist. Journal of Cleaner Production, 39- 1653. [137] R. S. Wang, F. Li, D. Hu and B. L. Li. Understanding eco-com- lexity: Social-economic-natural complex ecosystem approach. Ecological Complexity, ): 15-29. [138] H. Cabezas, H. W. Whitmore, C. W. Pawlowski and A. L. Mayer. On the sustainability of an integrated model system with Indus- trial, ecological, and macroeconomic components. Resources, Conservation and Recycling, ): 122-129. [139] G. Kallis, R. B. Norgaard. Coevolutionary ecological economics. Ecological Economics, ): 690-699. [140] B. Smit, J. Wandel. Adaptation, adaptive capacity and vulner- ability. Global Environmental Change, 2-292. [141] M. J. Metzger, R. Leemans and D. Schr&ter. A multidisciplinary multi-scale framework for assessing vulnerabilities to global change. International Journal of Applied Earth Observation and Geoinformation, 3-267. [142] P. Oosterveer, S. Kamolsirichaiporn and R. Rasish. The “green- ing” of industry and development in Southeast Asia: Perspec- tives on industrial transformation and envi introduction. Environment, Development and Sustainability, 7-227. [143] E. D. Adamides, Y. Mouzakitis. Industrial ecosystems as tech- nological niches. Journal of Cleaner Production, 2- 180. [144] 樊杰. “人地关系地域系统”学术思想与经济地理学[J]. 经济地理, ): 177-183. [145] 陆大道. 关于地理学的“人地系统”理论研究[J]. 地理研究, ): 135-145. [146] 陆大道. 人文–经济地理学的方法论及其特点[J]. 地理研究, ): 387-396. [147] 李润田. 中国地 理学发展的世纪回顾与展望[J]. 地理科学, ): 10-14.

我要回帖

更多关于 国家所有的自然资源 的文章

 

随机推荐