半导体气体传感器原理硅的应用原理是什么?

霍尔集成电路原理及应用
霍尔集成电路原理及应用在一个结晶片中形成有霍尔传感器及放大并控制其输出电压的电路而具有磁场 ─ 电气变换机能的固态组件称为霍尔集成电路。霍尔集成电路外观构造如图2-19 所示,具有与树脂封闭型晶体管、集成电路等相同的构造,即多半呈现在大小5mm 见方、厚3mm 以下的角形或长方形板状组件上附设四根导线的构造。导线系由金属薄片所形成,各个金属薄片上均附有半导体结晶片(通常为硅芯片),而在结晶体中利用集成电路技术形成有霍尔传感器及信号处理电路。为防止整个组件性能的劣化,通常利用树脂加以封闭,另外为了使磁场的施加容易起见,其厚度也尽量减薄。图8 霍尔集成电路的构造霍尔集成电路作用原理磁场强度可利用形成在结晶片的一部份的霍尔传感器变换成电气信号(参照前述霍尔传感器的作用原理)。结晶通常使用半导体硅,霍尔传感器的磁场灵敏度为10~20mV/K.Oe。此信号经形成在同一结晶中的信号处理电路放大后,作为适合所定目的的信号电压被取出。通常四根导线中的两根连接于一方接地的电源,而从剩下的两根的一根取出正极性的信号电压,并从另一根取出负极性的信号电压。霍尔传感器的输入电阻通常需符合信号处理电路的电源,以便可利用定电压使用霍尔传感器。此时组件的输出电压不管在N 型或P 型均无大差异。又因输出电压与电子或正孔的移动度成正比,故温度特性也应该尽量保持一定,这是与单体霍尔传感器不同的地方。霍尔集成电路种类:依输出信号的性质加以分类时如表1所示。如图9所示,线性型(Linear type)霍尔集成电路可以获得与磁场强度成正比的输出电压。磁场灵敏度虽然可利用电路的放大度加以调节,但在高灵敏度时,比例范围会变窄(虽电源5V 使灵敏度达到10mV/Oe,但比例范围在500Oe以下)。表1 依输出电压分类时的种类&&&&&&&&&&&&&&&& (a)线性型&&&&&&&&&&&&&&&& (b)开关型&&&&&&&&&&&&&&&&& 图9 霍尔集成电路的输出特性开关型霍尔集成电路可在一定范围的磁场中获得ON-OFF的电压,此开关型对磁场的磁滞(Hysteresis)现象,乃是为使开关动作更为霍尔集成电路线性型确实起见而故意如此设计的。依照制造方法加以分类时如表2 所示,但任何一种制造方法虽然均可获得同样的特性,在现阶段中,双极性型霍尔集成电路已开始进入商品化的阶段。表2依制造方法分类时的种类霍尔集成电路用途霍尔集成电路通常使用于前述磁电变换组件的项所述的(A-1)、(A-2)范围的用途,在这些用途的中,特别像开关那样,以磁气为媒介将位置的变化、速度、回转等的物理量变换为电气量时,使用起来非常简单。使用霍尔集成电路的开关系如图2-21 所示,这种开关具有:(1)无震动(Chattering),(2)不生杂音,(3)使用寿命长,可靠度高,(4)响应速度快等特征,已经实际被使用作为高级的键盘用开关。&&&&&&&&&&&&&&&&&& 图10 使用霍尔集成电路的开关图11是A44E集成霍耳开关,A44E集成霍耳开关由稳压器A、霍耳电势发生器(即硅霍耳片)(mT)、差分放大器C、施密特触发器D和OC门输出E 五个基本部分组成,如图12(a)所示。(1)、(2)、(3)代表集成霍耳开关的三个引出端点。在输入端输入电压VCC,经稳压器稳压后加在霍耳电势发生器的两端,根据霍耳效应原理,当霍耳片处在磁场中时,在垂直于磁场的方向通以电流,则与这二者相垂直的方向上将会产生霍耳电势差H&V&输出,该H&V信号经放大器放大后送至施密特触发器整形,使其成为方波输送到OC门输出。当施加的磁场达到工作点(即BOP)时,触发器输出高电压(相对于地电位),使三极管导通,此时OC门输出端输出低电压,通常称这种状态为开。当施加的磁场达到释放点(即BrP)时,触发器输出低电压,三极管截止,使OC门输出高电压,这种状态为关。这样两次电压变换,使霍耳开关完成了一次开关动作。BOP与BrP& 的差值一定,此差值BH&= BOP&- BrP称为磁滞,在此差值内,V&0保持不变,因而使开关输出稳定可靠,这也就是集电成霍耳开关传感器优良特性之一。&&&&&&&&& 图11 A44E集成开关型霍耳传感器原理图&&&& 图12 A44E集成开关型霍耳传感器引脚图&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& &霍尔传感器外观图片&&&&&&&&&&&&&&&&&&&&&&&&&&霍尔转速传感器应用电路&
馆藏&116251
TA的推荐TA的最新馆藏[转]&半导体变流技术与可控硅整流装置;一.概述;半导体变流技术是近代工业发展到半导体时代最典型的;半导体变流技术是现代励磁系统最基本的技术之一;本课程主要就半导体变流技术的几种典型应用和具体电;二.变流技术的种类;根据变流技术的应用和具体电路,我们将变流技术分成;单相半波整流;单相全波整流单相桥式整流;单相半波可控整流单相桥式半控整流;单相桥式全控整流半导体变流三
半导体变流技术与可控硅整流装置
半导体变流技术是近代工业发展到半导体时代最典型的技术之一,他不仅在发电机励磁系统方面得到广泛的应用,在冶金、化工、机械制造、交通运输等各方面都得到广泛的应用。可以说,现代生活、生产无处不存在变流技术。
半导体变流技术是现代励磁系统最基本的技术之一。在发电机励磁系统上他不仅取代了传统的直流励磁机,而且在励磁调节方面取代了传统的磁放大器、相复励变压器和整流器,甚至在灭磁方面也部分取代了磁场断路器和灭磁电阻的作用。现代发电机励磁系统中,从电源的变换到发电机励磁能量的提供,无处不存在变流技术的应用。
本课程主要就半导体变流技术的几种典型应用和具体电路进行分析,同时介绍能达公司生产的STR系列整流装置的基本性能和技术指标。另外还利用一定的篇幅根据整流装置在现场的应用介绍一些装置的故障判断和处理方法。希望通过本课程能够对本公司生产人员在变流技术方面提供一定的帮助。
二.变流技术的种类
根据变流技术的应用和具体电路,我们将变流技术分成如下几类:
单相半波整流
单相全波整流 单相桥式整流
单相半波可控整流单相桥式半控整流
单相桥式全控整流半导体变流 三相零式整流
三相桥式整流 三相半控桥 三相全控桥
上面的分类只是按照应用最多的情况进行的分类,实际应用中远较上面的要
多。比如六相整流、十二相整流等等。由于这些电路在励磁系统中应用的较少,我们在分类时就没有将他们列入。实际上,在早期的模拟式自动励磁调节器的电压测量回路中,为了保证测量电压的纹波系数,六相和十二相整流电路应用的还是很普遍的,只是现代微机励磁调节器采用交流电压采样方式以后,对测量电压的纹波要求相对降低了而不怎么采用了。
三.单相整流电路 3.1单相半波整流电路
单相半波整流电路接线图及波形图见图一
单相半波整流是半导体变流技术中最基本的电路。他是利用半导体二极管的单向导电性,将交流电转换为直流电最基本的方法。由于二极管的单向导电性,变压器二次电压只有正方向电流才能够通过二极管而施加到负载上,而负方向由于二极管的阻断作用而不能施加到负载上,因此,负载上获得的平均电压仅为变压器二次电压的一半。由于存在二极管导通压降和变压器二次绕组的压降,故电路中:
由于在电路的输出侧装有滤波电容器,负载上的最高电压将可以达到变压器二次电压的峰值电压,即ud?2u2;同时,由于电容器的放电作用,在变压器二次电压下降时,负载上的电压并不随二次电压下降而下降,而是由电容器的放电曲线所决定。单相半波整流电路的波形图见图一(b)。图中:兰色曲线为变压器二次电压,红色曲线为无滤波电容器时的整流输出电压,棕色曲线为有滤波电容器时负载上的电压。
当整流二极管换为可控硅,电路变化为可控单相整流电路时,负载上的平均整
流电压由:
2U2sin?td(?t)?0.45U2
式中:U2――变压器二次绕组电压的有效值;
α――移相角。
由式可以看出,当α改变时,负载上获得的平均整流电压会有不同的值。
3.2 单相全波整流
单相全波整流电路接线图及波形图见图2。
在变压器副边电压的正半周,二极管D1处于正向偏置而D2处于反向偏置状态,D1在正向电压的作用下导通,D2在反向电压的作用下截止,负载上获得e21电压;在变压器副边电压的负半周,二极管D1处于反向偏置状态,而D2处于正向偏置状态,D2在正向电压的作用下导通,D1在反向电压的作用下截止,负载上获得e22电压。负载上的电压波形如图2b中棕色曲线。
与单相半波整流电路相比,全波整流的输出要多一个波,因此,输出电压也较半波要高一倍,故:
与单相半波一样,在有滤波电容器时,负载上的最高电压为变压器二次电压的峰值,使用中应当特别注意。
3.3单相桥式整流
单相桥式整流是实际应用最多的单相整流电路。电路接线见图3。在电路中,四只整流管组成桥式整流。在变压器二次电压的正半周,电流通过D1→Rfz→D2→W2形成通路,而在负半周,电流通过D3→Rfz→D4→W2形成通路,负载上电压波形见图3(b)棕色曲线。与全波整流一样,桥式整流电路的平均输出电压:
当有滤波电容器时,负载上的最高电压为变压器二次电压的峰值。
当整流管换为可控硅时,桥式整流可以很方便地变换为可控整流。单相桥式可控整流电路的输出电压由:Ud?0.9U2
当可控整流桥接入感性负载时,由于电感电流不能突变,在可控硅关断期内,必须在负载两端接入续流二极管以保持电感电流的通路,以防止可控硅关断时在电感负载两端产生危险的过电压和可控硅能够换相导通。
四. 三相整流电路
三相整流电路是励磁系统最基本的变流技术之一。现代发电机自励励磁系统几乎全部采用三相整流电路来解决励磁系统的功率部分。根据应用场合的不同,三相整流电路分为三相零式、三相半控桥、三相全控桥、多相整流等多种电路形式。三相整流不仅输出波形的纹波小,而且输出电压等级高、电流大,特别适合于大功率整流的场合。
4.1三相零式(半波)整流
三相零式整流是多相整流电路的基础电路,可以说,其他多相整流电路是三相零式整流电路的叠加,掌握这一部分是解决其他多相整流电路的基础,应当引起足够的重视。三相零式整流电路的接线图和波形图见图4。
由图4可以看出,在ωt1~ωt2时段,u2a为正,u2b、u2c均低于u2a ,D1受正向电压而导通,D2、D3元件关断;在ωt2~ωt3时段,u2b电压上升u2a下降,
而u2c则处于最低电压,故D2导通,D1、D3关断;在ωt2~ωt3时段,u2c上升为最高值,其他两相电压则下降到较低的值,故此时轮换到D3导通而D1、D2关断。负载上获得的电压如图4b中兰线所示波形。整流电压Ud与变压器二次电压的关系有:Ud=1.17U2
当整流元件换为可控硅时,整流电压Ud与变压器二次电压的关系有:Ud=1.17U2cosα
负载上的电流与变压器二次绕组间电流关系有:I2=0.59Id 负载功率与变压器容量的关系有:S2?3I2U2?0.59
?1.5Pd 1.17
这里需要说明,当可控整流电路的负载为电感元件时,要注意在电感两端并联续流二极管,以保持电流的连续通路和可控硅的可靠换相。
上面的半波整流电路称为共阴极三相零式电路,他的输出为正电压。在实际应用中,为了获得负电压,可以将整流元件的阳极作为公共极而输出,称为共阳极三相零式电路。电路的分析方法与共阴极三相零式电路一样,只是要注意电压的极性应相反。
包含各类专业文献、生活休闲娱乐、幼儿教育、小学教育、各类资格考试、中学教育、外语学习资料、应用写作文书、90半导体变流技术与可控硅整流装置原理等内容。 
 半导体变流技术课程剖析_工学_高等教育_教育专区。...电子装置 的工作原理;从实践上熟悉电力电子装置的...掌握单相可控整流电路的工作原理及波形分析。 ? 熟悉...  它很快便取代了汞弧整流器在变流技术中的地位,使...于是建立在谐振、 准谐振原理之上的软开关电路, ...半导体变流技术与可控硅... 18页 3下载券 ©...  电力电子变流技术试题_工学_高等教育_教育专区。...18 .三相桥式可控整流电路同一相上的两只晶闸管的...24. 电压型逆变器其中间直流环节以___储能。 25....  《半导体变流技术》练习题一、判断题 1、电力电子...(D)90o 9、三相半波可控整流电路电阻性负载时...下面图 1 电路是什么电路,并试着分析其工作原理。...  吉大16春学期《电力电子变流技术》在线作业一_远程、网络教育_成人教育_教育专区...带平衡电抗器的双反星形可控整流电路的整流电压平均值与三相半波整流电路相等。 ...  吉大16春学期《电力电子变流技术》在线作业二_远程、网络教育_成人教育_教育专区...带平衡电抗器的双反星形可控整流电路的整流电压平均值与三相半波整流电路相等。 ...  第五章 半导体变流技术 33页 免费 传感器原理与应用...晶闸管原名可控硅,是一种大功率半导体器件,具有 好...采用同步信号为正弦波的触发电路的整流装置, 其输出...  电力电子变流技术课后答案 第二章 第二章 单相可控整流电路习题与思考题解 2-1.什么是整流?它是利用半导体二极管和晶闸管的哪些特性来实现的? 解:整流电路是一...  南湖学院机电系《半导体变流技术》课程考查试题 2012...图1 2、 试分析图 2 所示全桥式变换器的工作原理...2、现有单相半波、单相桥式、三相半波三种整流电路...半导体传感器_百度百科
半导体传感器
半导体传感器 semiconductor transducer 利用半导体材料的各种物理、化学和生物学特性制成的传感器。所采用的半导体材料多数是硅以及Ⅲ-Ⅴ族和 Ⅱ-Ⅵ族元素化合物。半导体传感器种类繁多,它利用近百种和材料的特性,具有类似于人眼、耳、鼻、舌、皮肤等多种感觉功能。
半导体传感器概述
优点是灵敏度高、响应速度快、体积小、重量轻、便于集成化、智能化,能使检测转换一体化。半导体传感器的主要应用领域是工业自动化、遥测、工业机器人、家用电器、环境污染监测、医疗保健、医药工程和生物工程。半导体传感器按输入信息分为物理敏感、化学敏感和生物敏感[1]
传感器三类
半导体传感器半导体
传感器三类。
半导体传感器分类
半导体传感器物理敏感类
将物理量转换成电信号的器件,按敏感对象分为光敏、热敏、力敏、磁敏等不同类型,具有类似于人的视觉、听觉和触觉的功能。这类器件主要基于电子作用过程,机理较为简单,应用比较普遍,半导体传感器的无触点开关应用尤广。它们与微处理机相配合,能构成遥控、光控、声控、工业机器人和全自动化装置。下表列出常用的。
半导体传感器化学敏感类
将化学量转换成电信号的器件,按敏感对象可分为对气体、湿度、离子等敏感的类型,具有类似于人的嗅觉和味觉的功能。这类器件主要基于离子作用过程,机理较为复杂,研制较难,但有广阔的应用前景。通常利用的化学效应有:、、、和(浓淡电池反应)等。
半导体传感器生物敏感类
将生物量转换成电信号的器件,往往利用膜的选择作用、酶的生化反应和免疫反应,通过测量反应生成物或消耗物的数量达到检测的目的。生物敏感传感器所用的敏感功能材料是蛋白质,而蛋白质分子只能同特定物质起化学反应。通常利用的生物学效应有抗原抗体反应、酶作用下的氧化反应、微生物活组织和细胞的呼吸功能等。
半导体传感器代表品种
半导体传感器
semiconductor sensor
利用半导体性质易受外界条件影响这一特性制成的传感器。
根据检出对象,半导体传感器可分为(检出对象为光、温度、磁、压力、湿度等)、(检出对象为气体分子、离子、等)、(检出对象为生物化学物质)。
光传感器  根据光和半导体的相互作用原理制成的传感器。通过在半导体中掺进杂质可以在中造成新的,可以人为地将移至长波范围。
半导体光传感器种类很多,可以通过、、光电流等实现光的检出,如光敏电阻、光电二极管、光电三极管、光电池等。改变结构,还可以制成具有新功能的光传感器,例如灵敏度高和响应速度快的近红外检出器件、仅在特定波长范围灵敏的器件、发光与受光器件处于同一衬底的器件、可进行光检出和电流放大的器件(图1)、光导膜与液晶元件相结合的器件、等。
半导体传感器温度传感器
一般随温度的上升,半导体中载流子浓度增加、电阻降低。利用这种效应可以制成。由于浓度与温度有关,还会产生显著的。当P 型半导体两端存在温度差墹T,热端的浓度大,因此空穴向冷端扩散,并在此端产生正的空间电荷场(图2)。这个电压(塞贝克电压uS)约为150μV/K。对N型半导体,图2 中载流子为电子,冷端连接点为负。因此,同时使用P型与N型半导体电偶的uS可达300μV/K,比金属的uS(40μV/K)大一个数量级。
半导体温度传感器分为两类:接触型和非接触型。接触型又分为热敏电阻与PN结型两种。
随着温度的变化,半导体感温器件电阻会发生较大的变化,这种器件称为。常用的热敏电阻为陶瓷热敏电阻,分为负温度系数(NTC)热敏电阻、正温度系数(PTC)热敏电阻和临界温度电阻(CTR)。热敏电阻一般指NTC热敏电阻。
PN结温度传感器是一种利用半导体二极管、三极管的特性与温度的依赖关系制成的温度传感器。非接触型温度传感器可检出被测物体发射电磁波的能量。传感器可以是将放射能直接转换为电能的半导体物质,也可以先将放射能转换为热能,使温度升高,然后将温度变化转换成电信号而检出。这可用来测量一点的温度,如测温度分布,则需进行扫描。
当对象温度低、只能发射红外线时,则须检出其红外线(见光电导探测器)。
磁传感器  磁传感器主要基于和的原理。利用霍尔效应的器件称为。当施加磁通B 时,电阻增加率墹R/R 可用下式表示
墹R/R∝μ2B2
式中μ为。半导体的载流子迁移率(如InAs约为104厘米2/伏秒)比金属(如Cu约为34.8厘米2/伏秒)大得多,所以半导体的磁阻效应很大。
半导体磁传感器体积小、重量轻、灵敏度高、可靠性高、寿命长,在电子学领域得到应用。此外,还可利用制作长度与重量传感器、高分辨(0.01度)的倾斜传感器,以及测定液体流量等。
半导体传感器压力传感器
半导体在承受压力时禁带宽度发生变化,导致载流子浓度和迁移率变化。这样引起的电阻变化比金属丝受压时截面积减小引起的电阻变化要大两个数量级。因此具有高灵敏度。将 P型半导体与 N型半导体组合使用还可制成灵敏度更高的压力传感器。扩散型半导体压力传感器采用集成电路工艺制成,可以提高性能,改进测量的精度。如加工硅单晶制成受压膜片,在其表面用平面工艺扩散再制成压力规,由于二者处在同一硅片上,可以减少滞后、提高精度。
使用半导体压力传感器测量生物体各部分的压力比使用古老的脉压、血压测量方法,具有精度高、体积小、可在生物体自然状态下测量和安全(微小电流)的优点。
半导体传感器湿度传感器
当半导体表面或界面吸附气体分子或水分子时,半导体表面或界面的能带发生变化。利用这种半导体电阻的变化可检测气体或湿度。半导体湿度传感器具有体积小、重量轻的特点,实用的有ZnO-Cr2O3系、TiO2-V2O5系陶瓷湿度传感器。ZnO-Cr2O3系陶瓷湿度传感器用于室内空调,可精密控制湿度,与微机自动去湿,节省电能。TiO2-V2O5系陶瓷湿度传感器耐热性好,可测量60℃以上的环境湿度,还可用于医药、合成纤维工厂中存在有机物蒸气时的湿度测量。
半导体传感器气体传感器
利用半导体与气体接触时电阻或功函数发生变化这一特性检测气体。气体传感器分为电阻式与非电阻式两种。
电阻式采用SnO2、ZnO等材料制备,有多孔烧结件、 厚膜、 薄膜等形式。根据半导体与气体的相互作用是发生在表面还是体内,又分为表面控制型与体控制型。表面控制型电阻式传感器包括SnO2系传感器、ZnO系传感器、其他金属氧化物(WO3、V2O5、CdO、Cr2O3等) 材料的传感器和采用有机半导体材料的传感器。体控制型电阻式传感器包括Fe2O3系传感器、ABO3型传感器和燃烧控制用传感器。这类传感器可检测甲烷、、氢、一氧化碳等气体,氧、二氧化氮等氧化性气体,具有强吸附力的胺类和水蒸汽等。
非电阻式气体传感器利用和反应时引起的功函数变化来检测气体。它可分为金属-半导体结二极管型传感器(利用金属与半导体界面上时,二极管整流特性的变化)、MOS二极管型传感器(采用MOS结构,通过C-V特性的漂移检测气体)和MOS FET型传感器(通过MOS FET的阈值电压变化检测气体)。
半导体气体传感器灵敏度高,可用于防爆报警器,CO、H2S等有毒气体的监测器。通过稳定性研究,一些传感器可用于的定量监测。半导体气体传感器在防灾、环境保护、节能、工程管理、自动控制等方面有广泛的应用。
半导体传感器离子传感器
半导体离子传感器体积很小,能直接插入生物体内进行连续测量,随时监视患者的病情。
半导体表面的电阻随垂直于表面的电场变化。利用这种场效应制成的绝缘栅场效应晶体管 (IGFET)可作为。而在测量离子时,即称为离子灵敏场效应晶体管(ISFET)。ISFET的栅绝缘层表面只对特定的离子产生响应并形成离子感应层。这种界面电位的变化通过FET的漏极电流变化检出。ISFET的小型化不存在离子选择电极电阻过大的问题,它的输出阻抗很小。由于界面双电层的稳定性,即使在浓度很低的情况下也能检出界面电位的变化,因此具有很高的灵敏度(见)。ISFET可用来测量H+、Na+、K+、Ca++、Ag+、NH嬃等阳离子和F-、Cl-、Br-、I-、CN-等阴离子,还可制成复合ISFET(即同一 ISFET可测几种不同的离子)和FET型的参考电极(REFFET)等。
半导体传感器生物传感器
改变 ISFET敏感膜或采用其他结构可以检出复杂的生物化学物质。这种传感器用于医疗、食品、医药、环境保护等方面。例如,在检查中,用固定酵素作电极的方法对血液中葡萄糖、、甲胍乙丙脂、尿素、尿酸进行分析,迅速而又简便。生物传感器正向检测更复杂的生物关联物质、免疫物质、细胞和微生物的方向发展。
采用集成化技术,将半导体传感器与信息处理电路集成于同一芯片,可以增加传感器的功能。此外,还可以在同一衬底上制作能检出不同对象的具有复合功能的半导体传感器器件。已出现单片集成传感器和混合集成传感器,将传感器与微处理机相结合可以制成具有自动补偿功能和预知判断功能的智能化器件。
半导体传感器优点是灵敏度高、可靠性好、可实现多功能、 小型化、 智能化,缺点是多感性、选择性差、在极限状态下(例如高温)不能使用。针对结晶型半导体传感器的不足,人们正在研究无定形半导体传感器。
半导体传感器气敏传感器
半导体传感器用途
主要用于工业上天然气、煤气、石油化工等部门的易燃、易爆、有毒、有害气体的监测、预报和自动控制, 气敏元件是以化学物质的成分为检测参数的化学敏感元件。
半导体传感器材料
气敏电阻的材料是金属氧化物半导体(分P型如氧化锡和N型如氧化钴),合成材料有时还渗入了催化剂, 如钯(Pd)、铂(Pt)、银(Ag)等。
半导体传感器工作原理
(1)敏感材料的功函数&吸附分子的电子亲和力→吸附分子从材料中夺取电子(负离子吸附、氧化型气体),敏感材料的载流子减少-R↑,如O2 、NO等。
(2)敏感材料的功函数&吸附分子的离解能→吸附分子向材料释放电子(正离子吸附、还原型气体),敏感材料的载流子增加-R↓,如H2、CO等。
(3)为提高气体灵敏度,一般需加热以加快氧化还原反应(到200~450℃),同时加热还能使附着在测控部分上的油雾、尘埃烧掉。
半导体传感器类型及结构
(1)电阻型半导体气敏传感器
由三部分组成:敏感元件、加热器和外壳烧结型、薄膜型、厚膜型
(2)非电阻型半导体传感器
MOS二极管气敏器件
MOS场效应晶体管气敏器件[2]
半导体传感器湿敏传感器
半导体传感器湿度的分类
湿度的分类:绝对湿度和相对湿度
(1)绝对湿度:一定温度和压力条件下,每单位体积的混合气体中所含水蒸气的质量,单位g/m3,一般用符号AH表示。
(2)相对湿度:气体的绝对湿度与同一温度下达到饱和状态的绝对湿度之比,一般用符号%RH表示。
在实际使用中多使用相对湿度这个概念。
半导体传感器氯化锂湿敏电阻
(1)原理:材料吸湿潮解或干化(能互逆),使器件的电阻率发生变化。
(2)氯化锂通常与聚乙烯醇组成混合体,其溶液中的离子导电能力与浓度成正比。当溶液置于一定温湿场中, 若环境相对湿度高, 溶液将吸收水分, 使浓度降低, 因此, 其溶液电阻率增高。 反之, 环境相对湿度变低时, 则溶液浓度升高, 其电阻率下降.见图:
半导体传感器陶瓷湿敏电阻
(1)用两种以上的金属氧化物半导体材料混合烧结而成的多孔陶瓷。
导电机理:类似气敏电阻
(2)一般有两种:
Ⅰ:负特性湿敏半导体陶瓷:电阻率随温度增加而下降水分子中的氢原子具有很强的正电场,当水在半导瓷表面吸附时,有可能从半导瓷表面俘获电子,使半导瓷表面带负电。对于P型半导体,将吸引更多的空穴到达其表面,使其表面层的电阻下降。
Ⅱ:正特性湿敏半导体陶瓷:电阻率随温度增加而增大当水分子附着半导瓷的表面使电势变负时,导致其表面层电子浓度下降。[2]
半导体传感器色敏传感器
色敏传感器是光敏传感器的一种。光敏器件一般检测的都是在一定波长范围内光的强度,而半导体色敏传感器则可用来直接测量从可见光到近红外波段内单色辐射的波长。
对于用半导体硅制造的光电二极管, 在受光照射时, 若入射光子的能量hυ大于硅的禁带宽度Eg, 则光子就激发价带中的电子跃迁到导带而产生一对电子-空穴。
光在半导体中传播时的衰减是由于价带电子吸收光子而从价带跃迁到导带的结果, 这种吸收光子的过程称为本征吸收。
不同材料对不同波长的光吸收程度不一样。对硅而言,波长短的光子衰减快, 穿透深度较浅, 而波长长的光子则能进入硅的较深区域。
浅的P-N结有较好的蓝紫光灵敏度, 深的P-N结则有利于红外灵敏度的提高, 半导体色敏器件正是利用了这一特性。
半导体传感器工作原理
依据:半导体中不同的区域对不同的波长分别具有不同的灵敏度。
在具体应用时, 应先对该色敏器件进行标定。
测定不同波长的光照射下, 该器件中两只光电二极管短路电流的比值ISD2/ISD1, (ISD1是浅结二极管的短路电流, 它在短波区较大, ISD2是深结二极管的短路电流, 它在长波区较大)。
确定二者的比值与入射单色光波长的关系。
根据标定的曲线, 实测出某一单色光时的短路电流比值, 即可确定该单色光的波长。 ?
半导体传感器基本特征
短路电流比-波长特性
半导体传感器应用
(1)气敏传感器
(2)色敏传感器[2]
.百度.[引用日期]
陈杰.传感器与检测技术:高等教育出版社,2002.8:90

我要回帖

更多关于 半导体激光器工作原理 的文章

 

随机推荐