三羧酸循环的关键酶各步反应,关键酶,获得多少个atp

2014西南大学动物生物化学第三次作业答案-五星文库
免费文档下载
2014西南大学动物生物化学第三次作业答案
导读:纤维素的生物合成均需要&引物”存在,有何生物学意义?乙醛酸循环是有机酸代谢循环,它存在于植物和微生物中,或经糖异生途径转变为葡萄糖乙醛酸循环的生物学意义:(1)乙酰CoA经乙醛酸循环可,(2)乙醛酸循环是微生物利用乙酸作为碳源的途径之一,5.在体内ATP有哪些生理作用?(1)是机体能量的暂时贮存形式:在生物氧化中,ADP能将呼吸链上电子传递过程中所释放的电化学能以磷酸化生成ATP的方
一、改错题(注意:判断正误并加以说明)1. 淀粉,糖原,纤维素的生物合成均需要&引物”存在。对2. TCA 中底物水平磷酸化直接生成的是 ATP。错:TCA中底物水平磷酸化直接生成的是GTP,相当于一个ATP。3. 三羧酸循环的中间产物可以形成谷氨酸。对4.脂肪酸从头合成中,将糖代谢生成的乙酰 CoA 从线粒体内转移到胞液中的化合物是苹果酸。错:脂肪酸从头合成中,将糖代谢生成的乙酰 CoA 从线粒体内转移到胞液中的化合物是柠檬酸。5.肉毒碱可抑制脂肪酸的氧化分解。
错:肉毒碱可促进脂肪酸的氧化分解。二、问答题1. 糖代谢和脂代谢是通过那些反应联系起来的。(1)糖酵解过程中产生的磷酸二羟丙酮可转变为磷酸甘油,可作为脂肪合成中甘油的原料。(2)有氧氧化过程中产生的乙酰CoA是脂肪酸和酮体的合成原料。(3)脂肪酸分解产生的乙酰CoA最终进入三羧酸循环氧化。(4)酮体氧化产生的乙酰CoA最终进入三羧酸循环氧化。(5)甘油经磷酸甘油激酶作用后,转变为磷酸二羟丙酮进入糖代谢。2. 试说明丙氨酸的成糖过程。其实在人体内这是一个循环的过程:丙氨酸-葡萄糖循环肌肉中的氨基酸经转氨基作用将氨基转给丙酮酸生成丙氨酸;丙氨酸经血液运到肝。在肝中,丙氨酸通过联合脱氨基作用,释放出氨,用于合成尿素。转氨基后生成的丙酮酸可经糖导生途径生成葡萄糖。葡萄糖由血液输送到肌组织,沿糖分解途径转变成丙酮酸,后者再接受氨基而生成丙氨酸。丙氨酸和葡萄糖反复地在肌肉和肝之间进行氨的转运,故将这一途径称为丙氨酸-葡萄糖循环通过这个循环,既使肌肉中的氨以无毒的丙氨酸形式运输到肝,同时,肝又为肌肉提供了生成丙酮酸的葡萄糖。(1)丙氨酸经GPT催化生成丙酮酸;(2)丙酮酸在线粒体内经丙酮酸羧化酶催化生成草酰乙酸,后者经苹果酸脱氢酶催化生成苹果酸出线粒体,在胞液中经苹果酸脱氢酶催化生成草酰乙酸,后者在磷酸烯醇式丙酮酸羧激酶作用下生成磷酸烯醇式丙酮酸;(3)磷酸烯醇式丙酮酸循糖酵解途径至1,6-双磷酸果糖;(4)1,6-双磷酸果糖经果糖双磷酸酶-1催化生成6-磷酸果糖,在异构为6-磷酸葡萄糖;(5)6-磷酸葡萄糖在葡萄糖-6-磷酸酶作用下生成葡萄糖3. 琥珀酰 CoA 的代谢来源与去路有哪些?(1)琥珀酰 CoA 主要来自糖代谢,也来自长链脂肪酸的 ω-氧化。奇数碳原子脂肪酸,通过 氧化除生成乙酰 CoA,后者进一步转变成琥珀酰 CoA。此外,蛋氨酸,苏氨酸以及缬氨酸和异亮氨酸在降解代谢中也生成琥珀酰 CoA。 (2)琥珀酰 CoA 的主要代谢去路是通过柠
檬酸循环彻底氧化成 CO2和 H2O。琥珀酰 CoA 在肝外组织,在琥珀酸乙酰乙酰 CoA 转移酶催化下,可将辅酶 A 转移给乙酰乙酸,本身成为琥珀酸。此外,琥珀酰 CoA 与甘氨酸一起生成δ-氨基-γ-酮戊酸(ALA),参与血红素的合成。 4. 什么是乙醛酸循环,有何生物学意义?
乙醛酸循环是有机酸代谢循环,它存在于植物和微生物中,可分为五步反应,由于乙醛酸循环与三羧酸循环有一些共同的酶系和反应,将其看成是三羧酸循环的一个支路。循环每一圈消耗 2 分子乙酰 CoA,同时产生 1 分子琥珀酸。琥珀酸产生后,可进入三羧酸循环代谢,或经糖异生途径转变为葡萄糖乙醛酸循环的生物学意义:(1)乙酰 CoA 经乙醛酸循环可以和三羧酸循环相偶联,补充三羧酸循环中间产物的缺失。(2)乙醛酸循环是微生物利用乙酸作为碳源的途径之一。(3)乙醛酸循环是油料植物将脂肪转变为糖和氨基酸的途径。5. 在体内ATP有哪些生理作用?
(1)是机体能量的暂时贮存形式:在生物氧化中,ADP 能将呼吸链上电子传递过程中所释放的电化学能以磷酸化生成ATP 的方式贮存起来,因此ATP 是生物氧化中能量的暂时贮存形式。  (2)是机体其它能量形式的来源:ATP 分子内所含有的高能键可转化成其它能量形式,以维持机体的正常生理机能,例如可转化成机械能、生物电能、热能、渗透能、化学合成能等。体内某些合成反应不一定都直接利用ATP 供能,而以其他三磷酸核苷作为能量的直接来源。如糖原合成需UTP 供能;磷脂合成需CTP 供能;蛋白质合成需GTP 供能。这些三磷酸核苷分子中的高能磷酸键并不是在生物氧化过程中直接生成的,而是来源于ATP。  (3)可生成cAMP 参与激素作用:ATP 在细胞膜上的腺苷酸环化酶催化下,可生成cAMP,作为许多肽类激素在细胞内体现生理效应的第二信使。ATP是生命活动能量的直接来源。人体所有需要的能量几乎都是ATP提供的:心脏的跳动、肌肉的运动以及各类细胞的各种功能都源于ATP所产生的能量。没有ATP,人体各器官组织就会相继罢工,就会出现心功能衰竭、肌肉酸疼、容易疲劳等情况。(4)生物体各种生命活动能量的直接来源.(5)生物体内各种能量形式的转变都是以ATP为中心环节的(6)生物体内所有胃要消耗能量的生理活动,都由ATP水解提供(7)线粒体和叶绿体中生成的ATP都用于生物的耗能反应(8)生物生命活动的直接能源物质。三、论述题1. 为什么说三羧酸循环是糖、脂和蛋白质三大物质代谢的共通路?(1)三羧酸循环是乙酰 CoA 最终氧化生成 CO2和 H2O 的途径。(2)糖代谢产生的
碳骨架最终进入三羧酸循环氧化。(3)脂肪分解产生的甘油可通过有氧氧化进入三羧酸循环氧化,脂肪酸经β-氧化产生乙酰 CoA 可进入三羧酸循环氧化。(4)蛋白质分解产生的氨基酸经脱氨后碳骨架可进入三羧酸循环,同时,三羧酸循环的中间产物可作为氨基酸的碳骨架接受氨后合成必需氨基酸。所以,三羧酸循环是三大物质代谢共同通路。2. 1mol 甘油完全氧化成 CO2 和 H2O 时净生成可生成多少 mol
ATP?假设在外生成NADH 都通过磷酸甘油穿梭进入线粒体。甘油磷酸化消耗 -1ATP磷酸甘油醛脱氢,FADH2,
生成 2 ATP磷酸二羟丙酮酵解
生成 2 ATP磷酸甘油醛脱氢 NAD、NADH(H+)穿梭
生成 2 或 3 ATP丙酮酸完全氧化
15 ATP                        20 或 21 mol/LATP3. 血浆脂蛋白有哪两种分类?各种血浆脂蛋白的功能有什么特点? (1) 乳糜微粒(&0.95g/cm3),密度非常低,运输甘油三酯和胆固醇酯,从小肠到组织肌肉和adipose组织。 (2) 极低密度脂蛋白VLDL(0.95-1.006g/cm3),在肝脏中生成,将脂类运输到组织中,当VLDL被运输到全身组织时,被分解为三酰甘油、脱辅基蛋白和磷脂,最后,VLDL被转变为低密度脂蛋白。 (3) 低密度脂蛋白(LDL,1.006-1.063g/cm3),把胆固醇运输到组织,经过一系列复杂的过程,LDL与LDL受体结合并被细胞吞食。 (4) 高密度脂蛋白(HDL,1.063-1.210g/cm3),也是在肝脏中生成,可能负责清除细胞膜上过量的胆固醇。当血浆中的卵磷脂:胆固醇酰基转移酶(Lecithin cholesterol acyltransferase, LCAT)将卵磷脂上的脂肪酸残基转移到胆固醇上生成胆固醇脂时,HDL将这些胆固醇脂运输到肝。肝脏将过量的胆固醇转化为胆汁酸。4. 说明反刍动物丙酸代谢的意义。反刍动物体内的葡萄糖,约有50%来自丙酸的葡萄异生作用,其余的大部分来自氨基酸。可见丙酸代谢对于反刍动物是非常重要的,丙酸代谢中还需要维生素B12,因此反刍动物对这种维生素的需要比其它动物大,不过能瘤胃中的微生物能够合成并提供足量的维生素B12.5.常见的呼吸链电子传递抑制剂有哪些?它们的作用机制是什么? 能够阻断呼吸链中某一部位电子传递的物质称为电子传递抑制剂。利用专一性电子传递抑制剂选择性地阻断呼吸链中某个传递步骤,再测定链中各组分的氧化-还原态情况,是研究电子传递链顺序的一种重要方法。 常见的抑制剂列举如下几种。 ⑴鱼藤酮、安密妥以及杀粉蝶菌素A,它们的作用是阻断电子由NADH向辅酶Q的传递。鱼藤酮是能和NADH脱氢酶牢固结合
,因而能阻断NADH呼吸链的电子传递。鱼藤酮对黄素蛋白不起作用,所以鱼藤酮可以用来鉴别NADH呼吸链与FADH2呼吸链。安密妥的作用与鱼藤酮相似,但作用较弱,可用作麻醉药。杀粉蝶毒素A是辅酶Q的结构类似物,由此可以与辅酶Q竞争,从而抑制电子在呼吸链中的传递。 ⑵抗毒素A是从链霉菌分离出的抗菌素,它抑制电子从细胞色素b到细胞色素c1的传递作用。 ⑶氰化物、一氧化碳、叠氮化合物及硫化氢可以阻断电子由细胞色素aa3向氧的传递作用,这也就是氰化物及一氧化碳中毒的原因。单选题:ADDBDCDCBCABE
包含总结汇报、外语学习、旅游景点、专业文献、文档下载、办公文档、党团工作以及2014西南大学动物生物化学第三次作业答案等内容。
相关内容搜索第八章 糖代谢(作业答案)
第八章 糖代谢(作业答案)
一、名词解释
1.糖酵解过程(EMP途径):通过一系列酶促反应将葡萄糖转变为丙酮酸并伴有ATP生成的过程。 在无氧的条件下,葡萄糖或糖原分解成丙酮酸,进而还原为乳酸并释放少量能量的过程称为糖的无氧分解。这一过程与酵母菌使糖发酵的过程相似,又称为糖酵解,简称EMP途径。
2.三羧酸循环(TCA途径):反应从乙酰辅酶A与草酰乙酸缩合成含有三个羧基的柠檬酸为开始,最终以生成草酰乙酸而为循环,又称为柠檬酸循环,又称为Krebs循环,又称为TCA循环。
3.乙醛酸循环:是某些植物,细菌和酵母中柠檬酸循环的修改形式,通过该循环可以收乙酰CoA经草酰乙酸净生成葡萄糖。乙醛酸循环绕过了柠檬酸循环中生成两个CO2的步骤
4.磷酸戊糖途径:又称为磷酸已糖支路。是一个葡萄糖-6-磷酸经代谢产生NADPH和核糖-5-磷酸的途径。该途径包括氧化和非氧化两个阶段,在氧化阶段,葡萄糖-6-磷酸转化为核酮糖-5-磷酸和CO2,并生成两分子NADPH;在非氧化阶段,核酮糖-5-磷酸异构化生成核糖-5-磷酸或转化为糖酵解的中间代谢物果糖-6-磷酸和甘油醛-3-磷酸。
5. 糖异生作用:由非糖物质转变为葡萄糖或糖原的过程。
6. 叶绿体:藻类和植物体中含有叶绿素进行光合作用的器官。
7. 光合作用:绿色植物、藻类或光合细菌吸收光能,同化二氧化碳和水,制造糖类,同时释放氧气,这个过程叫做光合作用。
8. 光合磷酸化:在叶绿体ATP合成酶的催化下依赖于光的由ADP 和Pi合成的ATP过程。
9. 光反应:光合色素将光能转变成化学能并形成ATP 和NADPH的过程。
10. 暗反应:利用光反应生成的ATP和NADPH的化学能使CO2还原糖或其它有机物的一系列酶促过程。
11. 卡尔文循环(Calvin 循环):也称为还原戊糖磷酸循环和C3途径。它是在光合作用期间将CO2还原转化为糖的反应循环,是植物用于固定CO2生成磷酸戊糖的途径。
二、填空题:
1. α-淀粉酶;α-(1.6)糖苷键酶;β-淀粉酶。
2.甘油酸-3-磷酸脱氢酶;甘油酸-1.3-二磷酸。
3.线粒体内膜;CO2
4.线粒体;柠檬酸;柠檬酸合酶、异柠檬酸脱氢酶、α-酮戊二酸脱氢酶系
5. 异柠檬酸脱氢酶、α-酮戊二酸脱氢酶系;C1;C4
6.甘油磷酸穿梭、苹果酸-天冬氨酸穿梭;NADH
7.葡萄糖;细胞质
;类囊体膜
12.竞争性可逆
类胡萝卜素
15.甘油酸-3-磷酸
三、选择题
1.[ D ] 葡萄糖激酶主要在肝脏用于糖原合成。
2.[ B ] 糖酵解途径、戊糖磷酸途径、均在细胞质中进行,三碳循环在植物细胞的叶绿体中进行,只有三羧酸循环在线粒体中进行。
3.[C] 糖原磷酸解产生葡萄糖-1-磷酸,经糖酵解途径降解为2分子丙酮酸,产生2分子NADH、3分子ATP。2分子丙酮酸转化为2分子乳酸需消耗2分子NADH,因此可净得3分子ATP。
4.[ C ] 丙酮酸脱氢酶系需要6种辅助因子:TPP、硫辛酸、FAD、NAD+、CoA和Mg2+。因此FMN不是丙酮酸脱氢酶组分。
5.[ D ] 用于糖原合成的葡萄糖-1-磷酸首先要经UTP的活化。
6. [ D ] α-酮戊二酸氧化脱羧生成琥珀酰辅酶A,生成一分子NADH,经氧化磷酸化生成3分子ATP,琥珀酰辅酶A转变成琥珀酸,底物水平磷酸化生成1分子ATP,共4分子ATP。
10. .[ B ]
11. .[ D ] 苹果酸
草酰乙酸 ,生成一分子NADH,经氧化磷酸化生成3分子ATP;
α-酮戊二酸,生成一分子NADH,经氧化磷酸化生成3分子ATP;
琥珀酸 苹果酸 ,琥珀酸脱氢生成延胡索酸,生成一分子FADH2,经氧化磷酸化生成2分子ATP,延胡索酸加水生成苹果酸;
α-酮戊二酸琥珀酸,α-酮戊二酸氧化脱羧生成琥珀酰辅酶A,生成一分子NADH,经氧化磷酸化生成3分子ATP,琥珀酰辅酶A转变成琥珀酸,底物水平磷酸化生成1分子ATP,共4分子ATP。
四、问答题
1.动物氧化葡萄糖的过程中有哪些重要步骤?氧化―摩尔葡萄糖可以净得几个摩尔ATP?
答:动物葡萄糖氧化的重要步骤是:葡萄糖先磷酸化,然后变成磷酸丙糖,再进入三羧酸循环。1摩尔葡萄糖氧化可净得38(或32)摩尔ATP。
2.叙述ATP,ADP,AMP和柠檬酸在糖酵解和三羧酸循环的代谢调节控制中的作用。
答:ATP在糖酵解过程中激活已糖激酶,但是抑制磷酸果糖激酶和丙酮激酶,在三羧酸循环过程中抑制丙酮酸脱氢酶、柠檬酸脱氢酶。ADP在糖酵解过程中抑制已糖激酶,AMP在糖酵解过程中所起的作用和ATP相反,可激活磷酸果糖激酶和丙酮酸激酶,柠檬酸在糖酵解进抑制磷酸果糖激酶。
3.为什么说乙醛酸循环是三羧酸循环的支路?
答案:主要是因为乙醛酸循环与三羧循环有一些共同的酶系和反应,如下:
(1)乙酰CoA+草酰乙酸
顺乌头酸酶柠檬酸合成酶H2O柠檬酸 (2)柠檬酸异柠檬酸
苹果酸脱氢酶
(3)苹果酸+NAD+草酰乙酸+NADH+H+
4.何谓糖酵解?糖异生与糖酵解代谢途径有哪些差异?
答案:(1)糖酵解指无氧(或氧气不足)条件下葡萄糖或糖原分解为乳酸过程。
(2)糖酵解与糖异生的差别是:①糖酵解过程的三个关键酶由糖异生的四个关键酶代替催化反应。②作用部位,糖异生在胞液和线粒体,糖酵解则全部在胞液中进行。
5.糖异生与糖酵解途径是如何协调控制的。
答案:糖异生和糖果酵解两个途径中的各种酶的活性并不是具有高度的活性,而是相互配合的,许多别构酶的效应物在两个途径的协调中有重要作用:
(1)高浓度葡萄糖-6-磷酸抑制已糖激酶作用,而活化葡萄糖-6-磷酸酶,从而抑制了酵解,促进了糖异生。
(2)2,6-二磷酸果糖对决定葡萄糖分解和合成起着重要作用。
(3)在糖异生中由丙酮酸羧化酶调节丙酮酸到磷酸烯醇式丙酮酸,而在酵解中是由丙酮酸激酶调节。
(4)在酵解和异生两个途径的协调中,通常是一个途径开放,另一个途径关闭,从而避免消耗ATP的无效循环。
(5)另外,激素对糖异生及酵解途径亦有一定的协调作用。
6.试说明丙氨酸的成糖过程。
答案:丙氨酸成糖是体内很重要的糖异生过程。首先丙氨酸经转氨作用生成丙酮酸,丙酮酸进入线粒体转变成草酰乙酸。但生成的草酰乙酸不能通过线粒体膜,为此须转变成苹果酸或天冬氨酸,后二者到胞浆里再转变成草酰乙酸。草酰乙酸转变成磷酸烯醇式丙酮酸,后者沿酵解路逆行而成糖。总之丙氨酸成糖须先脱掉氨基,然后绕过“能障”及“膜障”才能成糖。
联系客服:cand57</生化作业_百度文库
两大类热门资源免费畅读
续费一年阅读会员,立省24元!
上传于||暂无简介
阅读已结束,如果下载本文需要使用1下载券
想免费下载本文?
定制HR最喜欢的简历
你可能喜欢阐述三羧酸循环(包括基本反应步骤和催化反应的酶,限速酶/关键酶及调控机制
毛毛塔塔177
学生物竞赛的同学么?三羧酸循环(TCA)也称为柠檬酸循环,是用于乙酰CoA中的乙酰基氧化成CO2的酶促反应的循环系统,该循环的第一步是由乙酰CoA与草酰乙酸缩合形成柠檬酸.乙酰CoA进入由一连串反应构成的循环体系,被氧化生成H2O和CO2.由于这个循环反应开始于乙酰CoA与草酰乙酸(oxaloacetic acid)缩合生成的含有三个羧基的柠檬酸,因此称之为三羧酸循环或柠檬酸循环(citrate cycle).在三羧酸循环中,柠檬酸合成酶催化的反应是关键步骤,草酰乙酸的供应有利于循环顺利进行.其详细过程如下:(1)乙酰-CoA进入三羧酸循环 乙酰CoA具有硫酯键,乙酰基有足够能量与草酰乙酸的羧基进行醛醇型缩合.首先柠檬酸合酶的组氨酸残基作为碱基与乙酰CoA作用,使乙酰CoA的甲基上失去一个h+,生成的碳阴离子对草酰乙酸的羰基碳进行亲核攻击,生成柠檬酰CoA中间体,然后高能硫酯键水解放出游离的柠檬酸,使反应不可逆地向右进行.该反应由柠檬酸合成酶催化,是很强的放能反应.由草酰乙酸和乙酰CoA合成柠檬酸是三羧酸循环的重要调节点,柠檬酸合成酶是一个变构酶,ATP是柠檬酸合成酶的变构抑制剂,此外,α-酮戊二酸、NADH能变构抑制其活性,长链脂酰CoA也可抑制它的活性,AMP可对抗ATP的抑制而起激活作用.(2)异柠檬酸形成 柠檬酸的叔醇基不易氧化,转变成异柠檬酸而使叔醇变成仲醇,就易于氧化,此反应由顺乌头酸酶催化,为一可逆反应.(3)第一次氧化脱羧 在异柠檬酸脱氢酶作用下,异柠檬酸的仲醇氧化成羰基,生成草酰琥珀酸的中间产物,后者在同一酶表面,快速脱羧生成α-酮戊二酸、NADH和co2,此反应为β-氧化脱羧,此酶需要Mg2+作为激活剂.此反应是不可逆的,是三羧酸循环中的限速步骤,ADP是异柠檬酸脱氢酶的激活剂,而ATP,NADH是此酶的抑制剂.(4)第二次氧化脱羧 在α-酮戊二酸脱氢酶系作用下,α-酮戊二酸氧化脱羧生成琥珀酰CoA、NADH·H+和CO2,反应过程完全类似于丙酮酸脱氢酶系催化的氧化脱羧,属于α?氧化脱羧,氧化产生的能量中一部分储存于琥珀酰CoA的高能硫酯键中.α-酮戊二酸脱氢酶系也由三个酶(α-酮戊二酸脱羧酶、硫辛酸琥珀酰基转移酶、二氢硫辛酸脱氢酶)和五个辅酶(tpp、硫辛酸、hscoa、NAD+、FAD)组成.此反应也是不可逆的.α-酮戊二酸脱氢酶复合体受ATP、GTP、NADH和琥珀酰CoA抑制,但其不受磷酸化/去磷酸化的调控.(5)底物磷酸化生成ATP 在琥珀酸硫激酶的作用下,琥珀酰CoA的硫酯键水解,释放的自由能用于合成GTP(三磷酸鸟苷 )在细菌和高等生物可直接生成ATP,在哺乳动物中,先生成GTP,再生成ATP,此时,琥珀酰CoA生成琥珀酸和辅酶A.(6)琥珀酸脱氢 琥珀酸脱氢酶催化琥珀酸氧化成为延胡索酸.该酶结合在线粒体内膜上,而其他三羧酸循环的酶则都是存在线粒体基质中的,这酶含有铁硫中心和共价结合的FAD,来自琥珀酸的电子通过FAD和铁硫中心,然后进入电子传递链到O2,丙二酸是琥珀酸的类似物,是琥珀酸脱氢酶强有力的竞争性抑制物,所以可以阻断三羧酸循环.(7)延胡索酸的水化 延胡索酸酶仅对延胡索酸的反式(反丁烯二酸) 双键起作用,而对顺丁烯二酸(马来酸)则无催化作用,因而是高度立体特异性的.(8)生成苹果酸 (9)草酰乙酸再生 在苹果酸脱氢酶(malic dehydrogenase)作用下,苹果酸仲醇基脱氢氧化成羰基,生成草酰乙酸(oxalocetate),NAD+是脱氢酶的辅酶,接受氢成为NADH·H+三羰酸循环总结乙酰CoA+3NAD++FAD+GDP+Pi—→2CO2+3NADH+FADH2+GTP+2H+ +CoA-SH ①CO2的生成,循环中有两次脱羧基反应(反应3和反应4)两次都同时有脱氢作用,但作用的机理不同,由异柠檬酸脱氢酶所催化的β?氧化脱羧,辅酶是NAD+,它们先使底物脱氢生成草酰琥珀酸,然后在Mn2+或Mg2+的协同下,脱去羧基,生成α-酮戊二酸.α-酮戊二酸脱氢酶系所催化的α?氧化脱羧反应和前述丙酮酸脱氢酶系所催经的反应基本相同.应当指出,通过脱羧作用生成CO2,是机体内产生CO2的普遍规律,由此可见,机体CO2的生成与体外燃烧生成CO2的过程截然不同.②三羧酸循环的四次脱氢,其中三对氢原子以NAD+为受氢体,一对以FAD为受氢体,分别还原生成NADH+H+和FADH2.它们又经线粒体内递氢体系传递,最终与氧结合生成水,在此过程中释放出来的能量使adp和pi结合生成ATP,凡NADH+H+参与的递氢体系,每2H氧化成一分子H2O,每分子NADH最终产生2.5分子ATP,而FADH2参与的递氢体系则生成1.5分子ATP,再加上三羧酸循环中有一次底物磷酸化产生一分子ATP,那么,一分子柠檬酸参与三羧酸循环,直至循环终末共生成10分子ATP.③乙酰CoA中乙酰基的碳原子,乙酰CoA进入循环,与四碳受体分子草酰乙酸缩合,生成六碳的柠檬酸,在三羧酸循环中有二次脱羧生成2分子CO2,与进入循环的二碳乙酰基的碳原子数相等,但是,以CO2方式失去的碳并非来自乙酰基的两个碳原子,而是来自草酰乙酸.④三羧酸循环的中间产物,从理论上讲,可以循环不消耗,但是由于循环中的某些组成成分还可参与合成其他物质,而其他物质也可不断通过多种途径而生成中间产物,所以说三羧酸循环组成成分处于不断更新之中.
为您推荐:
其他类似问题
看看生化书就什么都有了。。。王镜岩的第三版大生化讲的非常详细。
扫描下载二维码

我要回帖

更多关于 三羧酸循环的酶 的文章

 

随机推荐