沼气的卩H值是多少

为探究农村生活垃圾厌氧消化过程及对H_2S产量的抑制,采用半连续完全混合式反应器,对农村生活垃圾进行半连续式厌氧消化试验,分析在不同有机负荷下厌氧消化系统中有机质嘚降解性能、产气性能及稳定性,确定生活垃圾厌氧消化最佳有机负荷同时设计生活垃圾与浓缩污泥不同配比的序批式厌氧消化试验,观察沼气中H_2S含量的变化。研究结果表明:有机负荷为4 g/(L·d)时,产甲烷率上升最为显著,系统稳定运行且生活垃圾的有机质利用率较高;随着浓缩污泥添加量的增加,H_2S含量降低明显,当生活垃圾与浓缩污泥的VS质量比(VSRSW∶VSCS)为1∶0.25,1∶0.5,1∶0.75时,H_2S的降解率分别达到85.15%,88.18%,96.20%生活垃圾与浓缩污泥的成分分析得出2种物料的金屬含量并无明显差异,但浓缩污泥中的腐殖质含量远远高于生活垃圾,进而判断污泥中的腐殖质含量一定程度的影响厌氧消化系统中H_2S的产量。(夲文共计8页)

:由可泵送有机材料生产沼气的發酵器的制作方法

由可泵送有机材料生产沼气的发酵器 本发明涉及根据权利要求1的由具有低含量有机干物质(oTS)的可泵送有机材料 生产沼气的發酵器 由于涉及可再生能源及其生产的讨论已经越来越成为公众关注的中心,因此对产 生沼气的发酵器的兴趣也日渐增加已知这样的發酵器使用于农业以及市政污水处理厂。 理论上这些发酵器以这样的方式运行的,将有机材料储存于封闭的容器中并且借助微 生物的活性,将包含在该材料中的有机碳化物转变成甲烷气体这些气体被抽出并且用于 产生热和/或产生电力。这样获得的能量基本上(A中性的這因为在燃烧过程中所 释放的二氧化碳通过植物光合作用已预先从大气中收回的。 接下来讨论将首先聚焦于发酵过程,为了生产沼气該过程发生于缺氧的情况 下。整个发酵过程可以分为几个阶段在第一阶段中,碳水化合物通过任选的并且必须的 微生物将包含在将要發酵的基质中的脂肪和蛋白质分解为低分子碳水化合物(CrCs体)。 在该过程中碳水化合物被接连着分解为丙酸或丁酸或丁醇;通过P氧化反应,脂肪酸被 逐渐分解为G单元其以乙酸放出;并且根据Stickland反应氨基酸被分解为乙酸、氨气和 C02。 这些中间产物又被分解为产烷生物基质乙酸(CH3C00H)、氢氣(H2)、碳

5) H20+C02------> HC03—+H+ 超过70%的甲烷通过乙酸的分解,即通过反应1产生的由于沼气发酵涉及混

合过程,其中在不同的阶段不同的微生物活性的为了獲得最高可能的产量,必须考虑所

有微生物的不同要求然而,决定性因素产烷细菌活性所需要的条件由于它们必须的

厌氧特性,这些細菌需要严格的缺氧环境此外,它们更喜欢略碱性的pH值 DE 197 564 85公开了用于农业沼气厂和市政污水处理厂的具有搅拌单元的消化

池。该池包括圓形基底空间、填料口和搅拌单元该搅拌单元具有驱动轴并且安装在该池的

周边。搅拌单元被装在安装于填料口下面的管中优选地,該管为竖直走向通过壁加热

来调节发酵池中内容物的温度。通过位于该池相对高位置的填料口将要发酵的基质倒入发

酵池中通过位于靠近底部的出口,将位于该池下部区域中的发酵材料泵出并储存于发酵器中 可用于这样的发酵器中的基质必须具有相对高比例的有机干粅质(oTS)。例如能量作物,例如谷物或者小麦具有超过60重量%的oTS比例使用这样的能量作物,有可能 以相对小的发酵器体积获得高的沼气产量这因为通过这些作物可以获得最大的体积载 荷。 参数"体积载荷"发酵器生物载荷的量度假定用于每天2-5kg oTS/mM本积载 荷的常规沼气厂。每天2kg oTs/m3的體积载荷被认为轻载荷每天超过5kg oTs/m3的 体积载荷即为高载荷。 然而常规的沼气发酵器仅仅适合于具有高oTS比例的基质,即来自可再生源 (NaWaRo)特別来自能量作物例如谷物、青贮玉米或者甜菜的基质。 具有低oTS比例的基质例如,液体肥料、发酵渣滓、酒糟(来自酒精发酵特别 生物乙醇生产的残留物),来自食品加工工业的污水淤泥或者高度污染的污水不适合专用 于这些发酵器中最多,它们适合用作种子基质或者用作與能量谷物基质的混合物的一部 分(即为了共发酵)这因为每1113消化池可生产沼气的量如此之低,以至于其基本上不 可能收回运行该消化池所需的能量(热能、开动搅拌单元的电力) 这因为由于低oTS比例的事实,其不可能以这些基质获得高体积载荷而不冒产 烷生物被大量冲出的危险 另外,常规发酵器长期存在必须浓縮丙酸的问题丙酸起始于一特定浓度,具有抑 制细菌和抑制真菌的效果如果在高体积载荷的过程Φ,挥发性脂肪酸例如乙酸的形成比 它们通过产烷生物的分解慢,则发生该问题在常规的发酵器中,它们的浓度通过冲出以及 产烷细菌的复制持续降低这需要10-14天,与花费0. 5-2小时的成酸剂相比以非常慢的速 度发生因此,常规发酵器体系中的内容物酸化的非常快(停止了甲烷生成)并且形成丙 酸 液体肥料形成了具有相对高pH值的缺氧体系。因此非常适合提供在沼气发酵器 中的产烷生物细菌所要求的环境。然洏微生物使液体肥料中的有机干物质代谢所花的时 间比使能量作物中的有机干物质代谢所花的时间长。因此需要将液体肥料留在消化器中 更长时间。 例如具有400LUs(家畜单位,1LU相应于500kg活体重量)的牧场每天产生约 20m3液体肥料需要处理这将需要具有50天的储存期和常规设计池容量為1, OOOm3的消 化池 牛的液体肥料包括约6重量%的平均oTS比例。如果预期每吨oTS500m3沼气的 产量根据下列方程式

1. 2吨oTS*500 = 600m3 (方程式2) 则上述实例将产生600m3/天的沼气產量。 然而如果相同尺寸的发酵器中装载了能量谷物,则由于较高的oTS比例有可能 产生较高的体积载荷,这将导致大大提高的反应器比沼气产量 由于沼气发酵器涉及相当大的电力消耗(特别搅拌单元和加热体系),将其用 于专用或主要使用低含量有机干物质(oTS)的起始材料例洳液体肥料的常规沼气发酵器 不划算的。 然而在农业中,非常需要对农场产生的肥料(动物废物和排泄物)特别液体

5肥料进行生物处理。 茬法律上对于将液体肥料施于农地上有非常严格的要求。例如仅仅清洁的液体 肥料可以被施到奶牛牧场上。通过化学(用NaOH)或者热工艺进荇卫生处理并且在任一 情况下都涉及非常相当大的花费。 当然可以考虑在适温范围(> 55°C )操作的沼气发酵器中进行这样的卫生处理 然而,洳上所述常规的发酵器不适合用于有效的大规模处理液体肥料。

另外在将清洁的以及未处理的液体肥料施用到田地、草地或者牧场的時候,促进 了破坏气候的气体的产生不仅促进了二氧化碳(C02)的产生,而且特别促进了甲烷气体 (CH》、氨气(NH3)和一氧化二氮(N20)的产生它们侵入大氣,从而促进了温室效应

因此,本发明的目的提供一种发酵器以及用于生产沼气的方法其可以经济地 发酵具有低含量有机干物质(oTS)的有機材料。 然而该发酵器还应该能够以高体积载荷(> 5kg oTS/m3消化池x d)用高度浓縮 的基质混合物生产高度有效且稳定的甲烷。尤其由于固定的生物质鉯及活性生物质(优 选产烷生物)的回收,在混合区域回收和接种可能的 本发明另一个目的提供发酵器以及用于经济地处理和卫生处理液体肥料 (Gillle)的方法。 该目的通过权利要求1的特征实现的从属权利要求涉及优选的技术方案。应 该认为所提到的所有范围都包括各自的边界值 楿应地,设计了由具有低含量有机干物质(oTS)的可泵送有机材料产生沼气的发 酵器其包括 a)至少一个用于可泵送有机材料的入口, b)至少一个用於可泵送有机材料的固定床反应器其具有至少一个第一部分和一 个第二部分,以及 c)至少一个用于剩余发酵残渣的出口 定义"具有低含量囿机干物质的有机材料"应该主要涉及这样的材料,这些材料包 括少于50重量%优选少于25重量%,并且特别优选少于10重量%的oTS比例

这样的材料包括,例如液体肥料,即由动物废物、尿、厩肥、饲料剩余物以及饮水 槽水泄漏构成的农场生产的肥料(它们绝大部分具有少于10重量%的oTS比例)

例如,相容材料还可以来自常规搅拌池沼气厂的发酵渣滓还可以例如酒糟 (来自酒精发酵,特别生物乙醇的残留物)、来自食品加工工业的污水淤泥或者高度污染 的污水上述定义还涉及与来自可再生资源(NaWaR0)的基质混合的液体肥料或者发酵渣 滓。 使用固定床反应器具囿很多优点例如,由于可以在反应器内部引导材料流固定 床反应器不需要专门的搅拌单元。这可以与平行排列的肠道相比较该肠道內外覆盖了肠 绒毛并且提供了大的微生物繁殖表面,导致了根据不同的工艺阶段向上或向下引导的基质 流 另外也可以使用节能泵,特别雙活塞泵默认地,常规使用的搅拌单元具有约 18kW的耗电量通过使用双活塞泵,有可能达到高达90%的节能量这大大提高了本发明 的发酵器嘚效率。

通过引导的材料流(强迫流通(Zwangspassage))尤其防止了具有搅拌单元的 搅拌器中不可避免的短路流。这些短路流妨碍了对发酵材料的有效卫生處理并且妨碍了理 想的发酵后面将对这两点进行更详细得讨论。 所提供的固定床反应器还提供了用于生产甲烷的微生物的繁殖基质以這种方 式,与具有搅拌单元的发酵器相反有可能分层形成微生物群落。 这允许甲烷生产的第二代谢途径以大规模发生甚至被优化这样微生物在小空间

有效地相互影响以至于H+和(A(作为HCO》可以被合成为CHJ反应2)。这降低了沼气中

的C02含量并且分别增加了 CH4含量这有助于改善质量并提高效率。 这非常重要的因为沼气生产所需要的特定细菌和微生物不能与待发酵的基

质接触的。在具有搅拌单元的发酵器中没有向微生粅提供繁殖基质,因此不能获得这样的

分层导致了相当低的沼气产量。 在沼气合成中存在区别,尤其在由不同的微生物引起的产生乙酸和产生甲烷 的步骤中在乙酸生产中,低级脂肪酸和羧酸以及低级醇首先通过产乙酸微生物被转化为 乙酸或其溶解盐即乙酸盐。在必須厌氧的甲烷生产过程中乙酸通过分解乙酸的产烷生物 而被转化为甲烷和二氧化碳,以及氢气各种的微生物形成共生,即一个微生物群使用其它 微生物的代谢产物作为反应物的基质 特别代谢途径2) HC03—+H++4H2— > CH4+3H20在常规发酵器中很难进行,这因 为^离子转移必须发生在纳秒的范围内这涉及共生微生物的固定以确保所要求的紧密 相邻。 此外微生物在固定床反应器中较快地适应,通过回收活性(产烷)生物质该发 酵器較快地"开始运行"(由于永久再接种(permanentriickgeimpft wird))。结果微生 物能够较好较快地分解所述的丙酸,或者甚至不产生丙酸

根据本发明,优选该发酵器还包括 a)至少一个用于可泵送有机材料的沉淀腔该腔位于固定床反应器的第一部分和 第二部分之间,以及 b)至少一个回收部分其与沉淀腔相连並且经设计以使得可泵送有机材料的特定 较轻部分(spezifisch leichtere Fraktionen)可以被回收,并且如果需要的话可以被再 次供给到固定床反应器的上升(第一)部分。 在兩个单独的工艺部分的情况下沉淀腔可以位于每一个流口 (Kopfteil)内。通 过回收部分的第一装置回收可泵送有机材料的特定较轻部分,并可以將其再供给到固定 床反应器的上升(第一)部分 另一方面,这些特定的较轻部分涉及特定的较轻有机部分例如,可挥发脂肪酸或 者纤维生粅质其中产烷生物和它们产生的气体被捕获并且开始上升,这因为甲烷和二 氧化碳的释放在常规的具有搅拌单元的常规发酵器中,这些部分形成漂浮层从而避开了 发酵过程如果微生物气泡不能再从漂浮层溶解,例如如果搅拌单元坏了 该漂浮层还可能 涉及在基质中形荿过压的危险。 顺便提及 一些挥发性脂肪酸容易转变为气相,因此被永久排除在发酵过程之外

特定的较轻有机部分还包含从固定床反應器基质溶解的微生物(所谓的"活性生 物质"(active Biomasse)),如果没有回收部分这些微生物将随发酵器的发酵渣滓一起排

7放。这还涉及在具有搅拌单元的瑺规发酵器中必须补充的连续的微量营养素损失这反过 来导致了额外花费以及额外的引入重金属。因此在常规的沼气发酵器中,产生沼气的微生 物的密度被连续降低这导致这些发酵器基本上以不能达到理想沼气产量的很低的微生物 密度运行。本发明的回收部分允许回收这些微生物并且再供给到发酵器中结果,本发 明的发酵器具有大大高于常规发酵器的微生物密度并且大大改善了通过活性生物质循環 的微量营养素的供给。 这提供了回收活性生物质(在根据现有技术的设备中其与发酵的材料一起储存 于发酵渣滓储存池中并且留在那里未被利用)并且将其再次供给到发酵过程的可能性。这 大大增加了常规发酵器中的产量此外,通过将活性生物质再次供给到消化池中在苐一个 操作中优化处理厂的时间显著縮短。理论上需要花一定的时间来优化沼气处理厂的运转。 这因为首先必须在处理厂中建立稳定的微生物群由于存在回收依然存在于从消化池中 提取的发酵材料中的微生物的可能性,建立稳定的并且高度有效的微生物群的时间被大大 縮短结果,在显著较短的时间内达到了最大的产量 回收活性生物质的可能性涉及另一个优点发酵过程被加速,这因为有可能在 该消化池中维持显著较高的活性微生物密度以这种方式,可以增加发酵器的流量这使 得本发明的发酵器能够容许显著较高的体积载荷。 如果將本发明的发酵器与常规的搅拌槽发酵器一起使用的话如果回收的活性生 物质被再次供给到搅拌池发酵器的话(所谓的"R印owering",参见下文)也能达到该效 果。 而且采用本发明的发酵器可以免除添加常规搅拌池发酵器中所需要的微量营 养,这由于再次供给的活性生物质中含有微量营养 在常规的搅拌池发酵器中,还有必要彻底混合发酵器中的内容物搅拌过程连续 破坏了不同微生物的共生,特别甲烷细菌这样,不可能以高生产率水平获得较长的持久 工艺稳定性在这里,腐烂的基质必须作为微生物同时作为营养基质,并且作为共生繁殖 的表媔因此该基质必须具有特定的最小结构。然而在本发明的发酵器中,形成了持久培 植的甲烷细菌的非常稳定的共生从而,即使使用嫆易生物降解的较轻结构化的基质甲烷 化也可以以理想方式发生。 为了理想的共生应该持久培植产生游离氢的细菌和利用氢的细菌。茬本发明的 发酵器中固定床反应器的繁殖区提供了生产甲烷气体的理想条件。 本发明发酵器的剩余区域提供了用于进行理想的生物过程特别没有受到搅拌 过程破坏的生物过程的理想条件。 为了优化发酵微生物不仅需要有机酸,而且需要C02 在有机材料的补充区,形成了增加量的(A其以最佳方式流过固定床反应器较高 的上升部分。这导致了最优的生物稳定性 因此,本发明的发酵器中的沼气被改良尤其對于具有低oTS比例的材料。改进 的产量基于oTS的额外分解尤其通过改进在处理厂的生产中乙酸等价物的分解,并 且通过再次利用回收的细菌这通过利用代谢行为和/或,如果死了的话通过使用生物 质实现的。 综上所述本发明的发酵器具有下列附加优点

基质(特别液体肥料)的儲存期从50天降低到10天,从而增加了流量

,计算的热需要量被降低到20% (实际上固有的过程热通常已经足够了,即不需 要外部热供给)

与常規的搅拌池发酵器相比,发酵器的容量可以从1 OOOm3降低到200m 这降低 了建设和投资的成本。 在本发明发酵器的一个优选技术方案中固定床反应器的第一部分被设计为上升 部分,并且固定床的第二部分被设计为下降部分 这样,首次使得以大规模允许并优化甲烷生产的第二代谢途徑成为可能为了该 目的,使微生物有效地相互影响以至于可以将^和HC03合成为CH4 (参见反应2)结果, 沼气中的C02含量被降低并且CH4含量相应地增加這为了提高质量并且增加效率的目 的。由于细密分散的C02气泡和它们大的比表面积因此在上升部分中存在产烷生物能够 紧密接触甲烷生成嘚第二途径的机会,这被认为很难实现 然而,本发明的发酵器还能够以高体积载荷(> 5kg oTS/m3消化池x d)用高浓 縮的基质混合物生产高度有效且稳定的沼气这之所以成为可能由于固定的生物质以及 活性生物质(优选产烷生物)回收用于再供给并且接种于混合区域。发酵分离部分与上流 气体囷下流气体的结合模拟了小肠和大肠功能从而将仿生学原理应用到了化学工程中。

以此类推上游长期水解,或者混合区域承担胃的功能这引起输入基质有效的酸 化。 另外为了加强上升部分的反应,可以从外源补充(A后者可以来自于外源,特别 来自于上游长期水解反應器 此外,优选所述固定床反应器包括为微生物提供大的繁殖表面的材料 例如,这涉及具有结构表面和/或内表面的材料这可以包括,例如具有结构塑

料表面,以及熔岩颗粒、陶瓷颗粒、织物、金属或者木结构等的材料 这允许了大的繁殖表面并且,相应地高密度嘚并且稳定的生产沼气的共生微生 物群。 特别优选提供固定床反应器其具有允许形成基本纵向设置的通道的材料。 术语"基本纵向设置的通道"涉及适合将要发酵的基质以一致的流向提供到发酵

器的上升(第一)部分和/或下降(第二)部分这在防止短路流方面也有利的。这将

在接下來进行更详细的讨论用于该目的的可能材料例如由陶瓷、粘土、陶器、金属、木头

或塑料材料构成的竖直设置的管,或者竖直设置的杆、板、蜂窝、绳、索或者线 特别优选,如果固定床反应器包括为微生物繁殖提供大表面并且允许形成基本纵

向通道的材料 在这里尤其栲虑使用具有增大表面的塑料管,例如使用于地下结构中的直径为 50-400mm的已知柔性排水管它们具有波状壁结构,这使得微生物有可能繁殖于管的外表 面和内表面 所述管特别有利的,这因为它们尤其在固定床反应器的上升部分确保了上 升气泡(特别CO》不超过特定的尺寸在常规嘚发酵器中,由于液体静压力降低以及允 许其它的气泡进入上升气泡不成比例地剧烈增加。另一方面这降低了它们的相对表面。 另一方面这大大加快了它们的上升速度。由于这两种情况上升(A不会再发生代谢变化,

9并且不再能够根据反应2)被转换成甲烷气体具有管或鍺相似中空部件的设备限制了气 泡尺寸的增加。通过分隔基质流使得上升的(A可以被进一步以平行的方式代谢,并因此 稳定了结构 优选,固定床反应器的每一上端和下端都具有保持塑料管的装置该保持装置使

管子之间保持尽可能有利的距离,而并不限縮管的流通或者避免了这样的限縮。 例如该保持装置可以由不锈钢管部分("套")构成,其排列在表面区域并且与角

撑架焊接、嵌、拧或者铆在一起 优选,使用了内径为100-300mm的塑料管这些管相互之间的距离为50-300mm。特 别优选内径为200mm并且管子之间的距离为100mm 将至少一个固定床反应器与至少一个上升(第┅ )和一个下降(第二 )部分设置

在一起特别防止了短路流的形成。这特别重要的因为仅仅这样的强迫流通可以确保

这些材料以最佳的方式发酵(即矿物化)并且确保发酵材料完全清洁。 由于法律规定后者含有动物废弃物或者通过动物废物生产的材料在施用到特

定的农场区域,例洳奶牛牧场之前所必需的这同样适用于水保护区域的应用。 本发明的设置确保了待发酵的所有材料通过整个固定床反应器在喜温范围(即

在超过55t:的温度)下,24小时的储存时间对于充分卫生处理足够的 卫生处理将嗜温细菌(致病的,任选致病的和非致病的)例如大肠菌、沙门氏菌、

普鲁氏菌病原体等灭活。沼气合成所需的微生物始终喜温的结果,它们在特定的温

度下活下来而没有受到破坏同时,它们逐步顯示出最大的活性此外,由于优良的繁殖基

质它们仍然留在发酵器中并且没有与发酵渣滓一起被冲出来,即它们没有被施用到奶牛

牧場上 在特定的条件下,在沼气合成过程中产生的热足以调整发酵器内的喜热条件即 不需要提供极大的热输入,这反过来导致了相当大嘚能量节省 在特别优选的技术方案中,本发明的再循环部分通过溢流堰与沉淀腔相连该再 循环部分以这样的方式设计的,即可泵送有機材料的特定轻部分被回收并且可以被再次 供给到固定床反应器的上升(第一)部分这些特定的较轻部分尤其含有大量的产烷微生 物,否则嘚话这些产烷微生物将被冲出发酵器,从而无法用于发酵 所述产烷微生物在固定床的表面上繁殖使该效果得到支持。从而它们不会被冲 出来。 作为选择在"R印owering工艺"的情况中,回收的活性材料还可以被再次供给到 常规的发酵器中予以强化在这里产烷生物的浓度将增加,并且允许增加流量或提高性能

还可以这样设置,即通过周圈钻孔或者筛渣装置来使回收部分与沉淀腔相连然 而,无需创造性步骤夲领域一般技术人员即可从该信息导出如何在回收部分和沉淀腔之 间形成上述连接的其它可能性。 另外可以这样设置,即在钻孔或者筛渣装置的溢流边缘提供刮刀该刮刀防止了 钻孔或者筛渣装置被阻塞并避免在溢流边缘形成漂浮层。在本发明一些技术方案中被描述 为"种孓淤泥"的回收材料可以被供给到将要发酵的有机材料并且可以被再次供给到发酵 器中 优选,为了该目的提供一计量单元优选该单元通過微处理器电动控制。以这种方式产烷微生物的浓度不断增加,这反过来证明了对沼气产量和质量有利的 理论上,通过设计回收部分有可能调整再次供给到发酵器的材料和留在回收部

分的材料之间的体积比。例如这可以通过根据固定床反应器的上升部分的上缘具体地選定

设计的溢流边缘的高度来实现还可以通过具体地选择周围钻孔的尺寸和/或密度来实

现。然而无需创造性步骤,本领域技术人员可鉯从该信息推导出如何进行上述体积比调整

的其它可能性 优选这样设置,即再供给到发酵器的材料与保留在回收部分的材料之间的体积仳

在i : 0.9-2 : o. i的范围内特别优选体积比为2 : i。与保留的材料的再接种应该相

当大以确保发酵没有问题,并且确保不发生部分酸化对于本领域技術人员来说很容易以

合适的方法来重现这些工艺(pH计、NIRS、 GC取样)。 还优选如果需要的话,回收部分由几个基本垂直的管状元件构成 此外,優选回收部分位于至少一个固定床反应器的上升(第一)部分和下降(第

二)部分之间。 该实施方案具有大量优点例如,在回收部分仍旧产生嘚沼气可以通过收集在固 定床反应器部分产生的气体的相同气体收集装置来收集此外,以这种方式很容易使回收 装置的温度与固定床反应器中的温度相同。这样回收部分的位置对于回收特定的较轻部 分也理想的,这因为其位于沉淀腔的中心特别如果回收部分的上边緣形成了溢流 边缘。顺便提一下该装置还具有生产优势,这将在下面进行详细地讨论

此外,还有可能在权利要求书的保护范围内,囙收部分不在至少一个固定床反应 器的上升(第一)部分和下降(第二)部分之间而,例如位于实际发酵器的侧面或外边

在特别优选的实施方案中,附加的回收部分被置于固定床反应器的下降(第二 ) 部分后面以这种方式,所述基质和微生物的回收被进一步改善 优选,发酵器具囿一个或两个竖直排列的圆筒的外部形状为此,可以设置发酵器

或圆筒由几段构成这些段可以在制造公司生产并且现场组装成发酵器。 例如可以提供两个半圆筒部分或者几个圆筒部分,在现场将它们树起来并且通

过安装支架焊接在一起或者拧在一起理想地,圆筒半蔀分或者圆筒部分中的一部分已经

包括回收部分其还促进了生产和安装并且由此降低了成本。 本发明的发明人计算出这样预制的体积为200-250m3嘚发酵器可以在一到两天内 现场建成这样,安装成本(施工时间、装备、移动式起重机)以及相关的花费可以被大大 降低此外,现场的运營活动(例如在农场上)仅仅受到轻微打扰。这也确保了该发酵器 根据标准生产的从而具有高的质量标准。 还可以这样布置以使得该发酵器具有至少部分位于固定床反应器和/或回收装 置之上的气体收集装置 例如,该气体收集装置可以包括圆顶或者顶棚结构其下设有不透氣隔膜。在这样 的实施方案中可以特别布置以使得气体收集装置也具有气体储存体系的功能在这种情况 下,在仅仅形成少量气体的时候不透气隔膜松散地悬挂于消化池之上。然而形成的气体 推动隔膜向上并且将其绷紧。然后所产生的气体可以已知的方式用已知的抽取裝置抽取

基本上,可以设置本发明的发酵器使其还包括将所产生的沼气供给到气体管路网 络的装置然而,优选本发明的发酵器被连接箌将产生的沼气转换为电的装置

为了将包含在所产生的气体中的化学能转换为电能,例如在包括气体发动机或 双燃料发动机的热电联匼生产装置(BHKW)中将沼气转换为电。为了能够经济地工作必须 以约100毫巴的起始压将要燃烧的气体供给到气体发动机中。在常规的沼气处理厂Φ需 要单独的气体压吹风机来使储存的气体达到上述起始压力。另一方面该吹风机使用了相 当多的能量。然而这增加了维护需求和購置成本,以及沼气处理厂的控制工作

特别优选该发酵器包括液体静压气体储存系统。 术语"液体静压气体储存系统"涉及气体储存系统其中通过供给气体对抗重力而 置换原有的液体(特别水)(从而抵抗形成的液体静压或水柱)(接下来将对其进行更详 细的描述)。关于该实施方案参照附图 如果气体储存系统的构造当置换该系统中原有的液体时,气体流入物形成了最 高2 000mm液柱,那么这就相应于200毫巴的液体静压同时,储存气体的压力被保持在相 应于该液体静压的水平并且可以供给到BHKW的气体发动机而不需使用其自己的气体加 压风机。为此产生沼气嘚微生物即使在很强的压力梯度下也能够持续生产沼气很关键 的。在该文献中描述了高达160巴的压力梯度。因此沼气合成没有受到所描述的200毫 巴的累积压力梯度的影响,其可能一直延续到发酵器中 优选,引导到液体静压气体储存系统的管路的尺寸需要满足气体安全装置(高压

和低压)的需求的方式例如,过量产生的气体可能通过液体静压气体储存系统进入环境 同时,气体储存系统的液体作为回火保护器消除了发酵器中爆炸或着火的危险。常规的气

体储存系统不能够这样做此外,通过具体的尺寸管路还可以被用作过量供给到发酵器Φ 的发酵基质溢流的安全装置。该发酵基质通过管路被排出并且通过液体静压气体储存系统 被收集 优选,该发酵器的气体收集装置包括圓锥形或者截头圆锥形、抛物面形或者半球 形圆顶 特别优选,在发酵器上布置该圆顶以使得该圆顶的向上的尖端区域开始于回收部

分的溢流边缘之下参见附图。结果活性生物质的回收得到大大改善。 此外优选不为消化池、气体储存系统和/或沉淀腔区域设置电动装置。消化池、

气体储存系统和/或沉淀腔还可以被设计为法拉第氏罩(FaradayscherKafig)这两种

方法用来防止着火和爆炸。为此发酵器的外壳作为整体可以由導电金属(特别V^钢或 抗腐蚀涂覆钢)构成,或者其可以由具有金属导体网络(例如围绕外壳的金属网形式)的 非金属材料构成 在另一个优选的技術方案中,本发明的发酵器包括位于消化池基底的沉降槽在 该沉降槽中,无机材料例如沙子、石灰和石头等可以沉淀并且通过搬运螺杆从发酵器中除 去。通常每天约1_3%的发酵材料以这样的方式被除去然后有可能将固体物质从所排放 的材料中分离并且将液体成分再次供给箌消化池中。 在另一个优选的技术方案中将热交换器设置在发酵器出口区域。通过该热交换

器可以将待发酵的新鲜有机材料预热 通过這种方式可以相当容易地调整发酵器内的嗜温和嗜热条件。同时其降低了所

需要的能量消耗在理想的情况下,在发酵过程中所形成的固囿的反应热足以调整上述条 件因此,不需要来自外面的其它热供给

在一些情况下,S卩如果固有的反应热不够的话必须对本发明的发酵器进行调温。 设置在发酵器内的几个加热装置例如热交换器,具有对微生物来说太高的表面温度因 此,与加热装置接触的发酵材料開始时被加热到优选温度范围以上的温度并且接下来将其 热能释放到周围材料这样,有可能将整个消化池调节到希望的温度增加的温喥导致在 加热装置区域繁殖的或者与其接触的微生物死掉。这又降低了产量 还优选该发酵器包括用于要发酵有机材料的温度控制装置,設置该温度控制装 置以使得通过入口带入消化池的发酵材料的温度可以仅通过加热待发酵的有机材料来调整。 除了用于发酵基质的加热裝置外这要求消化池装有至少一个温度探针和相应的 控制电路。这种温度控制特别有效的这因为带入到消化池中的调温材料被马上分散 并且快速将其热能释放到周围区域。由于与周围材料的快速热交换发酵器中的产烷细菌 的生命过程没有受到影响。此外由于优良的導热率和有效的混合,仅仅所要发酵基质的可 以忽略的温度增加足以控制发酵器中的温度因此,没有理由害怕发酵器中的产烷细菌受 到破坏另外,有可能更加均匀并且快速地加热发酵材料这对于过程稳定性具有正面影 响。为此可以优选将填充装置设置于两个搅拌单え之间。由此以特别有效的方式将待 发酵的调温基质带入到消化池中并使其与发酵材料快速混合,将其热量快速释放到周围区 域这还提供了在将其带入到消化池之前,巴氏法灭菌或消毒待发酵的基质的可能性通 过这种方式,在被带入消化池后其可以非常快地与产烷細菌繁殖,这将促进发酵从而增加 产量通过这种类型的温度控制,不必要向消化池提供另外的加热装置或热交换器从而防 止了上述破壞。此外通过这种类型的温度控制,还不需要在消化池中提供电路否则将涉 及爆炸和起火的危险。 另外根据前述权利要求之一,本發明提供了在发酵器中由具有低含量有机干物 质(oTS)的可泵送有机材料生产沼气的方法该方法包括下列步骤

a)通过入口使可泵送有机材料进入發酵器, b)生产并且保持pH值为至少7并且温度在嗜温到嗜热范围内的厌氧环境 c)通过固定床反应器以及该发酵器的沉淀腔生产可泵送有机材料鋶, d)在回收部分回收可泵送有机材料的特定较轻部分 e)如果可能的话,将回收的材料再次供给到发酵器 f)连续地以及分批地收集所产生的氣体并且抽取发酵的发酵残渣。 同时可以通过本领域技术人员已知的常用方法来调整pH值。 特别可以设置使通过固定床反应器的材料流鉯连续或者以脉动方式生产

的。对于所使用的各种基质这两种类型各具有优点和缺点。例如为了在待发酵的基质与

微生物之间提供较長的接触时间,材料的脉动流可能有利的通过常规测试而不需要创

造性步骤,本领域技术人员可以容易地得知合适的流动条件(速度、脉動间隔等特别对

于各自所使用的基质)。 根据本发明还设置了在新鲜材料被带入发酵器之前,使回收的材料与将要发酵 的新鲜材料预培養 特别优选,为了完全利用将更多的来自可恢复来源,特别能量谷物的生物质 供给到将要发酵的有机材料,该有机材料具有低比例嘚有机干物质(oTS)

本发明的发酵器或方法所产生的发酵渣滓包括高比例的矿物化营养物(N, P K) 并且很适合作为肥料。与发酵基质相比发酵渣滓由于含有较低比例的残留有机物质,因此 通常具有很低的粘度因此它们可以比液体肥料更容易地喷洒并且用于植物生产。由于降 低比唎的有机物质在排除发酵渣滓后,温室气体(例如二氧化碳(C0》、甲烷气体(CH4)和 一氧化二氮(N20))的形成将会降低此外,可能包含在液体肥料中的植物种子(特别野 草种子和真菌孢子)通过发酵被去活化因此,在排除之后它们不再能发芽。以这种方式

生产的发酵渣滓的另一个优点洳果维持了特定的工艺条件的话,则它们会得到清洁处 理因此,不进行进一步的化学或热处理它们就可以被应用到重要区域,例如沝保护区域 或者奶牛牧场。 此外液体肥料被高度矿物化,即所含的营养物对待施肥的植物有多得多的益处 然而,如果未发酵的液体肥料被用于施肥则在土壤中形成了不可计算的潜在的有机束缚 营养物。在自然矿物化阶段如果植被不能吸收矿物化营养相,则这对于地丅水有相当大的 影响 在本发明发酵器的另一个技术方案中,设置所述发酵器以使其与常规沼气发酵器 (所谓的"R印owering")的下游连接从而使得发酵渣滓可以经可泵送有机材料的入口从 常规发酵器供给。 接下来该实施方案被称为后发酵器。术语"常规沼气发酵器"涉及开始所提及的 现囿沼气发酵器的情形这些沼气发酵器被用来发酵可再生资源。它们基本上由具有气体 储存圆顶或塞流装置(水平圆筒)的大搅拌槽构成它們仅仅对原材料进行不充分发酵, 并且同时具有连续流失的产烷微生物此外,它们生产了不完全清洁的发酵残余物(短路 流参上)并且放絀温室气体(甲烷、一氧化二氮、C02,见上)的发酵渣滓因此,将这样的 发酵器中的发酵渣滓供给到本发明的发酵器特别有利的在这种情况丅,本发明的发酵 器作为一种后发酵器这样,常规沼气发酵器的操作者可以以相对低的投资有效地提高效 率并且提高其工厂的环境友好性 在该特定的实施方案中,可以设置将在后发酵器中产生的沼气供给到主处理设备 的气体储存系统中 在特别优选的实施方案中,以这樣的方式设置回收部分即回收的可泵送有机材 料的特定较轻部分可以被再次供给到上游沼气发酵器中。 这涉及将活性生物质回收并再次供给到发酵过程的可能性使用现有装置这些活 性生物质与发酵材料一起被带到发酵器中,并留在那里未被利用这样产量得到大大提高。 此外通过将活性生物质再次供给到消化池,在第一操作过程中优化处理设备的时间被大 大縮短基本上,沼气处理设备需要特定时间來优化这由于首先在处理设备中必须建立 稳定的微生物群。通过回收依然存在于从消化池中提取的发酵材料中的微生物的可能性 建立穩定的和高度有效的微生物群的时间被大大縮短。结果以相当短的时间达到了最 大产能。 回收活性生物质的可能性涉及另一优点由于在消化池中可能维持相对较高的活 性生物质浓度因此发酵过程被加速。这样可以增加发酵器的流量。这导致本发明的发酵 器可以承受相對较高的体积载荷 此外,还可以将本发明的发酵器(作为替代或者与前述构造一起)与长期的水解

14反应器(基质以液态保存)的下游相连所述嘚长期水解反应器以术语"LIGAVATOR"或 "BETAVATOR"被知晓。例如这样的反应器具有1, 500m3的容量当待发酵的农产品被储存 在这样的反应器中时,发生了厌氧发酵過程(特别青贮法过程即乳酸/乙酸发酵),这可 以导致短链代谢物(特别乳酸酯即乳酸和乙酸酯,即乙酸)其pH值降低并且形成C02。 特别在本發明的发酵器中乳酸和乙酸可以以非常好的方式产生代谢。所释放的0)2还 可以被供给到本发明的发酵器中

附图和实例 通过下面的附图和实唎对本发明进行更详细的解释。必须考虑到附图和实例仅仅 描述性的它们不用来以任何方式限制本发明。

图1显示用于从可泵送有机材料苼产沼气的本发明发酵器10的技术方案的纵向 示意图该发酵器具有用于可泵送有机材料的入口 ll,用于可泵送有机材料的固定床反应 器12该反应器具有至少一个第一 (上升)部分12a和第二 (下降)部分12b,以及至少一 个用于所形成的发酵渣滓的出口 13 此外,该发酵器包括用于可泵送有机材料的沉淀腔14其位于固定床反应器的第 一部分12a和第二部分12b之间。其还包括回收部分15该部分与沉淀腔14相连,并且其 经设计以使得可泵送有機材料的特定较轻部分可以被回收,并且如果需要的话可以被再 次供给到固定床反应器的上升(第一)部分。 固定床反应器12由允许形成基夲上纵向的通道(类似于平行肠管即肠道)的材 料构成。 使用具有这些特性的固定床反应器具有很多优点例如,固定床反应器不需要其

自巳的搅拌装置该搅拌装置使用于搅拌槽发酵器中,这因为可以在反应器中引导材料

流材料的定向流动尤其防止了在搅拌槽反应器中不鈳避免的并且影响了对发酵材料的

有效清洁处理和理想发酵的短路流。所提供的固定床反应器还提供了产烷微生物的繁殖基

质以这种方式,与具有搅拌装置的发酵器相反可能形成层状的微生物群落。 回收部分15由竖直管状元件构成并且被设置在固定床反应器的上升(第一 )部

汾12a和下降(第二)部分12b之间 回收部分15通过溢流边缘与沉淀腔14连接,并且经设计以使得可泵送有机材料 的特定较轻部分19可以被回收并且通过出ロ 16被再次供给到固定床反应器的上升(第 一)部分另一方面,这些特定的较轻部分涉及特定的较轻有机部分例如挥发性脂肪酸。 在常规的攪拌槽发酵器中这些部分形成漂浮层,由此避开了发酵过程顺便提一句,一些 挥发性脂肪酸容易转化成气相从而被永久地从发酵过程中排除。 特定的较轻有机部分还含有从固定床反应器的基质溶解出的微生物(所谓的"活 性生物质")如果没有回收部分,该微生物将与发酵渣滓一起从发酵器中排出这还涉及连 续失去微量营养素,在具有搅拌装置的常规发酵器中必须补充微量营养素这又导致了额 外的花费鉯及另外引入重金属。因此在常规的沼气发酵器中,产生沼气的微生物的密度被 连续降低这导致这些发酵器基本上在很低的微生物密喥下运行以至于达不到理想的沼气 产量。本发明的回收部分允许这些微生物被回收并且被再次供给到发酵器中结果,本

发明的发酵器具囿比常规发酵器显著较高的微生物密度以及大大改进的微量营养素供给 所述微量营养素通过活性生物质得以循环。顺便提一下一些挥發性脂肪酸容易转换成气相,从而被长期排除在发酵过程之外 另外,该发酵器在入口 11的区域以及沉淀腔14的区域包括两个相对小的搅拌装 置17a、17b这些搅拌装置定期启动,并且根据需要防止了固体颗粒的沉降。与常规搅拌槽 发酵器中已知的搅拌装置相比所显示的搅拌装置具有相当小的尺寸和相当低的耗电量。

此外该发酵器具有泵18来将发酵材料泵送穿过固定床反应器。与常规搅拌池发 酵器中已知的搅拌装置相比该泵还具有相当低的耗电量。其可以特别涉及双活塞泵另 外,图1显示了用于抽取所产生的沼气的气体分配装置20 实心箭头显示叻材料流流过发酵器的方向。虚线箭头显示了产生沼气的方向

图1还清楚地显示了本发明的发酵器比常规的搅拌槽发酵器需要显著较小的表 面积,常规搅拌槽发酵器由于大的消化池容量因此需要非常大的表面积在优选的实施方 案中,本发明的发酵器具有仅仅29m2的基底面积洇而可以容易地在农场原地组装。

图2显示了本发明的发酵器沿着线A-A'(图2A)或B-B'(图2B)的两个横截面 图图2a的顶视图显示了固定床反应器的上升(第一)部汾22a和下降(第二)部分22b, 以及回收部分15图2b以溢流边缘的俯视图,显示了回收部分的上边缘图3a显示了 塑料管31的实例,其优选被用作实体反应器的材料这因为其允许形成基本上纵向的通 道。该管在其外表面及其内表面具有增大的表面并且对微生物繁殖提供了大面积。该塑料 管涉及具有类似于已知柔性排水管特性的管该排水管使用于地下建筑并且具有50-400mm 的直径。特别优选使用这种排水管这因为其轻的并且成夲上划算的。优选设置很 多这样的管悬挂于发酵器中从而形成固定床反应器。为此可以设置该发酵器以在其上部 和下部区域包括单独嘚悬挂装置以悬挂所提及的塑料管。 形成固定床反应器的其它材料包括例如由陶瓷、粘土、陶土、木材、金属或者塑料

材料构成的竖直設置的管或者蜂窝状中空体,或者竖直设置的棒、绳、索或者线 图3b显示了用于这些塑料管的保持装置33的一个实例,其被分别连接到固定床

反应器的上端和下端并且使管与管之间保持尽可能好的距离,而并不限縮管的流通或者

避免了这样的限縮。保持装置由不锈钢管部汾("套")构成其被设置在表面区域并且被

焊接或者通过角撑架相互连接到一起。塑料管的端部非常好地装配在保持装置中 图4显示了本发明嘚发酵器的由两个半圆筒部分41a和41b构成的部分40的部

件分解图。图4显示了固定床反应器的上升(第一)部分42的顶视图图4中下降部分

被段节41b的壁挡住,因此看不见段节通过安装固定夹43现场用螺丝拧在一起的。理

想地段节之一 (在这里41a)已经包括回收部分45,其也促进了生产和安装从洏降低了成本。 图5也显示了本发明的发酵器的部分50的部件分解图与图4中所示的发酵器 相反,该发酵器由4个段节51a-51d组成因此,固定床反应器的上升(第一)部分由2个 段节52a和52b构成图5中的下降部分被段节51c和51d的壁挡住,因此看不见图5 还显示了回收部分55。 图6还显示了本发明发酵器的蔀分60的部分截面图其中显示了发酵材料的流动 模式。发酵材料由固定床反应器的上升(第一)部分62转移到沉淀腔64在这里特定的 较轻部分69位於顶部并且通过溢流缘被转移到回收部分65。然而特定的较重部分(例 如,非气相的死生物质)被转移到固定床反应器的下降(第二)部分(没有显礻)

图7显示了本发明发酵器的不同补充技术方案。例如图7a显示了位于出口 73 区域的热交换器74。待发酵的新鲜有机材料可以通过该热交换器被加热为了该目的,使 热交换器与出口 71相连 这大大促进了发酵器内的嗜温或者嗜热条件。同时也降低了所需要的能量消耗 在理想的凊况下,在发酵过程中产生的内在反应热足以调节上述条件因此,不需要来自外 部的附加热供给 图7b显示了位于固定床反应器72的下降(第② )部分之后的附加回收部分75。 以这种方式所述基质和微生物的回收被进一步改善。 图8显示了液体静压气体储存体系80其由具有隔层(Zwischenboden)82的容器 81构成。容器的底部填充了缓冲流体83气体储存系统被连接到发酵器的气体分配装置 84(没有显示)。在流入到容器下部的过程中通过供给气體对抗重力而置换原有的液体 (特别水)(从而抵抗形成的液体静压或水柱)。水通过上升管85上升到容器的上部 如果,例如以这样的方式构建氣体储存体系,当代替该体系中原有的液体时气体流形成 了最高2, 000mm的水柱这相应于200毫巴的液体静压。同时储存气体的压力被保持在楿 应于所述静液压的水平,并且可以被供给到BHKW气体发动机而不使用专门的气体加压风 机。为了该目的产生沼气的微生物即使在很强的壓力梯度下也能够连续生产沼气非常 关键的。因此沼气合成不受所述200毫巴的累积压力梯度的影响,其可以一直延续到发酵 器 图9显示了夲发明发酵器90的另一个实施方案,其在大多数方面相应于图1中所 示的技术方案然而,与图1中所示的技术方案相反沉淀腔95通过外周钻孔96戓者过筛 装置,而不通过溢流缘被连接到回收部分94。 图10显示了本发明发酵器100的另一个实施方案其在大多数方面相应于图1中 所示的实施方案。然而与图1中所示的技术方案相反,沉淀腔105被设置在外面其被连 接到回收部分104。再循环流的量可以通过阀106来进行调节在该设计Φ,为了维护的目 的很容易将沉淀腔与发酵器分离。 图11显示了本发明发酵器的另一实施方案其包括入口 111 ;用于可泵送有机材 料的固定床反应器112,该反应器具有第一 (上升)部分112a和第二 (下降)部分112b 它们相互之间分开构造(所谓的部分发酵器);以及出口 113。为了节约费用部分112a和 112b可以甴从中间切割开的旧液化气罐或者气体罐制得。在部分发酵器的流口中提供了 沉淀腔115,通过该沉淀腔回收的可泵送有机材料的特定较轻蔀分被再次供给到上游沼气 发酵器116该材料通过尤其在发酵器上升部分产生的气压传送的。

图11还显示了任选地提供常规沼气发酵器116其下遊与本发明的发酵器110连 接,并且相对于本发明的发酵器作为后发酵器(所谓的"R印o恥ring")从而可以通过入口 供给发酵渣滓。 在本发明发酵器的另┅个实施方案中使所述发酵器与常规沼气发酵器的下游相 连(所谓的"R印owering"),以通过可泵送有机材料的入口从常规沼气发酵器供给发酵渣滓 基本上,沼气发酵器116由具有气体储存圆顶的大搅拌槽构成其仅仅进行了原 材料的不完全发酵(即存在发酵渣滓高剩余气体的可能性),并且哃时其具有连续的产烷微生物损耗此外,其产生了清洁和矿物化(发酵的)不完全的发酵渣滓(短路流见上),

并且其中最重要的放出温室氣体(甲烷、一氧化二氮、(A,见上)因此,将这样的发酵

器116的发酵渣滓供给到本发明的发酵器112中特别有利的通过这种方式,常规沼气

发酵器的操作者以相对低的投资有效地提高了其工厂的效率和环境友好性 在该方法中,将发酵器112中产生的沼气供给到沼气发酵器116的气体储存系统

中在特别优选的技术方案中,设置沉淀腔115以使得回收的可泵送有机材料的特定较轻

部分可以被再次供给到上游沼气发酵器116。

权利偠求 由具有低含量有机干物质(oTS)的可泵送有机材料生产沼气的发酵器其包括a)至少一个用于可泵送有机材料的入口,b)至少一个用于可泵送有機材料的固定床反应器其具有至少一个第一部分和一个第二部分,以及c)至少一个用于剩余发酵残渣的出口

2. 根据权利要求1的发酵器,其特征在于其包括a) 至少一个用于可泵送有机材料的沉淀腔该腔位于固定床反应器第一部分和第二部 分之间,以及b) 至少一个回收部分其与沉淀腔相连并且经设计以使得可泵送有机材料的特定较轻 部分可以被回收,并且如果需要可以被再次供给到固定床反应器的上升(第一)部汾。

3. 根据权利要求1或2的发酵器其特征在于固定床反应器的第一部分上升部分,并 且固定床反应器的第二部分下降部分

4. 根据上述权利要求之一的发酵器,其特征在于固定床反应器由为微生物提供大繁殖 表面的材料构成

5. 根据上述权利要求之一的发酵器,其特征在于该固定床反应器由允许形成基本纵向 通道的材料构成

6. 根据上述权利要求之一的发酵器,其特征在于所述回收部分由基本上垂直设置的管 状元件構成任选所述管状元件具有多个部分。

7. 根据上述权利要求之一的发酵器其特征在于所述沉淀腔位于固定床反应器的上升 (第一)部分和下降(第二)部分之间。

8. 根据上述权利要求之一的发酵器其特征在于在固定床反应器下降(第二)部分的 下游设置另一个沉淀腔。

9. 根据上述权利要求之一的发酵器其特征在于该发酵器具有竖直圆筒的外形。

10. 根据上述权利要求之一的发酵器其特征在于该发酵器由可以在生产公司制慥并 且可以现场组装成发酵器的几个段节构成。

11. 根据上述权利要求之一的发酵器其特征在于该发酵器具有气体收集装置,其至少 部分位於固定床反应器和/或回收装置之上

12. 根据上述权利要求之一的发酵器,其特征在于该发酵器包括液体静压气体储存系统

13. 根据上述权利要求之一的发酵器,其特征在于所述气体收集装置包括锥形或截头 锥形、抛物面形或者半球形圆顶

14. 根据上述权利要求之一的发酵器,其特征在于在发酵器的出口区域设置热交换器 并且通过所述的热交换器,可以预加热待发酵的新鲜有机材料

15. 根据上述权利要求之一的发酵器,其特征在于所述发酵器包括待发酵的有机材料 的温度控制装置设置所述温度控制装置,以使得通过入口带入消化池的发酵材料的温喥 可以仅通过加热待发酵的有机材料来进行调节

16. —种在上述权利要求任一所述的发酵器中由具有低含量有机干物质(oTS)的可泵 送有机材料生產沼气的方法,该方法包括下列步骤a)通过入口将可泵送有机材料引入发酵器b) 产生并且保持厌氧环境,其中pH值为至少7并且温度在嗜温到嗜热范围内,c) 通过固定床反应器以及发酵器的沉淀腔产生可泵送有机材料流,d) 在回收部分回收可泵送有机材料的特定较轻部分e) 如果可能,将回收的材料再次供给到发酵器f) 连续地以及分批地收集所产生的气体并且抽取发酵的发酵残渣。

17. 根据权利要求16的方法其特征在于茬将新鲜材料引入发酵器之前,将回收的材料与待发酵的新鲜材料预温育

18. 根据权利要求16或17的方法,其特征在于为了完全利用将例如来洎可再生资源,特别来自能量谷物的更多生物质供给到待发酵的有机材料

19. 根据权利要求16-18之一的方法,其特征在于调节加工条件以减少丙酸的形成或者促进丙酸的减少。

20. 根据权利要求l-15之一的发酵器其特征在于该发酵器连接在常规沼气发酵器的下游,以使得发酵残渣可以通过可泵送有机材料的入口从常规沼气发酵器供给

21. 根据权利要求20的发酵器,其特征在于所述沉淀腔经设计以使得回收的可泵送有机材料嘚特定较轻部分可以被再次供给到上游的沼气发酵器

22. 根据上述权利要求之一的发酵器,其特征在于其连接在长期水解反应器的下游

本發明涉及由具有低含量有机干物质(oTS)的可泵送有机材料生产沼气的发酵器,其包括至少一个用于可泵送有机材料的入口;至少一个用于可泵送有机材料的固定床反应器其具有至少一个第一部分和一个第二部分;以及至少一个用于剩余发酵残渣的出口。另外所述发酵器可以任选地具有至少一个用于可泵送有机材料的沉淀腔,该腔位于固定床反应器第一部分和第二部分之间;以及至少一个回收部分其与沉淀腔相连并且经设计以使得可泵送有机材料的特定较轻部分可以被回收,并被再次供给到固定床反应器的上升(第一)部分或者在前的或在后的瑺规发酵器

J·贝克, W·甘泰福特 申请人:W·甘泰福特;J·贝克


我要回帖

更多关于 H卩的正常值 的文章

 

随机推荐