麦克斯韦4个方程方程组是什么

原标题:麦克斯韦4个方程方程组昰如何来的

美国著名物理学家理查德·费曼(Richard Feynman)曾预言:“人类历史从长远看,好比说到一万年以后看回来19世纪最举足轻重的毫无疑問就是麦克斯韦4个方程发现了电动力学定律。” 这个预言或许对吧可是费曼也知道,麦克斯韦4个方程可不是一下子就发现了所有有关电動力学的定律所以如果一定要选出一个有代表性的时间,他很有可能会选1864年10月27日那天麦克斯韦4个方程向皇家学会成员阐述了他的论文“电磁场的动力理论”。一年后麦克斯韦4个方程正式发表他这个激进的新理论那时候整套理论还显得很冗长,后来是他的追随者把这个悝论精炼到了四个如今著名的方程式无论如何,把这些方程是称为麦克斯韦4个方程方程组还是有道理的所以我们今天要来庆祝它们150岁嘚生日。

1820年以前科学家相信电和磁是截然不同的两种现象。后来汉施·克里斯蒂安·奥斯特(Hans Christian Oersted)报告了一个引人注目的结果:当他把磁囮的指南针放到通电导线附近时指南针移动到了和导线垂直的角度。各处的科学家都惊呆了立即着手研究电和磁的关联。其中就有麦克·法拉第(Michael Faraday)

詹姆士·克勒克·麦克斯韦4个方程是十九世纪物理学界最有影响力的人物。(C) GL ARCHIVE/ALAMY

法拉第是个伦敦铁匠的儿子,自学成材29岁嘚时候,他在皇家研究所汉弗莱·戴维(Humphry Davy)手下工作作为一个分析化学家,他竖立了机智灵敏又可靠的好口碑只有其他事情一做完,怹就开始实验电流和磁他并不懂数学,所以至少表面看来他比起那些同时代的接受过完好教育的人来有所欠缺。但反过来说这种缺夨却成了他的优势,他比别人更能自由地思考他问了很多别人都没有考虑过的问题,设计了别人没有想到过的实验看到了别人错过的機会。

与他同时代的安德烈·玛丽·安培(André Marie Ampère)以惊人的速度重复了奥斯特的实验没几个月就发展出了一整套数学理论。他说任何┅个电流环都会产生贯穿过这个环的磁力。安培的理论就像此前的库伦,是基于牛顿的万有引力理论的库伦认为,在点电荷和磁极之間会即时产生直线状的电力和磁力这些力和距离的平方成反比。安培计算了把通电导线看作是无限小的电流分段串在一起把每个无限尛的电流分段当作是一个点来处理,从而计算通电导线产生的磁力要算通电导线产生的磁力,只要把所有电流分段的效应在数学上简单楿加

在法拉第看来,若要说奥斯特实验中指南针是被一组直线引力以及它和导线之间排斥力驱动那是不对的。他觉得应该是通电导線在它的周围空间引起了一种环形的力。他涉及了一个聪明而简单的实验验证这个想法。法拉第将一条磁铁竖直固定在一个小脸盆中央并将水银倒入脸盆中,直到只有磁铁的顶端露出来然后他把一根导线伸到水银中。当他通上电导线和水银就是电路的一部分了。与沝银接触的导线的顶端围绕磁铁快速转动他制造了这个世界上第一个电动机。

安培已经演示过如何从电产生磁——那么从磁里产生电当嘫应该有可能啦然而十年来科学家屡试屡败。然后到了1831年法拉第发现了这个目标难以企及的原因:要想在导线里产生电流,你必须改變导线周围空间里的磁场态你只要在电路周围移动一个磁铁(或者反过来),那么电路就有电流了然而空间的磁场态确切来说到底是什么呢?法拉第想起了白纸上磁铁周围铁屑的分布他确信磁铁不只是一块带着有趣特性的铁,它是整个磁力曲线在空间分布的中心磁仂线实际存在。而且这种现象不仅铁磁有:在导电电路的周围也有相似的磁力线。

法拉第得出进一步结论通过测试,他总结说每个带電物体都是电力线的源头在空间里也会弯曲。和连续成环状的磁力线不同(它们不终止于磁铁而是穿过磁铁),电力线总是从一处的囸电荷物体到另一处的负电荷物体所以每个正电荷都和别处一个负电荷有一个平衡。他同时观察到无论是磁效应还是电效应,都不是即时的都要一段时间来产生作用。照他的理解这是系统要建立起这些电力、磁力线所需要花费的时间。

英国科学家麦克·法拉第(画像)对麦克斯韦4个方程发展电磁统一理论有帮助(C) GL ARCHIVE/ALAMY

法拉第和其他科学家的思维方式很不一样。通常科学家仍然认为电力和磁力是由一段距離内的实质物体相互作用而空间的作用是消极的。皇家天文学家乔治比德尔艾利(George Biddell Airy)爵士评价法拉第的电力磁力线是“模糊和变化的”他代表了当时很多人的意见。这也好理解他们通常的远距作用理论有一个明确的公式,而法拉第的理论却没有提供任何公式虽然他們尊敬法拉第,认为他是一位超凡的实验家但大多数科学家觉得他不懂数学,因而缺乏理论基础

法拉第了解他们的这些意见,所以在發表电力磁力线理论的时候格外谨慎只有一次他做了一次冒险。那是在1846年 他的一个同事查尔斯·威特斯通(Charles Wheatstone)要在皇家学院演讲他的發明,但临阵怯场于是,法拉第决定自己来做个演讲他在给定时间结束前开始讲预告之外的内容。他卸下心理防备把自己最私密的想法说了出来。他向听众们讲述了有着惊人预见的关于光的电磁理论他推测,全部空间都充满着电力线和磁力线这些线横向振动,当受到干扰时就会沿着线的方向以很快但有限的速度发射能量波。他说光很可能就是光线振动的一种体现。

现在我们知道他已经很接菦真相了。但在法拉第的那些科学家同事看来光线振动就像奇幻传说一样荒唐。以至于法拉第的支持者都感到尴尬法拉第本人也后悔松懈了思想防备。他把他同时代的人远远地甩在了后头一直等到四十年以后才有人能揭示法拉第真正的伟大。这个人有着同样思想高度和法拉第能力上的有着互补。这个人就是詹姆士·克勒克·麦克斯韦4个方程(James Clerk Maxwell)

麦克斯韦4个方程职业生涯惊人而又短暂(他死时48岁)。他在他从事的每个物理分领域都做出了根本性的发现但他最伟大的工作是关于电场和磁场,这点像法拉第麦克斯韦4个方程出生于一個高贵的苏格兰家庭,他进了爱丁堡最好的中学然后去了爱丁堡大学和剑桥大学。他在剑桥大学得到了数学荣誉学位考试的第二名获嘚了学士学位。这之后他就开始阅读有关法拉第的电学实验。麦克斯韦4个方程一下子被法拉第的坦诚吸引了:这个伟人公开他的成功以忣失败表达他成熟以及粗略的想法。再读下去麦克斯韦4个方程看到这项工作真正的力量:在寻找探究明白前,思想就有伟大飞跃在麥克斯韦4个方程看来,线这个概念在空间上是有道理的虽然法拉第表达起来都是用文字的,但本质上这是可以用数学表述的他开始用數学的力量承载起法拉第的想法。九年里他跨越了三次令人惊叹的阶段,成功了

麦克斯韦4个方程非常善于发现自然界不同领域的相似性。1856年他开始用虚拟的不可压缩的匀速流体来类比电力线和磁力线:在空间区域的流体速度和方向代表了力线的密度和方向。如此他僦证明了静态电力和磁力可以从传统的距离之间的作用理论推导出来。这是个了不起的成就但当时,麦克斯韦4个方程不知道如何处理变囮的力线依照他惯有的方式,他去干别的工作了但这些想法一致在他脑中酝酿。

六年后他有了一个新模型。他想象空间里充满着小浗这些小球可以旋转,它们被更小的粒子在空间上间隔开那些小粒子就像是钢珠轴承。麦克斯韦4个方程假设这些小球质量很小但有限并有一定的弹性。如此一来就可以把电力线和磁力线和机械系统作类比。因而任何一个小球的变化都会引起了其他小球的变化这个傑出的模型导出了所有著名的电磁方程,它预言电磁波的传播速度只由电磁基本性质决定这个速度和实验测到的光速只相差1.5%。这是个惊囚的结果但科学家却都没对此表态。他们相信任何物理分领域,都是以认清自然真实规律为目标的他们觉得麦克斯韦4个方程的模型並没有原创性,用这个模型尝试对电磁和光作解释是有缺陷的所有人都预计麦克斯韦4个方程下一步就是要完善这个模型。但他没有他紦模型放到一边,只运用动力原理从头开始搭建这个理论。

两年后研究成果被发表在“电磁场的动力理论”这篇论文中。在这个模型裏无处不在的媒介取代了此前模型中的旋转粒子。媒介具有惯性和弹性但他对其机械特性没有详述。就像变戏法他运用了约瑟夫·路易斯·拉格朗日(Joseph Louis Lagrange)的方法,把动力系统看成一个“黑箱”:只要描述了这个系统的一些通常特征就可以在不知道具体机理的情况下,通过输入推导出输出如此,他就有了电磁场方程组一共有20个方程。1864年10月他在皇家学会讲述他的这篇论文,听众们简直不知道该拿咜如何是好一个理论建立在奇怪的模型上已经够糟糕了,而一个理论不以任何模型为基础那就根本无法让人理解。

直到1879年麦克斯韦4个方程过世又过了数年,他的理论都没有人能够真正理解就好似在玻璃箱中的展示,广受仰慕却无人能够接近后来是自学成才做过电報员的奥利弗·亥维赛(Oliver Heaviside )让这套理论变得可以亲近。1885年他把这套理论总结为我们现在所知的四个麦克斯韦4个方程方程

这里 E 和 H 分别是空間任意点电场力和磁场力的矢量, ε 和 μ 分别电和磁的基本常量ρ 是电荷密度, J 是电流密度矢量头两个方程简洁表述了电和磁的平方反比定律。第三、四个方程定义了电和磁之间的关系说明电磁波存在并以1/√(με) 的速度传播。

亥维赛运用矢量分析大大简化了方程的表達三维矢量用一个字母表示,把电势和磁矢势都推到幕后1888年,海因里希·赫兹(Heinrich Hertz)发现电磁波极大地推动了人们对电磁理论的兴趣囚们求助于亥维赛的精炼版本,而非麦克斯韦4个方程最初的表述

要把故事讲完整,还要加上三点内容第一,麦克斯维其实很容易就可鉯把理论简化压缩但是他觉得最好还是保持一定的开放性。许多年后他的智慧显现了:理查德·费曼和其他人发展量子电动力学,就是利用了被亥维赛剔除的原始状态下的势能量。第二点,是麦克斯韦4个方程命名了运算符号,比如散度和旋度。第三,麦克斯韦4个方程事实上在他的《关于电和磁的论文》一文中已经用了矢量,只不过他把矢量表达看作是一种额外的选择他的矢量是从威廉·罗万·哈密顿(William Rowan Hamilton)复杂的四元数推导而来。大多数人都不想用这么复杂的矢量系统直到亥维赛推出简便许多的系统他们才开始接受。

最后想想这点:虽嘫麦克斯韦4个方程从来没有刻意去追求但他的方程组揭示了光速是1/√(με),和观察者、光源的相对速度都没有关系这引导出了爱因斯坦的狭义相对论,E = mc?2; 所以说,或许这个世界上最著名的公式就应该是 E = m/με。这样才能体现爱因斯坦和麦克斯韦4个方程共同的贡献。

光波是一种电磁波所以光波必嘫要服从于电磁波的基本规律,而一切的宏难电磁现象都应该是遵循着基本的规律也就是麦克斯韦4个方程方程组,那么麦克斯韦4个方程方程组有什么意义了麦克斯韦4个方程方程组是谁发明的了,下面一起来看看吧

积分形式的麦克斯韦4个方程方程组

微分形式的麦克斯韦4個方程方程组

具体的麦克斯韦4个方程方程组表现形式大家可以参考一下百度百科

麦克斯韦4个方程方程组是一组用来描述电场,磁场与电荷密度电流密度之间关系的偏微分方程。

电磁场的运动状态及受电荷的作用反映为场的基本物理矢量函数, 电磁场的基本运动规律是由場的运动方程组来表示但是由于矢量函数是随时间变化的,它们是空间和时间的偏微分方程组麦克斯节首先总结出了电磁场的这一普遍规律,所以这一规律京用了他的名字来命名称之为麦克斯韦4个方程方程组。麦克斯书方程组描述了电场与磁场间的相互作用关系

我們通过麦克斯韦4个方程方程组就可以很方便地得出交变电磁场是以波的形式向外传播的这一结论,从而就可以预言电磁波的存在这个预訁在后来为许多实验所证实。在现在的世界上麦克斯韦4个方程电磁场理论也是所有的电工学、无线电电子学以及通信技术等领域的重要悝论基础。

麦克斯韦4个方程提出的涡旋电场的槪念揭示了变化的磁场可以在空间激发电场,并且通过法拉第电磁感应定律得出了二者的關系任何随时间而变化的磁场,都是和涡旋电场联系在一起的麦克斯韦4个方程同时还提出位移电流的槪念,揭示变化的电场吋以在空間激发磁场并通过全电流槪念引入,从而得到了一般形式下的安培环路定理在真空或介质中的表示形式任何随时间而变化的电场,都昰和磁场联系在一起的

在变化电磁场的上述规律中,电场和磁场成为不可分割的一个整体将两种电、磁场的规律合并在一起,就得到電磁场的基本规律,称之为麦克斯韦4个方程方程组的枳分形式和微分形式

麦克斯韦4个方程-安培定律阐明,磁场可以用两种方法生成:一种昰靠电流(最初安培定律描述的方法)产生另一种是靠随时间变化的电场(麦克斯韦4个方程修正项描述的方法)产生。在电磁学里麦克斯韦4个方程修正项意味着时变电场可以生成磁场,而由于法拉第感应定律时变磁场又可以生成电场。这样如果时变电场恰好产生了變化的磁场,则根据这两个方程这种相互产生的电场和磁场(即电磁波)将可以自我持续在空间里传播(更详尽内容,请参阅条目电磁波方程)

我们从麦克斯韦4个方程方程组,就可以推论出光波是电磁波这一结论麦克斯韦4个方程方程组和洛伦兹力方程也因此成为了经典电磁学的基础方程。正是由于麦克斯韦4个方程方程组的理论基础才让许多现代的电力科技与电子科技得以被发明并快速发展起来。

麦克斯韦4个方程方程组可以非常成功的解释与预测各种各样的电磁现象麦克斯韦4个方程方程组对于直实物理给出的是一个比较近似的描述,但是对于一些特别的案例麦克斯韦4个方程方程组估算出的结果可能会不太准确,比如 光电效应,如果使用麦克斯韦4个方程方程组来解释就会遇到困难。

麦克斯韦4个方程方程组是谁发明的

麦克斯韦4个方程方程组是由英国的物理学家詹姆斯·麦克斯韦4个方程发明的所鉯用他的名字进行了命名。詹姆斯·麦克斯韦4个方程早在19世纪80年代时就构想出了这一方程组的早期形式

詹姆斯·麦克斯韦4个方程是对于②十世纪初的物理学影响最大的特理学家之一,詹姆斯·麦克斯韦4个方程的研究对于狭义相对论以及量子力学都打下了理论基础詹姆斯·麦克斯韦4个方程被认为是现代特理学的先声。

我要回帖

更多关于 麦克斯韦4个方程 的文章

 

随机推荐