如何利用磁光霍尔效应效应制作单向光阀门

优势说明:上海伯东英国NanoMagnetics仪器HEMS霍爾效应测量系统,多样品实验,非常适合材料研究等应用.

我们主要经营霍尔效应测量系统,霍尔效应测试仪,霍尔效应是上海伯东英国NanoMagnetics仪器HEMS霍尔效应测量系统,多样品实验,非常适合材料研究等应用.. 

上海伯东主营产品:德国普发 Pfeiffer 涡轮分子泵干式真空泵罗茨真空泵旋片真空泵;应鼡于各种真空环境下的真空计氦质谱检漏仪质谱分析仪以及美国考夫曼公司 KRI 离子源 离子枪 霍尔源美国 HVA 真空阀门Polycold 冷冻机离子刻蚀機等。

    上海伯东汽车胎压传感器检漏用氦质谱检漏仪,应用于胎压监测系统TPMS中的传感器,胎压传感器本身就是一个密封的电子元件,如果漏率不匼格,直接导致监测实效.
    上海伯东氦质谱检漏仪红外探测器杜瓦封装检漏内部集成红外探测器的2m3杜瓦封装器件,应用于火星探测项目,杜瓦封装器件采用真空模式检漏,漏率要求1.10-8Pa.m3/s.选用前级泵为干泵的便携式检漏仪ASM310.
    上海伯东应用于光通讯设备的封装激光芯片检漏,激光芯片在Box内进行封装,葑装完成后的激光芯片漏率要求小于5×10-8mbarl/s
    上海伯东中压开关柜检漏用氦质谱检漏仪应用于电力行业的中压开关柜,中压开关柜内部吸合开关检漏,漏率
    上海伯东CVD钻石长晶炉检漏用氦质谱检漏仪:应用于CVD人造钻石生产设备长晶炉检漏,采用负压法对Seki长晶炉设备真空腔和气体供应系统进行檢漏,漏率设置1x10-8mball/s.
    上海伯东燃料电池车载供氢系统检漏用氦质谱检漏仪:应用于氢燃料电池车的车载供氢系统检漏,氢气储存于35Mpa或70Mpa高压气瓶中,单个氣瓶泄漏出的氢气浓度必须小于6ppm,采用正压法检漏.漏率设置1x10-6mball/s.
    上海伯东普发Pfeiffer推出具有创新性的制药行业完整性测试系统,适用于容器密封完整性測试CCIT,专利技术,利用发射光谱原理,不需要任何特定的示踪气体,使用存在于主包装的容器顶部空间中的气体混合物在大的检测范围内执行高灵敏度测试.无损测试,易于使用和安装
    上海伯东美国ATC微流量检漏仪,与其他空气泄漏测试方法对比,灵敏度更高,更耐用,可重复性更好.美国ATC作为领先嘚空气泄漏检测仪,获得SAE,USP,ASTM认证!
    上海伯东德国Pfeiffer残余气体分析仪(四级杆质谱仪)集高灵敏度,高稳定性和智能操作于一体,配置新一代的操作软件PVMassSpec,可萣量定性评估真空系统中的残余气体成分.最低可检测分压3X10-15hPa.
    上海伯东德国Pfeiffer残余气体分析仪(四级杆质谱仪)集高灵敏度,高稳定性和智能操作于一體,配置新一代的操作软件PVMassSpec,可定量定性评估真空系统中的残余气体成分.最低可检测分压3X10-15hPa.

:(1)以上所展示的信息由企业自行提供内容的真實性、准确性和合法性由发布企业负责,五金商机网对此不承担任何保证责任我们原则上建议您优先选择“信易通”会员合作! (2)同时峩们郑重提醒各位买/卖家,交易前请详细核实对方身份切勿随意打款或发货,谨防上当受骗如发现虚假信息,请向本网举报 

实验一霍尔效应及其应用

.列出計算霍尔系数、载流子浓度

的计算公式并注明单位。

霍尔系数载流子浓度,电导率迁移率。

.如已知霍尔样品的工作电流及磁感应強度

的方向如何判断样品的导电类型?

以根据右手螺旋定则从工作电流旋到磁感应强度

确定的方向为正向,若测得的霍尔电

为了在测量时消除一些霍尔效应的副效应的影响

需要在测量时改变工作电流及磁感应强度

个换向开关;除了测量霍尔电压,还要测量

是两个不同嘚测量位置又需要

个换向开关。总之一共需要

和霍尔器件平面不完全正交,按式(

)测出的霍尔系数比实际值大

还是小要准确测定徝应怎样进行?

和霍尔器件平面不完全正交则测出的霍尔系数比实际值偏小。要想准确

测定就需要保证磁感应强度

和霍尔器件平面完铨正交,或者设法测量出磁感应强度

和霍尔器件平面的夹角

.若已知霍尔器件的性能参数,采用霍尔效应法测量一个未知磁场时测量誤差有哪些来

误差来源有:测量工作电流的电流表的测量误差,测量霍尔器件厚度

测量误差测量霍尔电压的电压表的测量误差,磁场方姠与霍尔器件平面的夹角影响等

如何调节和判断测量系统是否处于共振状态?为什么要在系统处于共振的条件下进行声

缓慢调节声速测試仪信号源面板上的

使交流毫伏表指针指示达到最大

(或晶体管电压表的示值达到最大)

此时系统处于共振状态,显示共振发生的信号指示灯

信号源面板上频率显示窗口显示共振频率

在进行声速测定时需要测定驻波波节的位置,

发射的超声波能量最大

若在这样一个最佳状态移动

至每一个波节处,媒质压缩形变最大则产生的声压最大,接收换能器

晶体管电压表会显示出最大值

由数显表头读出每一个電压最大值时

因此在系统处于共振的条件下进行声速测定,

地测定波节的位置提高测量的准确度。

压电陶瓷超声换能器是怎样实现机械信号和电信号之间的相互转换的

压电陶瓷超声换能器的重要组成部分是压电陶瓷环。

压电陶瓷环由多晶结构的压电材料

这种材料在受到機械应力

同时在极化方向产生电场,

这种特性称为压电效应

如果在压电材料上加交变电场,材料会发生机械形变

称为逆压电效应。聲速测量仪中换能器

作为声波的发射器是利用了压电材料的逆压电效

应压电陶瓷环片在交变电压作用下,发生纵向机械振动在空气中噭发超声波,

转变成了声信号换能器

作为声波的接收器是利用了压电材料的压电效应,空气的振动

使压电陶瓷环片发生机械形变从而產生电场,把声信号转变成了电信号

为什么接收器位于波节处,晶体管电压表显示的电压值是最大值

答:两超声换能器间的合成波可菦似看成是驻波。其驻波方程为

本发明属于半导体测试领域具體涉及一种霍尔效应测试系统。

霍尔效应测试仪是用于测量半导体材料的载流子浓度、迁移率、电阻率、霍尔系数等重要参数的设备因這些参数是了解半导体材料电学特性必须预先掌控的,因此霍尔效应测试仪是理解和研究半导体器件和半导体材料电学特性必备的工具霍尔效应测试仪除了用来测量上述参数之外,还可以判断半导体材料类型也可应用于LED磊晶层的质量判定,还可以用来判断在HEMT组件中二维電子气是否形成以及用于太阳能电池片的制程辅助。

目前市面上的霍尔效应测试仪需要对样品进行特殊处理才能测试比如镀电极,绑萣信号线等操作,这些操作要么工艺复杂,要么损坏样品局部性质而且,需要人工手动调节电流手动切换磁场方向,这种方式容易产生人為差错产生一系列问题:(1)人工调节电流引入少子注入或者样品本身发热,引起测试误差(2)人工控制磁场极性变换容易出错,样品不能居于磁场均匀区域正反向磁感应强度不同,人工切换磁场时间不确定容易引起测试误差。

本发明的目的在于提供一种霍尔效应測试系统该系统无需人工变换磁场极性,也无需对样品进行特殊处理测量数据准确、可靠。

本发明所采用的技术方案是:

一种霍尔效應测试系统包括样品装夹器、信号转换器、恒流源、控制器、采集卡、计算机和磁场产生装置,所述样品装夹器上固定有样品所述样品的信号线与信号转换器连接,所述信号转换器分别与恒流源、控制器、采集卡连接所述恒流源、控制器、采集卡均与计算机连接;所述磁场产生装置分别与控制器、采集卡连接。

按上述方案所述样品装夹器包括弹簧针、陶瓷限位片、样品底座、PCB板、金手指和样品盖,所述弹簧针位于陶瓷限位片内与PCB板连接;所述陶瓷限位片置于样品底座内;所述样品底座置于PCB板上;所述PCB板与金手指连接,所述金手指與信号转换器连接;所述样品盖与样品底座铰接使用时,将样品置于陶瓷限位片内盖上样品盖,使样品与弹簧针紧密接触使用非常方便,无需对样品进行特殊处理也不会对样品造成损坏,确保了测量的准确性

按上述方案,所述样品装夹器包括陶瓷芯片和金手指所述陶瓷芯片包括陶瓷基板,在陶瓷基板的正面设有4个信号电极在陶瓷基板的背面设有4个金属电极,金属电极与信号电极一一对应连接金属电极与金手指连接。使用时将薄膜样品置于4个信号电极上即可进行测试,使用非常方便解决了现有霍尔效应测试系统无法对薄膜材料进行霍尔效应测试的问题,扩大了霍尔效应测试系统的适用范围

按上述方案,所述磁场产生装置包括滑台、旋转电机、带开口的盒体和盒体内的磁场;所述旋转电机与盒体连接带动盒体旋转,从而改变磁场极性;所述旋转电机与滑台的滑块连接滑块带动旋转电機、盒体和盒体内的磁场一起运动;所述旋转电机、滑台与控制器连接。当需要改变磁场极性时控制器控制滑台的滑块运动,从而带动旋转电机、盒体和磁场运动使样品离开磁场;旋转电机旋转盒体,改变磁场极性;控制器控制滑块运动使样品插入盒体的开口进行测試。无需使用人工变换磁场极性使磁性极性变换准确、可靠,且因采用自动控制提高了测试效率。

按上述方案所述磁场产生装置还包括磁场传感器和位移传感器,且磁场传感器和位移传感器与采集卡连接;所述磁场传感器用于采集磁场强度和极性所述位移传感器用於采集滑台位置信息。磁场传感器和位移传感器的设置能使控制器准确控制滑台提高测试效率。

按上述方案所述样品装夹器还包括位迻传感器和温度传感器,且该位移传感器和温度传感器与采集卡连接;所述位移传感器用于采集样品的位置信息所述温度传感器用于采集样品的温度数据。位移传感器和温度传感器的设置能使霍尔效应测试更准确

按上述方案,所述样品装夹器还包括加热装置用于对样品进行加热。

本发明中计算机通过通用串口总线连接控制器、恒流源(吉时利6220),采集卡(安捷伦34970a)用于接收采集卡传来的数据、控制控制器和恒流源工作、计算出霍尔参数。控制器接收计算机的命令控制电机运动(水平电机、旋转电机)来实现永磁体的极性反转,控淛led信号灯指示设备运行状态控制信号切换器选择信号引脚分布。恒流源接收计算机命令输出恒定电流至信号切换器通过信号切换选择紦信号加载至样品的4根信号线的任意一个引脚上。采集卡通过信号切换器获取样品上的信号电压同时获取磁感应强度、极性,样品温度样品位置信号、滑块位置信息,将上述数据传递给计算机

本发明的有益效果在于:

采用样品装夹器对样品进行固定,无需对样品进行特殊处理测试时也无需损坏样品,提高了测试效率和准确性;

通过控制器改变磁场产生装置的磁场极性无需人工操作,既提高了效率也提高了准确性;

通过控制器控制恒流源的电流输出,提高了测试准确率;

能对薄膜材料进行测试也能对块体材料进行测试扩大了其適用范围;

样品和信号线一体化设计,不需要单独引出信号线能够获取稳定的数据信号,确保测试数据的准确性;

通过计算机对数据进荇处理分析从而提高测试精度和测试效率,实现测试过程全自动化

下面将结合附图及实施例对本发明作进一步说明,附图中:

图1是本發明实施例的框图;

图2是磁场产生装置的结构示意图;

图3是样品装夹器的结构示意图;

图4是陶瓷芯片的结构示意图;

图5是计算机的执行步驟;

其中:1、滑台1-1、滑块,1-2、水平电机2、安装板,3、旋转电机4、盒体,5、开口6、金手指,7、PCB板8、样品底座,9、陶瓷限位片10、彈簧针,11、样品盖12、陶瓷基板,13、信号电极14、金属电极,15、金线

为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附圖及实施例对本发明进行进一步详细说明。应当理解此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明

参见图1,一種霍尔效应测试系统包括样品装夹器、信号转换器、恒流源、控制器、采集卡、计算机和磁场产生装置,样品装夹器上固定有样品所述样品的信号线与信号转换器连接,信号转换器分别与恒流源、控制器、采集卡连接恒流源、控制器、采集卡均与计算机连接;磁场产苼装置分别与控制器、采集卡连接。样品装夹器用于夹持样品信号转换器将恒流源传来的电流数据传递给样品,将从样品那传来的电压數据传递给采集卡恒流源接收计算机命令输出恒定电流至信号切换器,通过信号切换选择把信号加载至样品的4根信号线的任意一个引脚仩控制器接收计算机的命令,控制电机运动(水平电机、旋转电机)来实现磁场的极性反转控制led信号灯指示设备运行状态,控制信号切换器选择信号引脚分布采集卡通过信号切换器获取样品上的信号电压,同时获取磁场产生装置的磁感应强度和极性、样品的温度样品的位置信号、磁场产生装置的滑块的位置信息,将上述数据传递给计算机计算机通过通用串口总线连接控制器、恒流源(吉时利6220),采集卡(安捷伦34970a)用于接收采集卡传来的数据、控制控制器和恒流源工作、计算出霍尔参数。

参见图3样品装夹器包括弹簧针10、陶瓷限位爿9、样品底座8、PCB板7、金手指6和样品盖11。弹簧针10位于陶瓷限位片9内与PCB板7连接;弹簧针10为弹力2N.M的圆形探头探针,能确保样品不被损坏陶瓷限位片9为蓝宝石限位片,置于样品底座8内用于对样品进行限位和防止弹簧针10游移。样品底座8置于PCB板7上;PCB板7与金手指6连接金手指6与信号轉换器连接。样品盖11采用高密度的纯钨制成其与样品底座8铰接。为了改变样品温度样品底座8上设有加热装置。为了测试样品温度在樣品底座8上设有温度传感器。为了测试样品位置在样品底座8上设有位移传感器。所述加热装置、温度传感器、位移传感器与采集卡连接使用时,将样品置于陶瓷限位片9内盖上样品盖11,使样品与弹簧针10紧密接触从而将样品的数据信息传递给信号切换器。该样品装夹器鼡于对块状材料和薄膜材料进行测试

参见图4,样品装夹器包括陶瓷芯片和金手指6陶瓷芯片包括陶瓷基板12,在陶瓷基板12的正面设有4个信號电极13在陶瓷基板12的背面设有4个金属电极14,金属电极14与信号电极13通过金线15一一对应连接金属电极14与金手指6连接。信号电极13个为一组汾为两组,相邻两组的距离为15mm,同一组的信号电极13的距离为15mm信号电极13的表面平整度<0.3um,信号电极13的厚度<500nm金线15的直径为35um,陶瓷基板12的厚度为1.5mm用户可直接把样品制作(磁控溅射、化学气象沉积、旋涂等)在陶瓷芯片上,既避免了装夹也避免了信号不稳定,能够快速准确的测量电运输参数使用时,将薄膜样品置于4个信号电极13上即可进行测试使用非常方便,解决了现有霍尔效应测试系统无法对薄膜材料进行霍尔效应测试的问题扩大了霍尔效应测试系统的使用范围。

参见图2磁场产生装置包括滑台1、旋转电机3、带开口5的盒体4和盒体4内的磁场。滑台1包括滑块1-1、水平电机1-2、滑道水平电机1-1与控制器连接,水平电机1-2带动滑块1-1在滑道内滑动旋转电机3与盒体4、控制器连接,带动盒体4旋转从而改变磁场极性;旋转电机3通过安装板2与滑台1的滑块1-1连接,滑块1-1带动旋转电机3、盒体4和盒体4内的磁场随运动准确控制滑台,提高测试效率在盒体4上设有磁场传感器,在滑块1-1上设有位移传感器该磁场传感器、位移传感器与采集卡连接。当需要改变磁场极性时控制器控制滑台1的水平电机1-2,水平电机1-2带动滑块1-1运动从而带动旋转电机3、盒体4和磁场运动,使样品离开磁场;旋转电机3旋转盒体4改变磁场极性;控制器再次控制水平电机1-2工作,使滑块1-1运动从而使样品插入盒体4的开口5进行测试。无需使用人工变换磁场极性使磁性极性變换准确、可靠,且因采用自动控制提高了测试效率。

本发明中迁移率大于100样品放置在图3的蓝宝石限位片上,把样品盖压至样品背面然后将这个样品装夹器放入图2的磁场开孔(盒体4上的开口5)中,同时把样品装夹器上的4个引线接入信号转换器中(将金手指与信号转换器连接);或

迁移率小于100的样品直接使用图3陶瓷芯片来测试其可以把样品通过磁控溅射、化学气象沉积、旋涂等方式固定在陶瓷芯片上即可,然后把陶瓷芯片放入图2的磁场开孔中同时把样品装夹器上的4个引线接入信号转换器中(将金手指与信号转换器连接)。

本发明改進了处理数据方式利用测试电流和电压最小二乘法进行计算,由原有的静态法改为动态法,消除了系统误差,提高了测试结果的准确性由於整个过程是由c#编制的程序控制的,所以按照图5所示程序的执行来说明:

(1)最初是将整个系统的仪表进行初始化,分别对磁场产生装置进行复位、初始化恒流源(吉时利6620)、初始化采集卡(安捷伦34970a);

(2)恒流源(吉时利6620)受控输出测试过程中所需的样品电流到信号转換器采集卡(安捷伦34970a)受控于信号转换器返回的信号电压,

(3)获取采集卡(安捷伦34970a)的10组数据求其平均值存放至内存数组中切换恒鋶源(吉时利6620)的电流输出,重复步骤(2)获取多组平均值数据,使之与电流采用最小二乘法拟合使用拟合值进行计算,得出样品的霍尔参数

应当理解的是,对本领域普通技术人员来说可以根据上述说明加以改进或变换,而所有这些改进和变换都应属于本发明所附權利要求的保护范围

我要回帖

更多关于 磁光霍尔效应 的文章

 

随机推荐