科学家一直在努力研究(反物质武器)强子碰撞机产出的反物质武器、应该也有他的材料吧?指的是什么材料?

强子对撞机_百度百科
强子对撞机
大型强子对撞器(Large Hadron Collider,),是一座位于瑞士近郊CERN的加速器与,作为国际研究之用。(全球定位点:北纬46°14′00″,东经6°03′00″46.;6.05) LHC已经建造完成,北京时间日下午15:30正式开始运作,成为世界上最大的设施。日,经过约两年的停机维护和升级后,欧洲大型强子对撞机重新启动,正式开启第二阶段运行。
强子对撞机发展历程
强子对撞器于北京时间日下午15:30正式开始运作,成为世界上最大的设施。
在日,LHC第三与第四段之间用来冷却的发生了严重的泄漏,导致对撞机暂停运转
日,世界上最大的粒子加速器(),这个预期的建造总额约为八十亿元美金的世界最大型强子对撞机成功地打破了自身于2009年12月份创造的纪录,成为全世界能量最强的。[1]
日30日宣布,当天开始实施的迄今最高能量的质子束流对撞试验,由于出现一系列故障,对撞时间可能至少推迟数小时。
欧洲大型强子对撞机成功重启
日,经过约两年的停机维护和升级后,欧洲大型强子对撞机重新启动,正式开启第二阶段运行。[2]
强子对撞机对撞原理
强子对撞机介子
一般是过程中的产物,极不稳定,短时间内就会发生衰
变,因此不会是对撞机用来加速的。在中,相对稳定的是质子和,而中子不带电,无法实现加速过程。也就是说,,它能使质子-在14TeV的质心能下对撞。
大型强子对撞机磁体高16米,长、宽均有10多米,重达1920吨。工程技术人员专门建造了一个巨型吊架,用4根粗钢缆吊住这个磁体,借助液压顶泵将磁体缓慢放入隧道。它长达27.36公里的环形隧道可被用来加速粒子,使其相撞,创造出与万亿分之一秒时类似的状态。在高能物理实验中,粒子加速器和探测器是常用设备。探测器用来探测碰撞产生的微小,记录粒子能量、质量等信息。强子对撞机上共有4个对撞点,各装有一个探测器,其中一个为CMS(紧凑型)探测器。
强子对撞机希格斯玻色子
人们早已发现,自然界中物体之间千差万别的相互作用,可以简单划分为4种力:即引力、、维持的强作用力和产生放射衰变的。在的相对论解决了重力问题后,人们开始尝试建立一个统一的模型,以期解释通过后3种力相互作用的所有。
经过长期研究和探索,科学家们建立起被称为“”的粒子物理学理论,它把(构成物质的亚)分成3大类:、与。“标准模型”的出现,使得各种粒子如万鸟归林般拥有了一个共同的“家园”。但是这一“家园”有个致命缺陷,那就是该模型无法解释物质质量的来源。
为了修补上述理论大厦的缺陷,英国科学家彼得提出了的存在,并进而预言了的存在。假设出的希格斯玻色子是物质的质量之源,是电子和夸克等形成质量的基础。其他在希格斯玻色子构成的“海洋”中游弋,受其作用而产生惯性,最终才有了质量。尔后所有的粒子在除引力外的另3种力的框架中相互作用,统一于“”之下,构筑成大千世界。
“标准模型”预言了62种基本粒子的存在,这些粒子基本都已被实验所证实,而希格斯玻色子是最后一种未被发现的粒子。
强子对撞机具体数据
大型强子对撞机将两束质子分别加速到7TeV(7万亿)的极高能量状态,并使之对撞。其能量状态可与后不久的状态相比。粒子物理学家将利用质子碰撞后的产物探索,例如,寻找预言的、探索、等超出标准模型的新物理。
大型强子对撞机的精确周长是2.6659万米,内部总共有9300个磁体。大型强子对撞机不仅是世界上最大的粒子加速器,而且仅它的制冷分配系统(cryogenic distribution system)的八分之一,就称得上是世界上最大的制冷机。制冷分配系统在充满近60吨液态氦,将所有磁体都冷却到零下271.3℃(1.9开氏度)前,它将先利用1.008万吨液态氮将这些磁体的温度降低到零下193.2℃。
自从1980年“”的构想首度出现以来,历经近30年,这一“世界上最大的机器”终于从梦想成为现实,日已经开始试运转。现撷取一些有关它的数据“之最”,记录如下:
⒈世界上最大的机器:“大型强子对撞机”不仅是世界上最大的粒子加速器,而且也是世界上最大的机器。它位于瑞士、法国边境地区的地下100米深的环形隧道中,隧道全长26.659公里。
⒉地球上最快的“轨道”:如果“开足马力”,数以百万计的粒子将在环形隧道内以每秒11245圈的速度“狂飙”,约等于光速的99.99%。
⒊太阳系中最“空旷”的地方:为避免流与气体分子发生碰撞,粒子流都在的“通道”内运行,其间如同星际空间一样“空旷”,气压仅为10的负13次方个,比月球上的大气压还小10倍。
⒋最热与最冷的机器:是个既极端热又极端冷的机器。当两束对撞的时候,碰撞点将产生极端高温,可以达到太阳中心温度的10万倍。而与之形成鲜明对比的是,由于采用了氦冷却等手段,中粒子运行的加速腔在工作时的温度仅为零下271.3℃(1.9K),比遥远的太空还要冷。
⒌全球最强大的超级计算机系统:大型强子对撞机上进行的每一个大型试验一年所获得的数据,可以刻满十万张双层DVD。为了对这些数据进行分析,世界各地成千上万名科学家都参与进来,他们所使用的数万台甚至数十万台计算机借助分布式计算网络(网格计算)联合在一起,这也构成了全球最强大的超级计算机系统。
强子对撞机对撞实验
强子对撞机六大实验
据国外媒体报道,利用()进行的6项实验都将均在国际合作的模式下完成,这些实验将世界各地的研究机构的科学家聚集在一起,共同见证激动人心的一刻。每一项实验都截然不同,这是由其使用的粒子探测器的独特性所决定的。
两项大规模实验——(仪器实验的英文缩写,以下简称ATLAS)和CMS(实验的英文缩写,以下简称CMS) ——均建立在多用途探测器基础之上,用于分析在加速器中撞击时产生的数量庞大的。两项实验的研究规模和研究层面均达到前所未有的程度。使用两个单独设计的探测器是交叉确认任何新发现的关键所在。
两项中型实验——ALICE(大型实验的英文缩写,以下简称ALICE)和 LHCb(LHC实验的英文缩写,以下简称LHCb)——利用特殊的探测器,分析与特殊现象有关的撞击。
另外两项实验——TOTEM(全截面侦测器实验的英文缩写,以下简称TOTEM)和LHCf(LHC前行实验的英文缩写,以下简称LHCf)——的规模就要小得多。它们的焦点集中在“前行粒子”(质子或者)身上。在发生碰撞时,这些粒子只是擦肩而过,而不是正面相撞。
、CMS、ALICE和LHCb探测器安装在4个地下巨洞,分布在周围。TOTEM实验用到的探测器位于CMS探测器附近,LHCf实验用到的探测器则位于ATLAS探测器附近。
ALICE探测器
为了进行ALICE实验,将让铅离子进行对撞,在实验室条件下重建“大爆炸”之后的形态。获得的数据将允许物理学家研究的性质和状态,这种物质据信在“大爆炸”发生后只存在很短时间。
,核子周围环绕着电子。质子和中子都是被称之为“”的其它束缚形成的。这种不可思议的强大束缚意味着,独立的夸克是永远也不会被发现的。
大型强子对撞机内上演撞击时产生的高温是太阳内部温度的10万倍。物理学家希望看到的是,质子和中子会在这种高温条件下“熔化”,并释放被胶子束缚的夸克。这么做将创造夸克-胶子,它们可能只存在于“大爆炸”之后,当时的宇宙仍处在极度高温之下。科学家计划在夸克-胶子等离子体膨胀和冷却过程中对其进行研究,观察它如何形成最终构成当前宇宙物质的粒子。
共有来自28个国家的94个研究机构的1000多名科学家参与ALICE实验。
ALICE探测器相关资料
尺寸:长26米,高16米,宽16米
重量:1万公吨
位置:法国小镇圣吉利斯-珀利(St Genis-Pouilly)。
ATLAS探测器
ATLAS是两个通用探测器中的一个。此项实验涉及到物理学的很多领域,包括寻找、以及构成的。与CMS的实验目的一样,也将记录与撞击时产生的粒子有关的类似数据,即它们的路径、能量以及特性等等。虽然实验目的相同,但ATLAS和CMS探测器的系统却采用了完全不同的技术和设计。
ATLAS探测器巨大的圆环形磁铁系统是它的主要特征。这一系统由8个25米长的线圈组成。磁铁线圈分布在贯穿探测器中心的粒子束管周围,形成一个“圆筒”。实验过程中,磁场将被包含在线圈分离出的中央柱形空间内。
共有来自37个国家的159个研究机构的1700多名科学家参与实验。
ATLAS探测器相关资料
尺寸:长46米,高25米,宽25米,是迄今为止制造的个头最大的粒子探测器。
重量:7000公吨
位置:瑞士(Meyrin)
CMS实验利用一个通用探测器,对物理学的很多领域进行研究,包括寻找希伯斯、以及构成的。虽然实验目的与相同,但这个探测器的系统却采用了完全不同的技术和设计。
CMS探测器是在一个巨型螺管式磁铁基础上建成的。它采用圆柱形线圈,可产生4的磁场,相当于的10万倍。这个巨大磁场受一个“铁轭”限制——探测器1.25万公吨的重量大部分来自“铁轭”。与的其它巨型探测器有所不同的是,CMS探测器并不是在地下建造,而是选在地上,后分成15个部分被运至地下,最后完成组装,这也算得上它的一大特色。
共有来自37个国家的155个研究机构的2000多名科学家参与CMS实验。
CMS探测器相关资料
尺寸:长21米,宽15米,高15米
重量:1.25万公吨
位置:法国塞希(Cessy)。
LHC底夸克探测器
LHCb实验将有助于我们理解人类为何生活在一个几乎完全由物质而非构成的宇宙。它通过研究一种称为“美夸克”(beauty quark)的粒子,专门对物质和反物质之间的微妙差异展开调查。LHCb实验不是将整个撞击点同密封探测器围起来,而是使用一系列子探测器去主要探测前行粒子(forward particle)。
第一个子探测器将安装到撞击点附近,而接下来的几个将会一个挨一个安装,它们的长度都超过20米。将创造出大量不同类型的,然后它们将快速蜕变为其他类型。为捕捉到“美夸克”,LHCb项目小组已开发出先进的可移动跟踪探测器,并安装在围绕于大型强子对撞机周围的光束路径附近。LHCb项目小组由来自13个国家48所研究机构的650位科学家组成。
探测器相关资料
尺寸:长21米,高10米,宽13米
重量:5600吨
设计:具有平面探测器的
地点:法国费尔奈-
全截面弹性散射
全截面探测器实验研究前行,以重点分析普通实验难以获得的物理学原理。在一系列研究中,它将测量质子大小,还将准确监控的。想要做到这一点,全截面弹性散射探测器就必须要捕捉到距大型强子对撞机光束非常近的距离产生的粒子。它由一组安放在称为“罗马罐”(Roman pot)的特制真空室的探测器组成。
“罗马罐”同大型强子对撞机的光束管道相连。8个“罗马罐”将被一对一对地置于CMS实验撞击点附近的四个地点。尽管从科学意义上讲这两次实验是独立的,但TOTEM实验将是CMS探测器和其他大型强子对撞机实验所获结果的有力补充。来自8个国家10所研究机构的50位科学家将参与TOTEM实验。
全截面探测器相关资料
尺寸:长440米,高5米,宽5米
重量:20吨
设计:“罗马罐”,GEM探测器和阴极条感应室
地点:法国塞斯(位于CMS附近)
LHCf实验将用于研究内部产生的前行粒子,作为在实验室环境下模拟的来源。宇宙射线是自然产生于的带电粒子,不断轰击地球。它们在与相撞,产生一连串到达地面的。研究大型强子对撞机内部撞击如何引起类似的粒子串有助于科学家解释和校准大规模宇宙射线实验,这种实验会覆盖数千公里的范围。来自4个国家10所研究机构的22位科学家将参与LHCf实验。
LHCf 探测器相关资料
尺寸:两个探测器,每个长30厘米,高80厘米,宽13厘米
重量:每个重40公斤
地点:瑞士梅林(位于附近)
强子对撞机LHC计划
LHC计划,由34个国家超过两千位物理学家所属的大学与实验室所共同出资合作兴建的。
LHC包含了一个圆周为27公里的圆形隧道,因当地地形的缘故位于地下50至150米之间。这是先前大型电子正子(LEP)所使用隧道的再利用,隧道本身直径三米,位于同一平面上,并贯穿瑞士与法国边境,主要的部分大半位于法国。虽然隧道本身位于地底下,尚有许多地面设施如冷却压缩机,通风设备,控制电机设备,还有冷冻槽等建构于其上。
加速器通道中,主要是放置两个质子束管。由超导磁铁所包覆,以液态氦来冷却。管中的质子是以相反的方向,环绕着整个环型加速器运行。除此之外,在四个实验碰撞点附近,另有安装其他的偏向及聚焦磁铁。
两个对撞加速管中的,各具有的能量为 7 TeV (兆兆,),总撞击能量达 14 TeV之谱。每个质子环绕整个储存环的时间为 89 微秒 (microsecond)。因为的特性,加速管中的是以粒子团(bunch)的形式,而非连续的粒子流。整个储存环将会有2800个粒子团,最短碰撞周期为 25 纳秒(nanosecond)。在加速器开始运作的初期,将会以轨道中放入较少的粒子团的方式运作,碰撞周期为 75 纳秒,再逐步提升到设计目标。
在粒子入射到主加速环之前,会先经过一系列加速设施,逐级提升能量。其中,由两个所构成的质子同步加速器 (PS)将产生50 MeV的能量,接着质子同步推进器 (PSB)提升能量到1.4GeV。而质子同步加速环可达到26 GeV的能量。低能量入射环(LEIR)为一离子储存与冷却的装置。减速器 (AD)可以将3.57 GeV的,减速到2 GeV。最后(SPS)可提升质子的能量到450 GeV。
60余名中国科学家(其中近四十人为台湾科学家)参与强子对撞机实验。在加速环的四个,分别设有五个侦测器在碰撞点的地穴中。其中仪器 ()与(CMS)是通用型的侦测器。其他三个(LHC侦测器(LHCb),大型离子对撞器(ALICE)以及全截面侦测器(TOTEM)则是较小型的特殊目标侦测器。 LHC也可以用来加速对撞,例如 铅(Pb)离子可加速到1150 TeV。 由于LHC有着对工程技术上极端的挑战,安全上的确保是极其重要的。当LHC开始运作时,磁铁中的总能量高达100亿(GJ),而中的总能量也高达725百万焦耳(MJ)。只需要10?7总粒子能量便可以使脱离,而丢弃全部的加速粒子可相当于一个小型的爆炸。
加速器通道中,主要是放置两个束管。加速管由超导磁铁所包覆,以液态氦来冷却。管中的质子是以相反的方向,环绕着整个环型加速器运行。除此之外,在四个实验碰撞点附近,另有安装其他的偏向及聚焦磁铁。
地球上最大的“粒子粉碎机”一路走来可谓多灾多难,现在又遇到了麻烦。两位美国公民对欧洲大型强子对撞机计划()提出了公诉,要求推迟这一“粒子粉碎机”开动的时间。他们声称,LHC可能产生危险的粒子或者,从而毁灭整个地球。
建造在瑞士欧洲粒子物理中心(CERN)的LHC眼看就要完工了,科学家希望它能在今年7月中旬开始运行。然而,3月21日,居住在夏威夷的Luis Sancho和Walter Wagner针对CERN和美国一些科研机构,向美国联邦地方法院提出了诉讼,要求在安全性得到证实之前,不启动LHC对撞计划。他们点名的美国科研机构包括能源部、国家自然科学基金会和芝加哥附近的。
和费米实验室不会对此发表评论,它们坚持认为这是一项应由司法部处理的法律案件。而CERN的一位发言人James Gillies则表示,这项诉讼要求是“彻底的胡说”。“LHC将在今年启动,并创造出各种关于宇宙的激动人心的新物理学认识。”他补充道,“从现在开始一年之后,世界还在那里。”
将把质子加速到具有巨大的能量并进行对撞“粉碎”,从而模拟大爆炸后不足十亿分之一秒的情况。物理学家希望借此来解开长期以来的重大和基本难题,比如为何存在质量(即验证)、空间是否隐藏着额外的等等
强子对撞机高能量对撞
欧洲大型强子对撞机在能量升级后进行了对撞实验
,科学家使用了最高能量进行对撞,目前强子对撞机已经达到能够模拟宇宙诞生的状态(曾经有人一度担心这个巨大的机器会制造出黑洞吞噬地球)。这些数据被对撞机四个探测器收集,并记录这一奇迹的诞生。在最新的一次对撞实验中,科学家使用1045万亿电子伏特的能量作用于铅离子,这是以往能量的两倍,实验等效温度达到数万亿度。达到宇宙大爆炸时期的模拟温度,重现137亿年前的宇宙诞生。
大型强子对撞机的科学家认为这是对撞机能量升级后的一次突破,在今年的对撞实验中,我们进入了探索宇宙早期物质的阶段。当宇宙大爆炸发生后,宇宙中的温度极高、密度极大,此时的宇宙就像沉浸在一种粒子汤中。这时宇宙粒子主要由夸克和胶子组成,之后逐渐形成了质子和中子。研究宇宙早期状态有助于我们解决宇宙演化的基本问题,欧洲核子研究中心总干事Rolf Heur指出,我们渴望最高能量对撞产生的极端环境,模拟宇宙大爆炸诞生。
宇宙大爆炸之后的1秒钟内,粒子环境变化非常快,夸克-胶子等离子体的存在时间仅为百万分之一秒,正式这一瞬间的变化,为宇宙质子和中子的形成奠定了基础。科学家下一步会继续增强铅离子的对撞能量,观察宇宙大爆炸后会出现何种变化,这些变化对的诞生有何积极的意义。这无疑是一个激动人心的时刻,我们有能力对早期的宇宙进行研究。
大型强子对撞机在两年前进入能量升级,这是目前世界上最强大的粒子加速器,升级后能量提升了近两倍,科学家正在向新物理学方向前进,我们有望发现隐藏的维度和暗物质奥秘。目前宇宙学仍然存在许多未解之谜,其中时空维度、暗物质、暗能量都是未知的。这台强子对撞机将为我们带来更多惊喜。[3]
强子对撞机迷你爆炸实验
创10万亿度高温
瑞士日内瓦附近的世界上最大的粒子加速器
消息,据《独立报》报道,科学家借助欧洲()成功完成了创造迷你版“”的实验,产生了一个温度为温度100万倍的火球。参与这个项目的英国科学家热烈庆祝了这个具有里程碑意义的实验。 大型强子对撞机创造了一个迷你版本的“宇宙大爆炸”。参与大型强子对撞机项目ALICE铅离子对撞实验的英国科学家都在庆祝对撞实验取得成功,这将开启研究的新世纪。“迷你大爆炸”是通过令铅离子高速撞击产生的,撞击产生的温度是太阳核心温度的100万倍,重现了大爆炸后宇宙的瞬间状况。
ALICE离子对撞实验项目英国小组成员、物理学家戴维·埃文斯博士说:“我们对这一成就激动万分。对撞实验产生了迷你版本的以及在实验中取得的有史以来的最高温度和密度。这个过程发生在一个安全、可控的环境内,生成了炽热和稠密的火球,温度超过10万亿度,即温度的100万倍。在这一温度下,连构成的质子和中子也被融化了,产生称为‘夸克与’的炽热而稠密的夸克与胶子汤。”
强大的磁体令铅离子以接近于的速度在地下数百英里的隧道内高速运转。铅离子以相反的两个方面飞行,最后聚焦变成一个狭长的光束,被迫在ALICE探测器内撞击。科学家希望,通过与胶子等离子体,可以让他们对强作用力有更多的了解。强作用力是自然界存在的四种基本作用力之一。
埃文斯说:“强作用力不仅使原子核牢牢地绑定在一起,而且还对它们98%的质量负责。我现在期待着研究大爆炸发生后瞬间构成宇宙的一小部分物质。”ALICE探测器是的组成部分。大型强子对撞机是世界上最大、能量最高的粒子加速器,旨在探究,它建在法国与瑞士边境地下一条16.7 英里(约合27公里)长的环形隧道内,由(Cern)负责管理。
强子对撞机卫星图假想
强子对撞机
欧洲卫星图
然而,Sancho和Wagner的诉讼提出了一些理论假想――可能制造出吞没地球,比如“杀手奇异子”(一种包含非通常夸克的物质)。如果一种奇异子十分稳定并且带有负电,那它们就有可能“吃”普通物质的,并将其转变为奇怪的物质。最终,一系列危险的连锁反应会毁灭整个地球和每一个人。
实际上,2003年的关于LHC安全性的评审报告就认为,“它没有导致任何可能的威胁出现的基础”。尽管该报告承认,该加速器有微小几率能创造出短暂的或者,从而破坏普通原子的质子,但它得出结论认为,任何一种假想的情况都不会导致灾难。而一个更新版本的安全评估报告很快也会发布,此外,物理学家还打算在4月6日CERN的一个招待会上讨论安全性问题。事实上,在美国Brookhaven当年兴建“”(RHIC)时,Wagner就提出过类似的利害关系。Gillies说:“RHIC于2000年就开始运行了,我们现在还不是好好的。”此外,他补充道,比LHC高得多的能量碰撞在自然界也频繁发生,能以接近穿过周围。月球已经经历了50亿年的这种碰撞影响,也没有被哪个贪婪的或者杀手奇异子毁灭。
然而,Sancho和Wagner认为,CERN的安全性评审“马马虎虎”,低估了潜在的风险,而且上述的宇宙射线辩解也是误导性的。他们在诉讼文件中称:“被告不经意间将创造出一种危险的物质形式……或者不安全的物理学环境状态,这种影响在范围上可能同是局部和国家层面的,并且波及每一个人。这是毫无疑问的。”
强子对撞机建设意义
大型强子对撞机将两束质子分别加速到14TeV(14万亿电子伏特)的极高能量状态,并使之对撞。其能量状态可与后不久的状态相比。粒子物理学家将利用质子碰撞后的产物探索物理现象,例如,寻找标准模型预言的希格斯粒子、探索超对称、额外维等超出标准模型的新物理。
或许有人会认为,像高能物理学领域高深的理论研究与我们的日常生活没关系,花费数十亿美元有些不值得。100多年前,爱因斯坦发现了质能,那就是质量与能量可以互相转化。许多人也认为这个方程毫无用处。但是,以这种理论指导而研制出来的原子弹,让人们见识了高能物理的可怕之处。随后,核能用于发电,又让人们认识到真正改善了我们的生活。
LHC可以使人类的科学技术迈进一大步。例如,反物质的形成与合成将变得可能。寻找到反物质及其合成方法,将有可能解决我们的能源危机问题,并且成为太空旅行和星际旅行的首选燃料。反物质拥有难以置信的力量,仅仅是少量的反物质,其与物质湮灭所产生的能量就可以与几百万吨当量的核弹相提并论。(物质与反物质的湮灭质能转化率为100%,是核弹的几十倍。)将来有一天,不但人类可以乘坐反物质推动的飞船遨游太空,家里的电器使用的也将来自反物质发电厂。
此外,在建造这个大型实验装置的过程中,科学家已经获得了许多科研成果,已经改善了人们的生活。比如,人们今天常用的最初就是欧洲核子研究中心的科学家为了解决数据传输问题而发明的。另外,强子对撞机还将带来一些意想不到的科研成果,譬如改进癌症治疗、摧毁核废料的方法以及帮助科学家研究气候变化等。现有的放射疗法可能会在杀死癌细胞的同时伤害周围的健康组织,对撞机产生的高能粒子束能够将这种伤害降到最低,因为它们能够穿过健康组织,只对肿瘤发挥作用。一些气象学家表示,如果发现高能粒子束促成了云的形成,人们将来可以通过控制宇宙射线来改变气候。[4]
.科技讯[引用日期]
.人民网.[引用日期]
.腾讯[引用日期]
.网易[引用日期]
企业信用信息大型强子对撞机到底能不能撞出反物质和黑洞?
E-mail推荐:&&
点击播放按钮,可以“听”新闻
    大型强子对撞机(LHC)的启动游戏“”了3年。  欧核中心的这个大家伙在今年3月末实施了7万亿电子伏特的质子束流对撞,这场迄今最高能量的质子束流对撞试验,用于模拟137亿年前宇宙大爆炸之后的最初状态。而今距当日对撞已近一个月,人们对结果翘首以盼:究竟有没有撞出什么不寻常之物?上帝粒子?反物质?抑或小型?  据近日欧核中心官方网站、《新科学家》杂志及物理学家组织网对大型强子对撞机(LHC)的有关报道称,LHC上的巨大的超导环场探测器(Atlas)首战告捷,报告发现了W玻色子;而物理学家们以场方程显示,LHC发生的高能对撞绝对可能会形成黑洞;至于揭去反物质这层神秘面纱,研究人员相信LHC实验,应是目前最有潜力的挑战者。  W玻色子:上帝粒子的影子  大型强子对撞机就像是科学界的巴别塔,地球人都知道它要寻找一种“上帝的粒子”。  “零自旋”的希格斯玻色子,之所以被认为非常重要,是因其惯性质量源头的身份:若该粒子出现,物质质量起源之谜也将会揭开;若该粒子不存在,理论上只能要求所有粒子无一例外,必须完全没有质量,这无疑与现的实验观察相矛盾。  寻找它的方法是制造一个宇宙大爆炸发生后的模拟环境:比深空还要冷的温度、粒子接近光速的飞行、以及对撞机发出的强大能量。现在,LHC巨大的超导环场探测器(Atlas)首战告捷,在物理程序启动几天后,Atlas报告它首次发现了W玻色子。  希格斯玻色子已预计会衰变为W玻色子。因此,“W玻色子真的非常关键。”物理学家安德烈亚斯?霍克表示。领导Atlas研究团队的法比奥拉?吉亚纳蒂亦十分欣慰于W玻色子的出现迹象,这能使探测器快速认出新粒子,同时证明“大家伙”及其探测器都工作得很好。  W玻色子并非前所未见,在其他对撞机实验上早已露过脸。LHC的竞争对手――美国伊利诺伊州巴他维亚费米实验室2007年就曾对W玻色子进行了质量测量,降低了人们对希格斯玻色子质量的预测上限。但对于LHC来讲,它的探测器在尝试去发现新粒子之前,必须重新发现一次已经建立起来的这一个。  自3月30日LHC以7兆电子伏特开始碰撞以来,研究人员致力于对轻子和中微子的测定,因为W玻色子瞬间即会衰变成为轻子和中微子。目前,Atlas的热量计和μ子探测仪器已检测到轻子(无论正电子还是μ子);中微子虽然不与探测器相互作用,但可以从衰变的总动量的不平衡推断出其存在。  根据爱因斯坦著名的质能方程(E=MC2),C为光速常量,为了找到大质量的粒子M,需要高能量E。如果在LHC模拟的极端状态下也无法找到希格斯玻色子,那么也许它根本就不存在,界本身毕竟要胜过所有实验与预测。&
(责任编辑:刘向(实习))
相关专题? ?
我要发表留言&&
&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&
&&&热图推荐
&&&精彩新闻
??????&?&&
&&&播客?视频
&&&探索?视界
&&&推荐专题?自然探索?地球故事?人类起源
???胡耀邦怎样选中温家宝 俞正声一句"恭请"显新风晚年华国锋并不像外界所说 温家宝传承胡耀邦啥作风
&&&无线?手机媒体
发短信上手机人民网

我要回帖

更多关于 反物质飞船 的文章

 

随机推荐