微纳3d金色金属材质参数3D打印技术应用:AFM探针

原标题:学术快报丨可编程纳米石墨烯;分子双层石墨烯;激光雕刻碳化物层应用;高压锂电池稳定聚合物电解质;3d金色金属材质参数3D打印孔隙消除机制

石墨烯纳米气泡(GNB)因可产生普通实验室磁体无法达到的强伪磁场而引起关注然而,GNB总是随机产生其大小和位置难以操纵,这限制了它们的潜在应用相关文献使用功能原子力显微镜(AFM)证明了制作可编程GNB的能力。AFM的精度有利于GNB的位置定义其尺寸和形状可通过AFM尖端的刺激偏差进行调整。通过调整尖端电压气泡轮廓可以逐渐从抛物线转换为高斯分布。此外独特的三重对称伪磁场模式具有单调的规律性,这在理论上昰先前预测的在GNB中直接观察到具有近似抛物线的轮廓。我们的研究可能提供了研究高磁场区域的机会其中二维材料具有设计的周期性。

双层石墨烯由通过范德华相互作用结合在一起的两个堆叠的石墨烯层组成作为双层石墨烯的分子类似物,分子双层石墨烯(MBLG)可以为雙层石墨烯的结构和功能特性提供有用的参考然而,需要离散组装两个石墨烯片段的MBLG的合成已被证明是具有挑战性的相关文献展示了兩个结构良好定义的MBLG的合成和表征,两者均由两个π-π堆叠的纳米石墨烯片组成。质谱分析显示这些MBLG具有双层结构并且当暴露于增强的噭光烧蚀时可以解离成相应的单层。核磁共振(NMR)光谱和单晶X射线衍射(SXRD)清楚地验证了它们的双层结构通过二维(2D)核过度使用者效應光谱(NOESY)揭示双层结构中的层间H···H接近。MBLG的双层结构对于变化的温度、浓度和溶剂是高度稳定的MBLG的吸收和发射显示出清晰的电子精細结构。研究发现MBLG显示出尖锐的吸收和发射峰并且进一步的时间分辨光谱研究揭示了这些MBLG中明亮和黑暗的Davydov状态的寿命截然不同。

激光雕刻超薄过渡3d金色金属材质参数碳化物层

具有高容量、高表面积和高导电性的超薄过渡3d金色金属材质参数碳化物是在储能、催化等领域有应鼡前景的材料然而,缺乏大规模应用、成本高且无前体制备超薄碳化物的方法限制了它的用途相关文献报道了使用CO2激光在多功能基板仩制造超薄碳化物(MoCx、WCx和CoCx)的直接图案方法。激光雕刻的多晶碳化物(孔径大、10~20nm壁厚~10nm结晶度)显示出高能量储存能力,分级多孔结構与比MXenes和其他激光烧蚀碳材料更高的热弹性由MoCx制成的灵活超级电容器x表示宽温度范围(-50~300°C)。此外雕刻的微观结构赋予碳化物网格哽强的可见光吸收,为蒸汽产生提供较高太阳能收集效率(~72%)基于激光、可扩展、弹性和低成本的制造工艺提供了一种构造碳化物忣其后续应用的方法。

在高压锂电池中稳定聚合物电解质

Li/Na阳极电化学电池研究正开发其高能电池的潜力基于醚化学的液体和固体聚合物電解质是可充电Li/Na电池最有前途的选择。然而这些电解质在低阳极电位下,不受控制的阴离子聚合和阴极化学物的工作电位下的氧化降解巳经导致该领域的发展受限基于聚合物电解质的低压或中压阴极固态/柔性电池只能在电池中实现。相关文献报道阳离子链转移剂可以通過阻止阳极上不受控制的聚合物生长来防止醚电解质的降解

3d金色金属材质参数3D打印过程中的孔隙消除机制

激光粉末床熔合(LPBF)是一种3D打茚技术,可以打印具有复杂几何形状的3d金色金属材质参数零件而不受传统制造路线的设计限制。然而由LPBF制造的部件通常比常规方法制慥的部件含有更多空隙,这严重恶化了部件的性能相关文献通过结合原位高速高分辨率同步加速器X射线成像实验和多物理场建模,揭示叻LPBF过程中孔隙运动和消除的动力学和机制发现由激光相互作用区域中的高温梯度引起的高热毛细管力可以在LPBF过程中快速消除熔池中的孔隙。

注:图片非商业用途存在侵权告知删除!

1.本文内容由中国粉体网旗下粉享家团队打造,转载请注明出处!

2.请尊重、保护原创文章謝绝任何其他账号直接复制原创文章!

原标题:学术干货 | 3D打印微纳功能器件典型案例共赏

3D打印(增材制造)这种层-层(Layer-by-layer)材料沉积的制造工艺在过去几年蓬勃发展。相对传统的切削加工和模具制造3D打印可鉯更好地创建复杂形状零件。目前新一代的3D打印技术主要集中在多功能打印方面即朝着能够产生完整的集成功能器件的方向发展。与此哃时纳米技术和3D打印的结合也为材料设计提供了一种新的思路,其在优化材料性能和提高材料多功能性方面具有巨大潜力通过3D打印技術来制备三维微纳结构的功能器件,各个课题组都做了很多讨论当然,关于这方面的文献也算是汗牛充栋这里就列举几个典型的成果。

Maling GouShaochen Chen等人设计了一种仿生3D解毒器件[1],他们通过3D打印技术制备具有3D结构的水凝胶并将具有解毒功能的聚丁二炔(PDA)纳米粒子打印在水凝胶矩阵中,从而制得仿生3D解毒器件纳米粒子可以感测、吸引毒素,而具有类似肝小叶微结构的3D水凝胶基质可以有效地捕获毒素如图1a所示。

图1.(a)PDA纳米颗粒(绿色)组装在PEGDA水凝胶基质(灰色)上;(b)动态立体光刻技术(DOPsL)技术示意图;(c)3D装置的激光共聚焦显微镜图像;(d)3D裝置的SEM图像比例尺50μm。

acid)纳米颗粒自组装为具有孔结构的蓝色和无色的PDA纳米颗粒由于PDA和毒素之间的相互作用,PDA可以起到吸引捕获和Φ和毒素的作用。之后通过动态立体光刻技术(DOPsL)技术制备仿生3D解毒器件图1b为该过程示意图,使用建模软件设计不同的图案然后转移箌精确控制的数字反射镜以产生虚拟微掩模(virtual micromasks)。所产生的图像投射到光固化性树脂在光投影面积内凝固,图案化的层仅一次曝光便可淛造该技术的分辨率高,成型快对于该实验则是将含有1%苯基-2,4,6-三甲基苯甲酰基次膦酸锂(lithium phenyl-2,4,6-trimethylbenzoylphosphinate)的PEGDA(20 wt%)在 H2O 中与PDA颗粒悬浮液(5?mg?ml-1)等体积混合。然后将混合物通过DOPsL技术光聚合成型

值得一提的是,肝脏具有以末端肝静脉为中心的六边形小叶结构这有助于从系统中有效地去除废物和异生物。他们据此设计了肝脏模拟结构图1c和1d分别示出了所制造的3D装置的激光共聚焦显微镜图像和SEM图像。他们的研究结果表明蝳素溶液经过这种仿生解毒装置处理后,完全失去毒性这项工作为解毒平台的发展提供了一种新的思路。

生物活性纳米复合材料支架

Zhang等囚报道了一种生物活性纳米复合材料支架[2]其可用于组织工程。他们通过FDM打印机将聚苯乙烯印刷为具有所需孔隙率(40%)的支架图2a展示絀了FDM的制造方式,该方法是热辅助制造方法其中印刷材料(通常为长丝的热塑性聚合物)在喷头内被加热至所需温度(接近其熔点),嘫后从喷嘴中挤出以逐层沉积的方式来构建三维结构。在沉积之后不久印刷材料冷却并固化,这种技术能够制造复杂的三维结构

图2. (a)FDM方法示意图;(b)(c)的圆柱形聚苯乙烯支架材料的光学显微镜图像侧视和俯视图;

(d)软骨支架的代表性SEM图像。

图2b和2c为制造的聚合粅支架光学图像的侧视图和俯视图使用内径为325μm的挤出喷嘴来制造直径为约~270μm的长丝3D支架,然后使用未固化的纳米复合材料包封制造的支架纳米复合材料包含有纳米羟基磷灰石(nHA),其晶粒长约50-100nm宽度约20-30nm。在8分钟的UV暴露下对包封的纳米复合材料进行光固化使用33vol%的d-柠檬烯(d-limonene)溶液将聚苯乙烯支架溶解并去除,得到3D交叉多孔网络结构图2d显示了多孔支架的SEM图像,所得孔的直径等于溶解的聚苯乙烯长丝的矗径FDM方法可以通过简单地改变喷嘴直径和挤出倍增器(extrusion multiplier)来灵活地制造具有期望孔隙率的3D多孔纳米复合材料微结构。仿生3D结构内的羟基磷灰石纳米颗粒的存在不仅有效地改善生物活性(即增加细胞粘附)而且还使所制造的支架的抗压强度的显着增强。例如与使用纯聚匼物制造的结构相比,添加60wt%的羟基磷灰石纳米颗粒导致纳米复合材料的压缩模量和抗压强度分别增加了61%和87%

哈佛大学Jennifer A. Lewis教授课题组报噵了一种3D打印的蜂窝复合材料[3],其是由纳米粘土片掺入填充环氧树脂构成的印刷过一种程如图3a,b所示他们采用了直接写入(DW, Direct-Write)技术首先制备具有流变行为的墨水,通过喷嘴挤出后以逐层堆积的方式构建结构。剪切变稀行为使得材料能够通过细小喷嘴挤出并且使材料具有足够高的弹性模量和屈服强度以保持其形状。

图3.(a)3D打印多孔复合材料的光学图像;(b)填料取向沉积的示意图;

(c)填料取向嘚三角形蜂窝结构的光学图像比例尺为500μm。

该实验将约5wt%的纳米粘土加入环氧树脂中构成粘弹性流体同时油墨中也填充有磨碎的碳纤維(直径和平均长度分别为0.65μm和12μm)和碳化硅晶须(直径和平均长度分别为10μm和220μm),其可用于进一步改善印刷部件的机械性能使用直徑为200μm~610μm的喷嘴制造具有约200μm的壁厚和2mm高度(等于20层)的复杂几何结构。纳米复合材料沿着印刷方向排列这些高纵横比的纤维显着影响複合材料的机械性能。图3c展示出了印刷结构的光学图像从中可看出填料的整齐排列。喷嘴内的剪切和拉伸流场被认为是填料取向的原因这种印刷诱导的取向可以提高机械性能。印刷的复合材料表现出高达约 24.5 GPa的杨氏模量其接近木材,是最好的商业印刷聚合物复合材料的兩倍并且比印刷的热塑性复合材料杨氏模量高一个数量级。

来自蒙特利尔综合理工学院的Daniel Therriault等人通过溶剂浇铸直写技术(SC-DW)制造了微流体通道和螺旋天线[4]将聚合物溶液墨水细丝通过微喷嘴挤出,之后快速蒸发溶剂制得微结构。在溶剂蒸发过程中由于局部较高的聚合物濃度,长丝的直径减小并且刚度随时间逐渐增加这种刚性梯度使得能够通过改变挤出喷嘴的移动路径来产生自支撑弯曲形状,在新挤出材料的低刚度区域中可发生细丝弯曲在大部分溶剂蒸发之后,挤出长丝由流体状态凝固这有助于沉积的特征的形状保持。

他们采用热塑性材料作为牺牲材料来制造复杂的微流体装置图4a显示了流体填充的微通道的荧光显微镜俯视图和侧视图。该微流体通道通过首先通过SC-DW技术打印PLA螺旋结构之后将其包装在环氧树脂中,并完全固化将样品在真空烘箱中加热,以解聚PLA并制备平滑的微流体通道

图4. (a)流体填充微通道的荧光显微镜俯视图和侧视图; (b) 3d金色金属材质参数涂覆PLA芯天线的光学显微镜图像

另外,他们还通过SC-DW技术构建了微螺旋天线通过沉积具有可变螺距的PLA螺旋,随后溅射~50μm铜层涂层来制造微小螺旋天线(20-30GHz)图4b示出了3d金色金属材质参数涂覆PLA芯天线的光学显微镜图像。

他们开發的SC-DW技术为微流体等微系统的制备提供了一种低成本高灵活性的路线。该技术的研究方向在于开发其它油墨(例如生物基和合成热塑性塑料,导电和机械自适应纳米复合材料)或者向着亚微米和纳米尺度延伸。

全组件3D打印锂离子电池

其打印过程如图5所示油墨从喷嘴茬由一个气动流体分配器控制的喷嘴中以中等速度喷出。由于墨水的粘弹性性质来自喷嘴的长丝可以连续和均匀地打印出来,并叠层逐層来构建设计结构首先将阴极和阳极结构印刷在玻璃基,并通过冷冻干燥和热退火处理去除电极中的溶剂和水并使GO还原;之后将液体电解质(1 M LiPF6 混合在碳酸乙烯酯和碳酸二乙酯中)注射到电极之间然后用聚二甲基硅氧烷膜来封装的。

图5. 三维印刷交叉电极的示意图(a)用LTO / GO油墨打印负极(黑色),SEM图显示电极是多孔的并且是由氧化石墨烯片组成;(b)用的LFP / GO墨打印的正极结构。印刷阴极和阳极电极构成交叉結构;(c)复合油墨在退火电极之间喷射;(d)电极表面的层-层结构插图为Fe元素映射,用以显示LFP分布;(e)该电极表面SEM放大图

在图5所礻的SEM图中可以看到,LFP / RGO复合材料的表面视图显示了电极是由一层层的打印丝构造而成(图5d)插图是铁(Fe)元素映射,它显示了LFP纳米颗粒在RGO基质中均匀分布较高放大倍数的图像(图5e)显示了外表面的SEM图,其表面较为平滑于此同时,对于电池电性能的研究表明完整的电池鈳以提供 117 和 91 mAh g-1的初始充放电容量并表现出良好的循环稳定性。

美国劳伦斯·利弗莫尔国家实验室的Marcus A. Worsley, Yat Li等人通过3D打印技术制备了三维石墨烯周期性复合气凝胶微晶格( aerogel microlattices)超级电容器[6]制备这些新型气凝胶的关键是制备可挤出的石墨烯氧化物基复合油墨以及设计3D打印的工艺使其适应氣凝胶的加工工艺。

该课题组利用基于挤压的三维印刷技术直接油墨书写( direct-ink writing,DIW)以制造高度可压缩石墨气凝胶微格子。DIW技术采用一个彡轴运动机构在室温下,通过挤压的连续“墨水”长丝组装三维结构3D-GCAS的制造工艺方案如图6所示。该复合油墨将GO悬浮液(40 mg·cm-3)GNP和二氧囮硅填料以及催化剂(R-F溶液与碳酸钠)混合,形成均匀的高粘性油墨然后,将复合油墨装入注射器管并通过微喷嘴挤出3D结构。最后該打印结果可以通过凝胶化,超临界干燥和碳化方法加工成气凝胶接着用氢氟酸二氧化硅蚀刻。

图6. 制造过程的示意图SiO2粉末、GNP和RF溶液加叺到的GO悬浮液,制备GO油墨GO油墨通过一个微喷嘴在异辛烷浴中挤出,以防止在印刷期间的结构的收缩印刷晶格在85℃下凝胶化过夜,然后鼡超临界二氧化碳干燥随后,该结构被加热到在氮气氛中1050℃保持3小时最后,该二氧化硅填料使用稀释的氢氟酸水溶液(5重量%)蚀刻掉比例尺为10mm。

3D打印石墨烯复合气凝胶(3D-GCAS)电极重量轻导电性高,且表现出优异的电化学性能特别是,使用这些3D-GCA电极制备毫米级厚度嘚超级电容器表现出优异的稳定性(ca. 90% 从 0.5到 10 A·g-1)和功率密度(>4 kW·kg-1)

以上就3D打印制备多功能微纳器件简单的做了几个举例。3D打印多功能复杂結构在制造行业确实具有重要作用例如用于MEMS,可拉伸/柔性微电子学传感器件,微天线和组织工程的部件为了实现3D打印多功能纳米复匼材料的全部潜力,仍然需要在材料和技术两个方面同时进步首先是材料的设计,实现微纳米器件功能性主要方法就在于如何去改性3D打茚 “墨汁”例如由于3D打印是一种层层堆积的制造技术,层与层之间的粘结紧密与否极大地影响了电极的机械性能因此对于材料的研究┿分重要。另外的一个研究方向就是对于3D打印工艺的研究即通过控制成形参数控制微观结构,以及如何设计硬件及软件实现更高分辨率的打印。

本文由材料人编辑部学术组mengya供稿江苏省激光产业技术创新战略联盟激光天地搜集整理!@

伦敦大学学院(UCL)、清华大学和丠京大学的博士生们采用乐高玩具和3D打印技术在北京研发了全球首台低成本原子力显微镜(AFM)。


原子力显微镜于1989年首次商用属于高精喥的扫描探针显微镜。它们都能够看到一毫米的万分之一 能观察的物体远远小于任何一台光学显微镜。商用AFM通常售价10万美元或者更多泹新设计的低成本版本,生产成本不到500美元

最近的LEGO2NANO活动,要求参加第三届中英暑期学校的学生们和经验丰富的创客、科学家在一个星期內开发出新型的低成本扫描探针显微镜


原子力显微镜臂端拥有一个锋利的尖端(探头),用于扫描样本表面当探头接近样本表面时,探头尖端与样本之间产生力引导显微镜臂的偏转。通常情况下是通过将悬臂表面的激光反射至一个光电二极管阵列,来测量悬臂的偏轉通过记录这些变化,从而构建纳米结构的三维图像

清华大学、北京大学和伦敦大学学院的团队与LEGO基金会发明、制造和推销他们的想法。其目标是世界各地的高中生可以用乐高、Arduino微控制器、3D打印的部件和消费级电子产品,研发可以使用的显微镜


该团队使用的零件主偠是乐高积木、3D打印的零件和从市场购买的电子元件。AFM被固定于一块3d金色金属材质参数板上外壳和隔板则用乐高积木。3D打印元件支架和掃描台确保尺寸适合。

最昂贵的部分是压电致动器几乎占了总成本的一半。压电致动器通过Arduino处理器进行控制当施加10V电压时,致动器將扫描台移动一个微米

学生团队将回到各自的学校继续AFM的研发,改进他们设计的纳米级革命性产品

UCL纳米科技伦敦中心的主任Gabriel Aeppli,说:“低荿本科学设备,不仅在高校很有用而且对于发展中国家的医院和诊所也具有非常重要的意义。”

我要回帖

更多关于 3d金色金属材质参数 的文章

 

随机推荐