同相输入加法电路如图题我所画,这题该不会是依据电场线的密度来判断abc三点的场强大小可是当我画出来时却发现a和c两点

1、关于电场强度定义式0/q F E =下列说法中哪个是正确的? [ ]

的大小与试探电荷q 0的大小成反比.

(B) 对场中某点试探电荷受力F

与q 0的比值不因q 0而变.

(C) 试探电荷受力F

的方向就是场强E 嘚方向.

(D) 若场中某点不放试探电荷q 0,则F =0从而E

2、电荷面密度分别为+σ 和-σ 的两块“无限大”均匀带电的平行平板,同相输入加法电蕗如图题放

x 变化的关系曲线为:(右为正、向左为负) [ ]

3、半径为R 的均匀带电球体其电场在空间各点的电场强度大小E 与距球心距离r 的关系曲线如下图,其中那个为正确 [ ]

4、半径为R 的“无限长”均匀带电圆柱面的电场中电场强度的大小E 与距轴线的距离r 的关系曲线为 [ ]

5、已知一高斯面所包围的体积内电荷代数和∑q =0,则可肯定[ ] (A) 高斯面上各点场强均为零. (B) 穿过高斯面上每一面元的电场强度通量均为零.

(C) 穿过整个高斯面的电场强度通量为零. (D) 以上说法都不对.

在奥赛考纲中静电学知识点数目不算多,总数和高考考纲基本相同但在个别知识点上,奥赛的要求显然更加深化了:如非匀强电场中电势的计算、电容器的连接和静電能计算、电介质的极化等在处理物理问题的方法上,对无限分割和叠加原理提出了更高的要求

如果把静电场的问题分为两部分,那僦是电场本身的问题、和对场中带电体的研究高考考纲比较注重第二部分中带电粒子的运动问题,而奥赛考纲更注重第一部分和第二部汾中的静态问题也就是说,奥赛关注的是电场中更本质的内容关注的是纵向的深化和而非横向的综合。

条件:⑴点电荷⑵真空,⑶點电荷静止或相对静止事实上,条件⑴和⑵均不能视为对库仑定律的限制因为叠加原理可以将点电荷之间的静电力应用到一般带电体,非真空介质可以通过介电常数将k进行修正(如果介质分布是均匀和“充分宽广”的一般认为k′= k /εr)。只有条件⑶它才是静电学的基本前提和出发点(但这一点又是常常被忽视和被不恰当地“综合应用”的)。

电场的概念;试探电荷(检验电荷);定义意味着一种适用于任何电场的對电场的检测手段;电场线是抽象而直观地描述电场有效工具(电场线的基本属性)

b、不同电场中场强的计算

决定电场强弱的因素有两个:場源(带电量和带电体的形状)和空间位置。这可以从不同电场的场强决定式看出——

结合点电荷的场强和叠加原理我们可以求出任何电场嘚场强,如——

⑵均匀带电环垂直环面轴线上的某点P:E =

,其中r和R的意义见图7-1

,其中r指考察点到球心的距离

如果球壳是有厚度的的(内径R1、外径R2)在壳体中(R1<r<R2):

,其中ρ为电荷体密度。这个式子的物理意义可以参照万有引力定律当中(条件部分)的“剥皮法则”理解〔

即为图7-2Φ虚线以内部分的总电量…〕

⑷无限长均匀带电直线(电荷线密度为λ):E =

⑸无限大均匀带电平面(电荷面密度为σ):E = 2πkσ

1、电势:把一电荷從P点移到参考点P0时电场力所做的功W与该电荷电量q的比值,即

参考点即电势为零的点通常取无穷远或大地为参考点。

和场强一样电势是屬于场本身的物理量。W则为电荷的电势能

以无穷远为参考点,U = k

由于电势的是标量所以电势的叠加服从代数加法。很显然有了点电荷電势的表达式和叠加原理,我们可以求出任何电场的电势分布

静电感应→静电平衡(狭义和广义)→静电屏蔽

1、静电平衡的特征可以总结为鉯下三层含义——

a、导体内部的合场强为零;表面的合场强不为零且一般各处不等,表面的合场强方向总是垂直导体表面

b、导体是等势體,表面是等势面

c、导体内部没有净电荷;孤立导体的净电荷在表面的分布情况取决于导体表面的曲率。

导体壳(网罩)不接地时可以实現外部对内部的屏蔽,但不能实现内部对外部的屏蔽;导体壳(网罩)接地后既可实现外部对内部的屏蔽,也可实现内部对外部的屏蔽

孤竝导体电容器→一般电容器

b、决定式。决定电容器电容的因素是:导体的形状和位置关系、绝缘介质的种类所以不同电容器有不同的电嫆

用图7-3表征电容器的充电过程,“搬运”电荷做功W就是图中阴影的面积这也就是电容器的储能E ,所以

电场的能量电容器储存的能量究竟是属于电荷还是属于电场?正确答案是后者因此,我们可以将电容器的能量用场强E表示

认为电场能均匀分布在电场中,则单位体积嘚电场储能 w =

E2而且,这以结论适用于非匀强电场

a、电介质分为两类:无极分子和有极分子,前者是指在没有外电场时每个分子的正、负電荷“重心”彼此重合(如气态的H2、O2、N2和CO2)后者则反之(如气态的H2O 、SO2和液态的水硝基笨)

b、电介质的极化:当介质中存在外电场时,无极分子会變为有极分子有极分子会由原来的杂乱排列变成规则排列,同相输入加法电路如图题7-4所示

2、束缚电荷、自由电荷、极化电荷与宏观过剩电荷

a、束缚电荷与自由电荷:在图7-4中,电介质左右两端分别显现负电和正电但这些电荷并不能自由移动,因此称为束缚电荷除了电介质,导体中的原子核和内层电子也是束缚电荷;反之能够自由移动的电荷称为自由电荷。事实上导体中存在束缚电荷与自由电荷,絕缘体中也存在束缚电荷和自由电荷只是它们的比例差异较大而已。

b、极化电荷是更严格意义上的束缚电荷就是指图7-4中电介质两端显現的电荷。而宏观过剩电荷是相对极化电荷来说的它是指可以自由移动的净电荷。宏观过剩电荷与极化电荷的重要区别是:前者能够用來冲放电也能用仪表测量,但后者却不能

第二讲 重要模型与专题

【物理情形1】试证明:均匀带电球壳内部任意一点的场强均为零。

【模型分析】这是一个叠加原理应用的基本事例

同相输入加法电路如图题7-5所示,在球壳内取一点P 以P为顶点做两个对顶的、顶角很小的锥體,锥体与球面相交得到球面上的两个面元ΔS1和ΔS2设球面的电荷面密度为σ,则这两个面元在P点激发的场强分别为

为了弄清ΔE1和ΔE2的大尛关系,引进锥体顶部的立体角ΔΩ,显然

即:ΔE1 = ΔE2,而它们的方向是相反的故在P点激发的合场强为零。

同理其它各个相对的面元ΔS3和ΔS4、ΔS5和ΔS6…激发的合场强均为零。原命题得证

【模型变换】半径为R的均匀带电球面,电荷的面密度为σ,试求球心处的电场强度。

【解析】同相输入加法电路如图题7-6所示在球面上的P处取一极小的面元ΔS ,它在球心O点激发的场强大小为

无穷多个这样的面元激发的场強大小和ΔS激发的完全相同但方向各不相同,它们矢量合成的效果怎样呢这里我们要大胆地预见——由于由于在x方向、y方向上的对称性,Σ

而且ΔScosθ为面元在xoy平面的投影,设为ΔS′

【答案】E = kπσ,方向垂直边界线所在的平面

〖学员思考〗如果这个半球面在yoz平面的两边均匀带有异种电荷,面密度仍为σ,那么,球心处的场强又是多少?

〖推荐解法〗将半球面看成4个

球面在x、y、z三个方向上分量均为

 kπσ,能够对称抵消的将是y、z两个方向上的分量,因此ΣE = ΣEx …

〖答案〗大小为kπσ,方向沿x轴方向(由带正电的一方指向带负电的一方)

【物理情形2】有一个均匀的带电球体,球心在O点半径为R ,电荷体密度为ρ 球体内有一个球形空腔,空腔球心在O′点半径为R′,

= a 同相输入加法电路如图题7-7所示,试求空腔中各点的场强

【模型分析】这里涉及两个知识的应用:一是均匀带电球体的场强定式(它也是来自叠加原理,这里具体用到的是球体内部的结论即“剥皮法则”),二是填补法

将球体和空腔看成完整的带正电的大球和带负电(电荷体密度相等)的尛球的集合,对于空腔中任意一点P 设

E1和E2的矢量合成遵从平行四边形法则,ΣE的方向同相输入加法电路如图题又由于矢量三角形PE1ΣE和空間位置三角形OP O′是相似的,ΣE的大小和方向就不难确定了

kρπa ,方向均沿O → O′空腔里的电场是匀强电场。

〖学员思考〗如果在模型2中的OO′连线上O′一侧距离O为b(b>R)的地方放一个电量为q的点电荷它受到的电场力将为多大?

〖解说〗上面解法的按部就班应用…

二、电势、电量與电场力的功

【物理情形1】同相输入加法电路如图题7-8所示半径为R的圆环均匀带电,电荷线密度为λ,圆心在O点过圆心跟环面垂直的轴線上有P点,

【模型分析】这是一个电势标量叠加的简单模型先在圆环上取一个元段ΔL ,它在P点形成的电势

段各段在P点形成的电势相同,而且它们是标量叠加

〖思考〗如果上题中知道的是环的总电量Q ,则UP的结论为多少如果这个总电量的分布不是均匀的,结论会改变吗

 ;结论不会改变。

〖再思考〗将环换成半径为R的薄球壳总电量仍为Q ,试问:(1)当电量均匀分布时球心电势为多少?球内(包括表面)各点電势为多少(2)当电量不均匀分布时,球心电势为多少球内(包括表面)各点电势为多少?

〖解说〗(1)球心电势的求解从略;

球内任一点的求解參看图7-5

注意:一个完整球面的ΣΔΩ = 4π(单位:球面度sr)但作为对顶的锥角,ΣΔΩ只能是2π 所以——

(2)球心电势的求解和〖思考〗相同;

球内任一点的电势求解可以从(1)问的求解过程得到结论的反证。

〖答〗(1)球心、球内任一点的电势均为k

 但其它各点的电势将随电量的分布情况的鈈同而不同(内部不再是等势体,球面不再是等势面)

【相关应用】同相输入加法电路如图题7-9所示,球形导体空腔内、外壁的半径分别为R1和R2带有净电量+q ,现在其内部距球心为r的地方放一个电量为+Q的点电荷试求球心处的电势。

【解析】由于静电感应球壳的内、外壁形成两個带电球壳。球心电势是两个球壳形成电势、点电荷形成电势的合效果

根据静电感应的尝试,内壁的电荷量为-Q 外壁的电荷量为+Q+q ,虽嘫内壁的带电是不均匀的根据上面的结论,其在球心形成的电势仍可以应用定式所以…

〖反馈练习〗同相输入加法电路如图题7-10所示,兩个极薄的同心导体球壳A和B半径分别为RA和RB ,现让A壳接地而在B壳的外部距球心d的地方放一个电量为+q的点电荷。试求:(1)A球壳的感应电荷量;(2)外球壳的电势

〖解说〗这是一个更为复杂的静电感应情形,B壳将形成图示的感应电荷分布(但没有净电量)A壳的情形未画出(有净电量),咜们的感应电荷分布都是不均匀的

此外,我们还要用到一个重要的常识:接地导体(A壳)的电势为零但值得注意的是,这里的“为零”是┅个合效果它是点电荷q 、A壳、B壳(带同样电荷时)单独存在时在A中形成的的电势的代数和,所以当我们以球心O点为对象,有

☆学员讨论:A殼的各处电势均为零我们的方程能不能针对A壳表面上的某点去列?(答:不能非均匀带电球壳的球心以外的点不能应用定式!)

基于刚才嘚讨论,求B的电势时也只能求B的球心的电势(独立的B壳是等势体球心电势即为所求)——

【物理情形2】图7-11中,三根实线表示三根首尾相连的等长绝缘细棒每根棒上的电荷分布情况与绝缘棒都换成导体棒时完全相同。点A是Δabc的中心点B则与A相对bc棒对称,且已测得它们的电势分別为UA和UB试问:若将ab棒取走,A、B两点的电势将变为多少

【模型分析】由于细棒上的电荷分布既不均匀、三根细棒也没有构成环形,故前媔的定式不能直接应用若用元段分割→叠加,也具有相当的困难所以这里介绍另一种求电势的方法。

每根细棒的电荷分布虽然复杂泹相对各自的中点必然是对称的,而且三根棒的总电量、分布情况彼此必然相同这就意味着:①三棒对A点的电势贡献都相同(可设为U1);②ab棒、ac棒对B点的电势贡献相同(可设为U2);③bc棒对A、B两点的贡献相同(为U1)。

取走ab后因三棒是绝缘体,电荷分布不变故电势贡献不变,所以

〖模型变换〗正四面体盒子由彼此绝缘的四块导体板构成各导体板带电且电势分别为U1 、U2 、U3和U4 ,则盒子中心点O的电势U等于多少

〖解说〗此处嘚四块板子虽然位置相对O点具有对称性,但电量各不相同因此对O点的电势贡献也不相同,所以应该想一点办法——

我们用“填补法”将電量不对称的情形加以改观:先将每一块导体板复制三块作成一个正四面体盒子,然后将这四个盒子位置重合地放置——构成一个有四層壁的新盒子在这个新盒子中,每个壁的电量将是完全相同的(为原来四块板的电量之和)、电势也完全相同(为U1 + U2 + U3 + U4)新盒子表面就构成了一个等势面、整个盒子也是一个等势体,故新盒子的中心电势为

最后回到原来的单层盒子中心电势必为 U =

☆学员讨论:刚才的这种解题思想是否适用于“物理情形2”?(答:不行因为三角形各边上电势虽然相等,但中点的电势和边上的并不相等)

〖反馈练习〗电荷q均匀分布在半浗面ACB上,球面半径为R CD为通过半球顶点C和球心O的轴线,同相输入加法电路如图题7-12所示P、Q为CD轴线上相对O点对称的两点,已知P点的电势为UP 試求Q点的电势UQ 。

〖解说〗这又是一个填补法的应用将半球面补成完整球面,并令右边内、外层均匀地带上电量为q的电荷同相输入加法電路如图题7-12所示。

从电量的角度看右半球面可以看作不存在,故这时P、Q的电势不会有任何改变

而换一个角度看,P、Q的电势可以看成是兩者的叠加:①带电量为2q的完整球面;②带电量为-q的半球面

其中 U半球面显然和为填补时Q点的电势大小相等、符号相反,即 U半球面= -UQ

以仩的两个关系已经足以解题了

【物理情形3】同相输入加法电路如图题7-13所示,A、B两点相距2L 圆弧

是以B为圆心、L为半径的半圆。A处放有电量為q的电荷B处放有电量为-q的点电荷。试问:(1)将单位正电荷从O点沿

移到D点电场力对它做了多少功?(2)将单位负电荷从D点沿AB的延长线移到无窮远处去电场力对它做多少功?

再用功与电势的关系即可

【相关应用】在不计重力空间,有A、B两个带电小球电量分别为q1和q2,质量分別为m1和m2被固定在相距L的两点。试问:(1)若解除A球的固定它能获得的最大动能是多少?(2)若同时解除两球的固定它们各自的获得的最大动能是多少?(3)未解除固定时这个系统的静电势能是多少?

【解说】第(1)问甚间;第(2)问在能量方面类比反冲装置的能量计算另启用动量守恒關系;第(3)问是在前两问基础上得出的必然结论…(这里就回到了一个基本的观念斧正:势能是属于场和场中物体的系统,而非单纯属于场中粅体——这在过去一直是被忽视的在两个点电荷的环境中,我们通常说“两个点电荷的势能”是多少)

〖思考〗设三个点电荷的电量分別为q1 、q2和q3 ,两两相距为r12 、r23和r31 则这个点电荷系统的静电势能是多少?

〖反馈应用〗同相输入加法电路如图题7-14所示三个带同种电荷的相同金属小球,每个球的质量均为m 、电量均为q 用长度为L的三根绝缘轻绳连接着,系统放在光滑、绝缘的水平面上现将其中的一根绳子剪断,三个球将开始运动起来试求中间这个小球的最大速度。

〖解〗设剪断的是1、3之间的绳子动力学分析易知,2球获得最大动能时1、2之間的绳子与2、3之间的绳子刚好应该在一条直线上。而且由动量守恒知三球不可能有沿绳子方向的速度。设2球的速度为v 1球和3球的速度为v′,则

解以上两式即可的v值

三、电场中的导体和电介质

【物理情形】两块平行放置的很大的金属薄板A和B,面积都是S 间距为d(d远小于金属板的线度),已知A板带净电量+Q1B板带尽电量+Q2,且Q2<Q1试求:(1)两板内外表面的电量分别是多少;(2)空间各处的场强;(3)两板间的电势差。

【模型分析】由于静电感应A、B两板的四个平面的电量将呈现一定规律的分布(金属板虽然很薄,但内部合场强为零的结论还是存在的);这里应注意金属板“很大”的前提条件它事实上是指物理无穷大,因此可以应用无限大平板的场强定式。

为方便解题做图7-15,忽略边缘效应四個面的电荷分布应是均匀的,设四个面的电荷面密度分别为σ1 、σ2 、σ3和σ4 显然

【答案】(1)A板外侧电量

;(2)A板外侧空间场强2πk

,方向垂直A板姠外A、B板之间空间场强2πk

,方向由A垂直指向BB板外侧空间场强2πk

,方向垂直B板向外;(3)A、B两板的电势差为2πkd

〖学员思考〗如果两板带等量異号的净电荷两板的外侧空间场强等于多少?(答:为零)

〖学员讨论〗(原模型中)作为一个电容器,它的“电量”是多少(答:

)如果在板間充满相对介电常数为εr的电介质,是否会影响四个面的电荷分布(答:不会)是否会影响三个空间的场强(答:只会影响Ⅱ空间的场强)?

〖學员讨论〗(原模型中)我们是否可以求出A、B两板之间的静电力〔答:可以;以A为对象,外侧受力

(方向相左)内侧受力

(方向向右),它们合成即可结论为F = 

【模型变换】同相输入加法电路如图题7-16所示,一平行板电容器极板面积为S ,其上半部为真空而下半部充满相对介电常数為εr的均匀电介质,当两极板分别带上+Q和?Q的电量后试求:(1)板上自由电荷的分布;(2)两板之间的场强;(3)介质表面的极化电荷。

【解说】电介質的充入虽然不能改变内表面的电量总数但由于改变了场强,故对电荷的分布情况肯定有影响设真空部分电量为Q1,介质部分电量为Q2顯然有

两板分别为等势体,将电容器看成上下两个电容器的并联必有

解以上两式即可得Q1和Q2。

关系求解比较常规(上下部分的场强相等)。

仩下部分的电量是不等的但场强居然相等,这怎么解释从公式的角度看,E = 2πkσ(单面平板)当k 、σ同时改变,可以保持E不变,但这是一種结论所展示的表象从内在的角度看,k的改变正是由于极化电荷的出现所致也就是说,极化电荷的存在相当于在真空中形成了一个新嘚电场正是这个电场与自由电荷(在真空中)形成的电场叠加成为E2,所以

请注意:①这里的σ′和Q′是指极化电荷的面密度和总量;② E = 4πkσ的关系是由两个带电面叠加的合效果。

【答案】(1)真空部分的电量为

Q 介质部分的电量为

〖思考应用〗一个带电量为Q的金属小球,周围充满楿对介电常数为εr的均匀电介质试求与与导体表面接触的介质表面的极化电荷量。

【物理情形1】由许多个电容为C的电容器组成一个同相輸入加法电路如图题7-17所示的多级网络试问:(1)在最后一级的右边并联一个多大电容C′,可使整个网络的A、B两端电容也为C′(2)不接C′,但无限地增加网络的级数整个网络A、B两端的总电容是多少?

【模型分析】这是一个练习电容电路简化基本事例

第(1)问中,未给出具体级数┅般结论应适用特殊情形:令级数为1 ,于是

第(2)问中因为“无限”,所以“无限加一级后仍为无限”不难得出方程

【解说】对于既非串聯也非并联的电路,需要用到一种“Δ→Y型变换”参见图7-19,根据三个端点之间的电容等效容易得出定式——

有了这样的定式后,我们便可以进行同相输入加法电路如图题7-20所示的四步电路简化(为了方便电容不宜引进新的符号表达,而是直接将变换后的量值标示在图中)——

【物理情形2】同相输入加法电路如图题7-21所示的电路中三个电容器完全相同,电源电动势ε1 = 3.0V ε2 = 4.5V,开关K1和K2接通前电容器均未带电试求K1囷K2接通后三个电容器的电压Uao、Ubo和Uco各为多少。

【解说】这是一个考查电容器电路的基本习题解题的关键是要抓与o相连的三块极板(俗称“孤島”)的总电量为零。

【伸展应用】同相输入加法电路如图题7-22所示由n个单元组成的电容器网络,每一个单元由三个电容器连接而成其中囿两个的电容为3C ,另一个的电容为3C 以a、b为网络的输入端,a′、b′为输出端今在a、b间加一个恒定电压U ,而在a′b′间接一个电容为C的电容器试求:(1)从第k单元输入端算起,后面所有电容器储存的总电能;(2)若把第一单元输出端与后面断开再除去电源,并把它的输入端短路則这个单元的三个电容器储存的总电能是多少?

【解说】这是一个结合网络计算和“孤岛现象”的典型事例

所以,从输入端算起第k单え后的电压的经验公式为 Uk =

再算能量储存就不难了。

(2)断开前可以算出第一单元的三个电容器、以及后面“系统”的电量分配同相输入加法電路如图题7-23中的左图所示。这时C1的右板和C2的左板(或C2的下板和C3的右板)形成“孤岛”。此后电容器的相互充电过程(C3类比为“电源”)满足——

电量关系:Q1′= Q3′

从以上三式解得 Q1′= Q3′=

 ,这样系统的储能就可以用

〖学员思考〗图7-23展示的过程中始末状态的电容器储能是否一样?(答:鈈一样;在相互充电的过程中导线消耗的焦耳热已不可忽略。)

我要回帖

更多关于 同相输入加法电路如图题 的文章

 

随机推荐