细胞自噬 缺失 细胞 异常缺失的细胞可能出现哪些异常

细胞自噬对神经性疾病的影响,神经病学论文_学术堂
| [ 学术堂-专业的论文学习平台 ]
您当前的位置: >
细胞自噬对神经性疾病的影响
时间: 来源:学术堂 所属分类:
  细胞自噬(autophagy)是指细胞内受损、变性或衰老的蛋白质和细胞器被运输到溶酶体,溶酶体对其进行消化降解,以胞质内自噬体出现为标志的细胞自我消化的过程(图1)。自噬在体内普遍存在,其在清除代谢废物和回收能量为细胞正常转运及提供能量的过程中发挥重要作用。
  根据细胞内底物进入溶酶体方式的不同,哺乳动物细胞自噬分3种主要方式:大自噬或巨自噬(macroautophagy)、小自噬(microautophagy)和分子伴侣介导自噬(chaperone - mediated autophagy,简称CMA)。大自噬是最主要的自噬形式,在大自噬中由膜包绕待降解物,形成自噬体后与溶酶体融合并且降解其内容物;在小自噬中,溶酶体膜直接内陷包绕长寿命蛋白等并在溶酶体内降解,没有自噬小体形成的过程;分子伴侣介导自噬为胞浆内蛋白结合到分子伴侣后转运到溶酶体中,被溶酶体酶消化。CMA的底物是可溶性蛋白分子,因此CMA降解途径在清除蛋白质时是有选择性,而前两者无明显的选择性。通过此3种自噬途径降解细胞内产物的过程,称为自噬溶酶体途径(autophagy- lysosomepathway,ALP)。此过程中涉及到的囊泡样结构统称为自噬囊泡(autophagic vacuoles,AVs)。
  所有细胞中都存在低的基础水平自噬,执行自身稳定的基本功能,比如蛋白质和细胞器更新。当细胞需要营养和能量时自噬会迅速上调,例如在饥饿、生长因子缺乏、能量需求,细胞更新或者细胞内出现过多的代谢废物时;或是在氧化性应激、感染或者蛋白质聚集体异常堆积时;营养状况、激素水平和其他的因素如温度、氧气浓度和细胞密度在[1-4]自噬的调节中都有重要作用 .
  自噬的分子发生机制和信号调控机制非常复杂且高度的保守,自噬是一种选择性的降解途径。异常的蛋白质聚集体、受损细胞器或病原体可被选择性地加入到自噬体中,并运输到溶酶体进行降解。
  其中,mTOR和Beclinl作为各种调控通路的集中点发挥了至关重要的作用。而且这个阶段中有两种激酶有可能发挥重要作用:丝氨酸/苏氨酸蛋白激酶哺乳动物雷帕霉素靶蛋白(mammalian target of rapamycin,mTOR)和III型 磷 脂 酰 肌 醇 3-激 酶 ( phosphatidylinositol 3-kinase,PI3K)的复合物。
  1 自噬信号调控分子机制及相关通路
  1.1 mTOR - PI3K-Atg信号通路
  mTOR在调节细胞的生长、增殖、凋亡、自噬等方 面 具 有 重 要 作 用 . mTOR包 含 两 种 形 式 :mTORC1( mTOR、 rapor、 mLST8和 PRAS40) 和mTORC2(mTOR、mLST8、rictor和mSIN1)。前者[5]主要调节细胞的生长、凋亡和细胞自噬 ,后者与细胞骨架蛋白构建和细胞存活有关。由于mTORC1与细胞自噬关系最紧密,故文中所涉及的mTOR指mTORC1.mTOR作 为 自 噬 相 关 基 因 ( autophage relatedgenes,Atg)蛋白的上游蛋白,是一种与信号转导第一步相关的进化保守的激酶。用激动剂刺激mTOR后,自噬被抑制;当mTOR受到抑制时激活自噬,如营养缺乏时。当mTOR被正常激活时,磷酸化Atg13阻止它与Atgl结合。而Atgl是哺乳动物unc-51-样激酶I(unc-51-like kinase I,ULKI)的酵母同源体 . Atg13是 Atgl复 合 物 的 调 节 亚 单 位 , Atgl和ULKI分别在果蝇和哺乳动物细胞自噬体的形成是必需的。但对自噬诱导起最直接、最重要作用的还中是ULKI,有研究表明哺乳动物细胞ULKI在mTOR 的下游发挥作用。
  PI3K在自噬体形成的核化过程中发挥调控作用。这种酶复合物有3种高度保守的蛋白质:蛋白激酶空泡蛋白分选(vacuolar protein sorting,Vps)-[6-7]15,Vps34和Beclin1/Atg6 .
  由于P13K与磷脂酰肌醇3-磷酸盐的形成有关,推断它能够募集Atg蛋白到自噬体膜上。自噬体的形成涉及2种泛素化系统,分别是Atg12-Atg5-Atg16和LC3-Ⅱ-磷脂酰乙醇胺(phosphatidylethanolamine,PE)复合物系统。Atg蛋白是两种进化保守的泛素样结合系统中的一部分,并且在酵母和哺乳动物的自噬体的延长和完成中有重要作用。LC3前体被Atg4B加工为LC3-Ⅰ,通过Atg5和Atg3催化,细胞溶质的LC3-I转变成为一种膜结合形式即LC3-II.LC3-II相当于酵母中的Atg8,LC3-II是哺乳动物细胞的典型自噬体标志物。LC3能与PE结合,这种结合可被Atg4B分解。
  胰岛素和胰岛素样生长因子(insulin-like growthfactor-1,IGF-1)通过PI3K/Akt/mTOR通路调节细胞自噬。细胞的能量状态也能介导mTOR影响细胞自噬。当葡萄糖饥饿时,ATP/AMP降低,AMPK激活,通过磷酸化激活TSC1/2复合物,进而抑制mTOR,上调细胞自噬。在哺乳动物细胞中营养缺乏可诱导LC3-II的形成。这种诱导水平通常具有细胞和组织依 赖 性 . 此 外 , Atg12-Atg5-Atg16有 助 于LC3/Atg8-PE的脂化和正确定位。
  1.2 Beclinl复合物
  Beclinl是酵母中的Atg6的同源基因,有4个结构域:与Bcl-2结合结构域(BH3)、螺旋-螺旋结构域(CCD)、进化保守结构域(ECD)与核输出结构域。Beclinl一般通过Bcl-2、mVps34、UVRAG、Bif-[8-9]
  1、Barker等因子的相互作用,调节细胞自噬水平 .
  Bcl-2是 凋 亡 抑 制 蛋 白 , 它 通 过 与 Beclinl的BH3结构域结合为复合物,抑制Beclinl诱导的细胞自噬。当氧化应激时,c-Jun N末端激酶使JNK1被激活,磷酸化Bcl-2,致Beclin1-Bcl-2复合物分离,[10]Beclinl被释放出来,激活细胞自噬 .mVps34也是细胞自噬激活因子,能与Beclinl的CCD和ECD结构域[10]结合成mVps34-Beclinl复合物,上调细胞的自噬 .
  而UVRAG能与Beclinl的CCD结构域结合,从而激活细胞自噬;也能加强Beclinl与mVps34相互作用提高mVps34的活性,上调细胞自噬。Bif-1能通过影响Beclinl而影响自噬活性,它通过UVRAG与Beclinl相互作用,激活mVps34活性,诱导细胞自噬 .2+1.3 RAGE-Ca /CaMKK-AMPK信号通路[12] 2+Son等 研究发现RAGE-Ca /CaMKK-AMPK信号途径介导自噬体的形成。抑制晚期的糖基化终末产物受体(receptorforadvancedglycationendproducts,RAGE),影2+响细胞内Ca 浓度和钙调蛋白依赖的蛋白激酶&( calmodulin-dependent protein kinase kinase-2+beta,CaMKK,是一种由Ca 激活的激酶)活性,减弱腺苷-磷&酸活化的蛋白激酶(AMP activatedprotein kinase,AMPK)信 号 及 自 噬 体 的 形 成 .2+AMP/ATP增加和Ca 升高磷酸化AMPK的THr172位点,激活AMPK,活化AMP,减少mTOR信号通路的[13]活性,促进AVs的形成及自噬发生 .
  在 神 经 变 性 疾 病 中 , 自 噬 -溶 酶 体 途 径(antophagy-lysosome pathway,ALP)和泛素-蛋白酶体系统(ubiquitin-proteasome system,UPS)在降解错误折叠及聚集蛋白方面起着重要作用,尤其是ALP在帕金森病(Parkinson' s disease,PD)等神经变性疾病的发生和发展过程中发挥着重要的作用,受到研究者的关注。尽管有关自噬的研究很多,但神经元中自噬的研究却非常有限。有研究表明在中枢神经系统基础水平的自噬受抑制可以造成泛素化蛋白的积累和神经退行性疾病。证据显示自噬参与的神经退行性疾病有阿尔茨海默病(AD),帕金森病(PD)和抑郁症等 .
  2& 自噬与神经性疾病
  2.1自噬与早老性痴呆(AD)
  AD是常见的一种神经退化性疾病,其特征是缓慢恶化的记忆障碍及认知功能缺失。AD的主要神经病理学表现是细胞外神经炎性斑(NPs),又称老年斑(SPa)、细胞内神经原纤维缠结(NETs)及神经元和神经突触缺失。老年斑主要由含有42个氨基酸残基的&-淀粉样蛋白(A&)多肽组成,是&-淀粉样蛋白前体(APP)蛋白水解产物,而神经原纤维缠结则是由神经元内高度磷酸化的细胞骨架相关蛋白tau蛋白聚集形成。由于自噬途径能够降解功能障碍的细胞器和/或异常折叠的蛋白质,因此,自噬在AD的发生发展中有调控作用。有研究发现自噬[16]溶酶体途径是细胞内APP降解主要方式 .
  有研究结果显示,在AD患者脑组织中有大量自噬体形成。自噬体形成于轴突的周围,而溶酶体主要在细胞核周围,自噬体通过轴突逆向运输至胞体,与溶酶体结合后被降解。正常情况下,自噬体可以快速被运送到胞体被降解,故在正常神经组织中极少见到自噬体的存在。而在AD患者,由于自噬体沿轴突的运输发生功能障碍,造成自噬体堆积。
  自噬溶酶体途径是产生A&重要过程之一。因为自噬体内富含A&多肽、APP、&分泌酶。这些新生的A&主要依赖于溶酶体进行去除,部分被释放至细胞外形成斑块。
  APP细胞外结构域(ECD)被&和&分泌酶切割释放其氨基末端(N末端)片段,细胞内结构域被&分泌酶切割,释放羧基末端(C末端)片段,最后产生A&。正常分泌A&90%的成分为A&40,10%是A&42,A&42比A&40有更强的疏水性、聚集性和神经毒性。早老素(PS-1)基因突变和自噬与AD发病相关基因包括有PS-1、PS-2基因和APP基因,其中PS-1基因突变占已发现AD基因突变的90% .有证据显示PS-l和AD之间通过自噬而联系。PS-1为&-分泌酶功能核心。在家族性AD脑组织中普遍有PS-l和PS-2基因突变,这些基因突变直接导致A&淀粉样蛋白斑块的积聚,尤其是A&42增多,引起AD症状 .
  除了自噬体的表达水平升高外,自噬体清除障碍也可能发挥更重要的作用,尽管细胞内有大量的溶酶体,但自噬体聚集于神经突末端无法去除。
  AD的APP突变体构建的转基因动物模型中,溶酶体的功能上调,表现是囊泡样结构增多,溶酶体特异性水解酶的转录和表达增高。而这种溶酶体功能改变常早于AD老年斑的形成和临床表现的出现,揭示该表现可能是AD发病的启动因素。因此很多学者提出了溶酶体功能异常在AD发病机制中可能的作用:神经元内吞溶酶体功能障碍,伴随AD的进展,出现溶酶体功能障碍,自噬囊泡及脑内A&积累。溶酶体内的水解酶溢出。造成神经元被降解,溶酶体内吞噬的待降解物被释放到细胞外,形成细胞外A&沉积。内吞途径诱导、功能障碍以及自噬途径都可导致溶酶体的异常。另外,随着晚期自噬囊泡与溶酶体的结合,在神经元中内吞通路在很大程度上表现和自噬途径合作。
  在AD发病过程中,自噬表现为抑制、激活还是功能障碍;自噬通过哪些通路影响神经元凋亡、坏死以及三者之间的联系分子有哪些;如何发挥自噬对神经元保护作用,同时不影响其他生命活动,以上问题的进一步阐明,将有助于更加深入了解AD的病理生理学过程,也将有益于发现AD治疗的新靶点和新策略。
  2.2 自噬与PD
  PD以黑质致密部多巴胺能神经元进行性、广泛性丢失为特点,以细胞内出现聚集的&-突触核蛋白的包涵体-Lewy小体(LBs)为病理标志的神经变性疾病。尽管PD患者多巴胺能神经元选择性丢失和&-突触核蛋白积聚的原因不清楚,但蛋白水解系统障碍[20]和氧化应激被认为是导致易聚集蛋白积聚的原因 .
  近来的研究认为,尽管LBs是神经变性的标志,但LBs的形成不是细胞死亡的原因,且在PD中LBs的形成可能代表一种细胞保护机制。而&-突触核蛋白的寡聚体和神经原纤维具有细胞毒性,可能是PD发病机制中的重要事件。&-突触核蛋白可能通过ALP途径发挥作用 .包括启动、触发、降解等在内ALP功能失常参与了PD发病及病理生理过程:①&-突触核蛋白的可溶性寡聚体形式可通过ALP的降解,主要可能与分子伴侣介导的溶酶体降解(CMA)途径有关;②野生型的&-突触核蛋白选择性移位到溶酶体中并通过CMA降解。突变型&-突触核蛋白与受体结合可能阻断了溶酶体对&-突触核蛋白摄入,并抑制了包括突变型仅&-突触核蛋白在内的CMA途径。 故突变型&-突触核蛋白和其他组分的聚集扰乱了细胞的稳态,导致了神经毒性;③在1-甲基4-苯基-1,2,3,6-四氢吡啶(MPTP)小鼠模型中发现溶酶体功能障碍并伴&-突触核蛋白聚集,溶酶体ATP酶(ATP13A2)突变阻断了导致自噬的执行并造成&-突触核蛋白的聚集;④由于PD中存在有线粒体功能障碍,这种障碍可能是启动大自噬的触发条件。有证据表明在PD细胞模型中有大自噬的激活 ;⑤衰老也是与蛋白控制系统功能失常相关的一个重要因素,因为在几乎所有的衰老器官中都发现了UPS和ALP活性降低。鉴于年龄是PD的一个主要危险因素,因此推测衰老的大脑对ALP的功能失常更为敏感。
  在PD患者中也观察到是蛋白而非&-突触核蛋白基因的突变,这有助于我们理解PD的不同致病机制。如一些突变蛋白,如DJ-1和PINK1,会导致线粒体的功能障碍以及加重氧化应激;其它的如UPS的 成 分 ( parkin或 UCH-L1)以 及 溶 酶 体 的ATPase(ATP13A2),也会增强蛋白降解进而改变在PD发病中的作用 .
  DJ-1是一种重要的保护性蛋白,在许多反应中发挥神经保护作用,如DJ-1基因缺陷增加对氧化应激的敏感性;过表达野生型DJ-1,可保护神经元抵抗氧化应激,提高HSP70的表达水平,抑制突变型&-突触核蛋白引起的蛋白聚集和细胞毒性。
  2.3 抑郁症与自噬
  抑郁症是一种情感性精神类疾病,临床表现为情绪低落,现已证实,抑郁症患者海马体积存在显着异常 ,表现为海马体积萎缩。海马主要参与情绪的控制和反应,是重要的情绪整合部位,其结构功能改变与抑郁症发病密切相关。故探讨抑郁症患者海马萎缩原因对于揭示抑郁症发病机制有重要的意义。
  抑郁症模型大鼠海马神经元内可现自噬体增多,自噬标志分子LC3-Ⅱ比例增多,Beclin- 1上调明显 .这均提示抑郁症大鼠海马神经元存在明显的细胞自噬,这可能是导致海马缩小的原因 .但凋亡和自噬二者关系复杂。海马神经细胞存在明显的细胞凋亡与自噬,两者在抑郁症发病中的关系需进一步深入研究。
  【参考文献】
  [1] Klionsky DJ.Autophagy:from phenomenology to molecularunderstanding in less than a decade[J].Nat Rev Mol CellBiol,):931-937.
  [2] Bl&zquez AB, Escribano-Romero E, Merino-Ramos T, et al. Stressresponses in flavivirus- infected cells: activation of unfolded proteinresponse and autophagy[J]. Front Microbiol, ): 266.
  [3] Mizushima N, Klionsky D.Protein turnover via autophagy:implications for metabolism [J]. Annu Rev Nutr, -40.
  [4] Rubinsztein DC, Gestwicki JE, Murphy LO, et al. Potential therapeutieapplications of autophagy[J].Nat Rev Drug Discov, ): 304-312.
您可能感兴趣的论文
短暂性脑缺血发作主要指因脑血管病变而导致颈动脉系统或者椎 - 基底动脉系统的..
我国是卒中高发国家,卒中是高发病率、高病死率、高 致残率的疾病,卒中患者中 ..
依据2010年全球疾病负担研究(GBD 2010)结果显示,脑卒中作为一个全球性的健康..
中风系危急重症,其来势凶猛,卒倒暴仆,不省人事;如疾风暴雨,风驰电掣,不可..
中风病是由于气血逆乱,产生风火痰瘀,导致脑脉瘀阻,临床以突然昏仆、不醒人事..
糖尿病周围神经病变(DPN),是糖尿病所致神经病变中最常见的一种。其发病率占神..
神经病学论文标签
返回上级栏目:靠它拿下诺贝尔奖:细胞自噬机制究竟是什么?_网易手机
靠它拿下诺贝尔奖:细胞自噬机制究竟是什么?
用微信扫码二维码
分享至好友和朋友圈
(原标题:靠它拿下诺贝尔奖:细胞自噬机制究竟是什么?)
科学家常常会在研究中突然发现,一些原本以为不重要的分子或细胞活动,其实对人体健康有着非常重要的影响。这些分子或细胞活动不仅普遍存在于人体中,而且正因为普遍存在的特性,才在各种正常及病理状态下发挥作用。图为自噬作用(autophagy)自噬作用(autophagy)是一个非常简单的细胞活动,字面上也很好理解:自己吃自己。总体上看,动物细胞是一个三层结构:最外面是细胞膜,中间是细胞质,细胞核被包裹在最里面。大部分功能性细胞器和生物分子都悬浮在细胞质中,因此,很多细胞活动都在细胞质中进行。由于生理生化反应多而复杂,经常产生大量残渣,致使细胞活动受到影响甚至停滞,在这种情况下,自噬作用就非常重要:将淤积在细胞质中的蛋白质等代谢残渣清除掉,恢复正常的细胞活动。清理细胞质能让细胞重获新生,对于神经细胞这类不可替换的细胞来说,这个过程尤为重要。神经细胞一旦分化成熟,就会保持当前状态,直到母体生物死去,它们没有其他方式来恢复和维护自身功能。细胞生物学家还发现,自噬作用还能抵御病毒和细菌的侵袭。任何躲过细胞外免疫系统,通过细胞膜进入细胞质的异物或微生物,都可能成为自噬系统的攻击目标。不论自噬过程启动过慢还是过快,或者出现功能障碍,都将导致可怕的后果。数百万克罗恩病(Crohn’s&disease,一种炎症性肠病)患者的患病原因,可能就是因为他们的自噬系统出现缺陷,无法抑制肠道微生物的过度生长;大脑神经细胞自噬系统的崩溃,则与阿尔茨海默病(Alzheimer's&disease)和细胞衰老有关。即使自噬系统运作良好,它仍可能对人体不利。当癌症病人接受了放疗及化疗后,自噬系统可能救活奄奄一息的癌细胞,使癌症无法根治。有时,自噬系统会为了生物体的整体利益,将病变细胞去除,但它偶尔又会热心过度,去除一些重要细胞,完全不理会这样做是否符合生物体的整体利益。过去10年,研究人员对自噬作用的机制已有了深入了解。基于这些认识,我们对细胞的运作机理更为了解,科学家也可能因此设计出控制自噬作用的药物。如果能人为控制自噬作用,很多医学难题也许就能迎刃而解,延缓衰老也不再是一个梦。细胞中的清洁工生物学上,多种生理过程都与“自噬”相关,但我们这里所讲的,是迄今研究得最清楚的一种自噬作用——巨自噬(macroautophagy)。当细胞质中的蛋白质、脂肪分子形成一片一片的双层膜结构,巨自噬过程就开始了。膜结构会自动卷曲,形成一个具有开口的小球,把周围的细胞质“吞”进去。此后,小球的开口逐渐封闭,成为自噬体(autophagosome),并向溶酶体(lysosome,细胞的废料处理工厂)靠拢,与之融合,把包裹着的分子倒入溶酶体的“消化液”中。经过消化,尚可利用的分子碎片将被送回细胞质,循环利用。作为一种时刻都在进行的细胞活动,科学家在20世纪60年代便注意到了自噬作用。当时,美国洛克菲勒大学的克里斯汀·德迪夫(Christian&De&Duve)等科学家开始用电子显微镜,观察细胞自噬过程。本文作者克利昂斯基和其他研究者(特别是日本国立基础生物学研究所的大隅良典及其合作伙伴,可惜他本人没给《环球科学》写文章)则在10年前,利用酵母研究自噬过程的分子机理。与高等动物相比,用酵母研究自噬作用要容易得多,因为在酵母中,很多参与或调控自噬作用的蛋白质,在进化过程中变化很小,与人体中的同类蛋白相差无几。正是凭借这种研究策略,科学家对自噬过程的机理有了更详细的了解。进化之初,自噬作用可能是细胞在养分不足时作出的反应,也可能是最原始的免疫反应,或两者皆是。但是,细胞为什么需要饥饿胁迫反应?试想一下,缺乏食物时,生物体会有怎样的反应:它的生理活动肯定不会立即停止,而是开始分解体内储存的营养物质。最先被分解的是脂肪细胞,如果一直没有食物供应,肌肉细胞最终也会被分解,为基本的生理活动提供能量。同样,当细胞缺乏养分时,它们也会分解自己的一部分,维持基本的生理活动。不论细胞的养分是否充足,自噬体始终处于活跃状态,也就是说,它一直在一点一点地吞噬细胞质,不断更新细胞质中的各种组分。但是,如果遇到养分不足、缺氧、生长因子缺乏等特殊情况,细胞就会组装更多的自噬体。因此,当细胞缺乏养分时,自噬体的活动就会增强,将细胞质中的蛋白质和细胞器(不管其功能正常与否)分解成可利用的养分和能量。如果自噬作用确实是从饥饿胁迫反应进化而来,那么在很早以前,它可能就是细胞不可缺少的一种功能。细胞有时会错误地装配功能性蛋白质,使这些蛋白完全丧失功能,造成更严重的功能障碍。因此,在出现故障之前,细胞就会把异常蛋白质除去——正是持续进行的自噬作用,让异常蛋白的浓度始终处于较低水平。自噬体不仅能将受损蛋白从细胞中去除,还能除去比蛋白质大得多的细胞器,如线粒体。在细胞中,线粒体是能量工厂,它会向细胞的其他部分发出信号,引发细胞凋亡(即细胞自杀)。虽然细胞会因为多种原因发生凋亡,但通常是为了顾及整个生物体的利益。如果机体内细胞过多,多余细胞就必须被清除;不能发挥功能的衰老细胞也必须自我毁灭,给更年轻、更健康的细胞让出位置;当一个细胞从正常状态转变为癌细胞时,也可能被诱导自杀,因此细胞凋亡是人体内最重要的抗癌机制。由于细胞凋亡受一系列复杂细胞活动的调控,而这些细胞活动又受到多种蛋白信号的严格调控,因此细胞凋亡又叫做细胞程序化死亡。然而,如果线粒体出现异常,在错误时间诱发细胞凋亡,则会带来一场灾难。发挥正常功能的过程中,线粒体会产生很多副产物:活性氧、氧离子及其他氧基分子片断。这些副产物极不稳定,受到它们的影响,线粒体可能泄漏一些信号蛋白,引发细胞调亡。换句话说,细胞中一个“零件”上的小瑕疵,也能在不经意间导致细胞死亡。偶然“牺牲”几个皮肤细胞也许没有太大影响,但如果记忆神经细胞死亡,就会造成不小的麻烦。自噬体就是细胞中的保险装置,专门阻止上述“失误”的发生。一旦有细胞器受损,自噬体就会将它们吞掉,送至溶酶体,确保不会发生非正常细胞凋亡或坏死。活性氧(reactive&oxygen&species)能与很多分子发生反应。在健康细胞中,活性氧的水平由抗氧化分子控制。然而,美国新泽西医学和牙科大学(University&of&Medicine&and&Dentistry&of&New&Jersey)的金胜侃(Shengkan&V.&Jin)认为,当线粒体遭到破坏时,它们释放出的活性氧会比平时多10倍,远远超出解毒系统的处理水平。大量的活性氧可能导致癌症,因为进入细胞核后,它们会引发基因突变。在这种情况下,自噬作用会清除异常线粒体,恢复细胞内的正常秩序。美国罗格斯大学的艾琳·怀特(Eileen&White)认为,自噬作用还能减轻癌细胞中的基因损伤,有助于预防新肿瘤的形成。自噬的“正反面”弄清了细胞凋亡的分子机制后,细胞生物学家不久又发现,细胞还能通过其他方式自杀。自噬作用立即成为首要关注对象。一个称呼的变化就反映了这段历史:细胞凋亡也叫I型细胞程序化死亡,而自噬作用有时被称为II型细胞程序化死亡(对于这种命名方式,科学界还存在着争议)。自噬作用能通过两种方式导致细胞死亡:一是自噬体不断消化细胞质中的组分,直至细胞死亡;另一种则是直接激发细胞凋亡。为什么防止细胞非正常死亡的生理过程,有时又会导致细胞死亡?在这个令人困惑的问题背后,很可能藏着一个绝妙的答案。细胞凋亡与自噬作用联系紧密,两者间保持着微妙的平衡。如果细胞器的损坏程度过于严重,超出自噬作用的控制范围,细胞就不得不死亡,以维护整个生物体的利益。随后,细胞可能以程序化死亡的方式结束生命:自噬过程一直进行,直到细胞死亡;或者发出信号,直接引发细胞凋亡,并把自噬作用作为诱导细胞死亡的备用系统。目前,最受关注但又极具争议的两个研究领域是:自噬作用与细胞凋亡如何关联;自噬作用本身是否应该被看作细胞死亡的一种途径。那么,自噬作用到底是保证细胞健康的途径,还是诱导细胞死亡的方式?科学家对自噬作用分子机理的研究,或许能解答这个问题。细胞中,一种叫做Beclin&1的信号蛋白,能诱发细胞的自噬作用,还能与抗凋亡蛋白Bcl-2结合。这两种蛋白质的结合或分开,决定着细胞的生死。其他科学家还发现,一个名为Atg5的蛋白对于自噬体的形成至关重要,它一旦进入线粒体,就能将一个自噬反应转变成凋亡反应。任何事物都有两面性,自噬作用也不例外。很早以前,我们就注意到,癌细胞偶尔能激发自噬作用,达到“自救”的目的。通常,抗癌疗法会诱导恶性细胞自杀,但在治疗过程中,放疗和化疗会诱发超常水平的自噬作用,赋予癌细胞抵抗治疗作用的能力。癌细胞还能利用自噬作用,解决养分不足的问题。一般来说,只有很少的养分能进入肿瘤内部,但养分缺乏会诱发自噬作用,让癌细胞分解生物大分子,延长自身寿命。科学家因此提出了一种抗癌策略:在放疗或化疗期间,抑制肿瘤内部的自噬作用。目前,用于这种疗法的药物已处于临床试验阶段。但值得注意的是,抑制自噬作用的同时,也可能使癌细胞内的基因突变增多,提高癌症复发的几率。要使这种疗法奏效,可能还需要对治疗策略做一些更精细的调整。激发自噬作用由于能清除细胞质中的残渣和失常细胞器,因此对于神经细胞这种长寿细胞,自噬作用显得尤为重要。如果自噬作用不能有效发挥,就可能引发阿尔茨海默病、帕金森病、亨廷顿病等神经退行性疾病,这3种疾病造成的大脑损坏都是不可修复的。阿尔茨海默病是最常见的痴呆症,仅仅在美国,就有450万患者。人体衰老过程中,脂褐素(lipofuscin)会在大脑细胞中累积。这种褐色物质是脂类与蛋白质的混合物,就像老年人皮肤上出现的黄褐斑。美国内森·S·克莱恩精神病学研究所的拉尔夫·A·尼克森(Ralph&A.&Nixon)认为,脂褐素的累积其实是一种信号:衰老的大脑细胞已无法有效清除细胞内的异常或受损蛋白。在阿尔茨海默病患者的神经轴突上,一种黄色或褐色色素(蜡样质,ceroid)也会不断累积。在蜡样质集中的部位,轴突会变得肿大,而阿尔茨海默病特有的淀粉样斑块则会在肿大的轴突周围形成。到目前为止,研究人员还没有完全弄清楚,蜡样质或它的前体物质是如何损害神经细胞的。但最新研究明确显示,在阿尔茨海默病发病早期发挥作用,促使淀粉样斑块形成的酶就存在于自噬体的外膜上。尼克森认为,在一定程度上,淀粉样斑块是由不完全的自噬作用造成的,正因为自噬作用不完全,神经细胞无法消化那些本应该被分解的物质(见下图)。利用电子显微镜,科学家拍摄到的阿尔茨海默病患者大脑中的斑块照片,证实了尼克森的观点:在最靠近斑块的那些神经细胞中,积累了大量“发育不良”的自噬体。这些斑块究竟是如何聚集在神经细胞周围的,科学家还没有定论。从这些结果来看,只要是促进自噬作用的措施,似乎都可能缓解阿尔茨海默病。遗憾的是,目前还没有人知道,假如一种疗法不能保证自噬体与溶酶体融合,而仅仅是激发阿尔茨海默病患者体内的自噬作用,是否会对病人有好处。不过,这样的疗法可能对亨廷顿病患者有效。科学家发现,一种用于抑制移植器官发生免疫排斥的药物——雷帕霉素(rapamycin,也叫西罗莫司)也能诱发自噬作用。目前,研究人员正在测试,雷帕霉素能否有效激发自噬作用,去除亨廷顿病患者体内的一种有害蛋白质。吞掉病原体既然自噬体能捕捉、销毁受损线粒体,它们是否也能以同样的方式,对付侵入细胞内部的寄生生物呢?科学家给出了肯定答案。最近,本文作者德雷蒂奇和两个日本研究团队(大阪大学的吉森保研究组与东京大学的笹川千寻研究组),几乎同时发现自噬作用能清除多种病原体:每年导致200万人死亡的结核分枝杆菌(Mycobacterium&tuberculosis,导致肺结核的病原体)、肠道病原体(如志贺氏菌及沙门氏菌)、A型链球菌(在人体内释放毒素,侵蚀身体组织)、鲜奶和乳酪中的李斯特菌(可引起脑膜炎和败血症)、被美国疾病控制与预防中心列为生物恐怖制剂的土拉弗朗西斯菌(Francisella&tularensis)、主要以艾滋病患者为宿主的弓形虫(Toxoplasma&gondii)等。然而,和癌细胞一样,一些微生物也有对付自噬作用的办法。嗜肺性军团杆菌(Legionella&pneumophila)是导致军团病的病原体,它很容易侵入人体细胞。如果嗜肺性军团杆菌被自噬体吞噬,它就会延迟甚至阻止自噬体与溶酶体融合。这样一来,被感染的自噬体不但不能帮助细胞去除病原体,反倒成为了细菌繁殖的场所,而且它包裹着的细胞质也成为了细菌的养料。细菌表现出的这种巧妙的进化策略,恰好证明自噬作用是人体阻挡病原体入侵的主要屏障,而且已在人体中存在了相当长的时间(因为病原体必须闯过这道屏障,才能存活下来)。HIV病毒则能利用自噬体,消灭人体免疫细胞。法国病原体及卫生生物技术研究中心的马丁·比雅德-皮埃查克孜克(Martine&Biard-Piechaczyk)和法国国家健康与医学研究院的帕特利斯·科多诺(Patrice&Codogno)的研究显示,健康免疫细胞(主要是CD4+&T细胞)也可能被HIV病毒间接杀死。HIV病毒进入细胞时,它会褪去外壳,而构成外壳的蛋白质会诱使附近细胞进行过度自噬,直至发生凋亡。就这样,通过激发周围细胞的自噬作用,HIV病毒快速杀死人体内的健康CD4+&T细胞。最终,免疫细胞大量死亡,艾滋病全面爆发。联手免疫系统科学家还发现,自噬作用不仅能直接清除病原体,还会参与免疫反应(见下图)。为了帮助细胞消灭病原体,自噬体会把病原体或与病原体相关的物质,送至细胞膜上的Toll样受体(toll-like&receptor,调控先天性免疫应答的蛋白质分子)。正常情况下,Toll样受体与病原体的结合位点要么在细胞外,要么在某些细胞器内,因此在细胞质中,病原体不会接触到Toll样受体。但自噬体却能把病原体及其组成部分,运载到结合位点,让Toll样受体与这些有害物质结合在一起,刺激细胞释放一种叫作干扰素(interferon)的化学物质,抑制病原体增殖。人体内的这种先天性免疫应答反应,能在第一时间抵抗感染,细胞根本不需要再做其他准备。自噬体也能参与特异性免疫反应,即获得性免疫(adaptive&immunity)。当病毒侵入细胞质,“哄骗”细胞制造病毒蛋白时,自噬体就会吞噬某些病毒蛋白,将它们送到另一种细胞器(膜上具有一种叫做MHC&II型分子的抗原呈递分子)中,进行部分销毁。MHC&II型分子与病原体碎片结合后,就会被运送到细胞表面,刺激免疫系统作出获得性免疫应答。与先天性免疫应答相比,虽然获得性免疫应答所需的时间较长,但针对性和有效性却高得多。延缓衰老自噬作用可能还决定着人类的寿命。很多人都认为,许多疾病(包括癌症和神经性疾病)的发病几率,都会随着年龄的增长而升高。这可能是因为,年龄增大后,自噬作用的效率降低了。按照美国阿尔伯特·爱因斯坦医学院(Albert&Einstein&College&of&Medicine)的安·玛丽亚·库尔沃(Ann&Maria&Cuervo)的说法,包括自噬作用在内的细胞系统,都会随着年龄的增长而逐步丧失功能,尤其是负责清除异常蛋白及细胞器的系统。它们的工作效率降低,会导致有害物质大量累积,最终引发疾病。
库尔沃认为,如果自噬作用效率降低,确实是造成年老体弱的首要因素,我们就可以解释为什么限制热量摄取,能延长多种实验动物的平均寿命了。动物摄取的食物越少(在保证基本营养供给的前提下),寿命就越长,人类可能也是如此。限制养料的供给(起始饥饿),细胞加速自噬,因此,当个体衰老时,限制热量的摄取,也许能提高自噬作用的效率。最新研究显示,如果能阻止自噬作用的效率降低,实验动物体内就不会有受损蛋白或细胞器的累积。我们曾以为,自噬作用只是细胞在养分不足时产生的应急反应,但现在已经意识到,它是影响人类健康的重要因素。对于自噬作用,很多科学家开始从多个角度进行研究,对认识也在不断深入。了解如何控制自噬作用,对于治疗疾病甚至延缓衰老进程,都具有重大意义。不过,能否利用好自噬作用,还取决于科学家对它的了解程度。
本文来源:中关村在线
责任编辑:"王晓易_NE0011"
用微信扫码二维码
分享至好友和朋友圈
加载更多新闻
热门产品:   
:        
:         
热门影院:
阅读下一篇
用微信扫描二维码
分享至好友和朋友圈

我要回帖

更多关于 自噬缺失 的文章

 

随机推荐