220v变18v18v直流变压器器,他的原线圈和二次线圈带电吗

  • 1. 如图所示一个理想18v直流变压器器的原线圈的匝数为50匝,副线圈的匝数为100匝原线圈两端接在光滑的水平平行导轨上,导轨的间距为0.4m导轨上垂直于导轨由一长度略大于導轨间距的导体棒,导轨与导体棒的电阻忽略不计副线圈回路中电阻R

    =15Ω,图中交流电压为理想电压表,导轨所在空间由垂直于导轨平面,磁感应强度大小为1T的匀强磁场,导体棒在水平外力的作用下运动其速度随时间变化的关系式为v=5sin10πt(m/s),则下列说法中正确的是(   )

    D . 18v直鋶变压器器常用的铁芯是利用薄硅钢片叠压而成的而不是采用一整块硅钢,这是为了增大涡流提高18v直流变压器器的效率

  • 2. 18v直流变压器器線圈中的电流越大,所用的导线应当越粗若某升压18v直流变压器器只有一个原线圈和一个副线圈,则(   )

    A . 原线圈的导线应当粗些且原线圈的匝数少 B . 原线圈的导线应当粗些,且原线圈的匝数多 C . 副线圈的导线应当粗些且副线圈的匝数多 D . 副线圈的导线应当粗些,且副线圈的匝數少

  • 3. 如图所示理想18v直流变压器器的原、副线圈的匝数比是10:1,电压表和电流表均为理想电表一只理想二极管和一个滑动变阻器串联接茬副线圈上.从某时刻开始在原线圈接入电压的有效值为220V的正弦交流电,并将开关接在1处则下列判断正确的是(   )

    A . 电压表的示数为22V B . 若滑動变阻器接入电路的阻值为10Ω,则1min内滑动变阻器产生的热量为1452J C . 若只将S从1拨到2,18v直流变压器器的输入功率减小 D . 若只将滑动变阻器的滑片向下滑动则两点表示数均减小

  • 4. 如图所示,理想自耦18v直流变压器器副线圈接有滑动变阻器R和定值电阻R

    , Q是滑动变阻器R的滑动触头原线圈两端接电压有效值恒定的交变电流,所有电表均为理想电表则(   )

    A . 保持P的位置不变,Q向右滑动两表示数都变小 B . 保持P的位置不变Q向右滑动R1消耗功率变大 C . 保持Q的位置不变,P向下滑动R1消耗功率变大 D . 保持Q的位置不变P向上滑动两表示数都变大

  • 5. 如图所示电路中,18v直流变压器器为理想18v矗流变压器器电表均为理想电表,L

    为额定电压均为2V的相同灯泡.当ab端接一正弦交流电时闭合电键S,四只灯泡均正常发光则以下说法囸确的是(   )

    A . 18v直流变压器器原副线圈匝数比为3:1 B . αb端所接正弦交流电电压最大值为6 V C . 只增大ab端所接正弦交流电的频率,灯泡亮度均会变化 D . 断開电键S后L1、L2仍能正常发光

是测量、分析电力设备绝缘性能鉯及对局部放电源定位的专用仪器;本系统采用现代电子和计算机综合技术实现信号放大(模拟、电子、数字)、滤波、数据采集、数據处理、图形显示、试验报告自动生成,从而完成局部放电的测量分析与定位。

本仪器携带方便、测量快速抗干扰能力强,便于现场使用其配置的软件主要包括局部放电巡检以及局部放电定位两部分。其中局部放电巡检配置的软件具有时域图形、2D3D统计图谱、报警历史、历史最大、脉冲计数等功能此外还可以详查分析某个相位波形,窗口随意放大和缩小对该段数据进行频谱分析,分析放电波形的頻谱含量使放电波形之间更具可比性,全面统计分析试验数据减少试验中非稳定性因素对试验结果的影响,采用自动或手动记录保存試验数据和瞬态放电波形可对后期数据分析提供参考。局部放电定位配置的软件通过电信号和声信号的时间差对局部放电源进行精准的萣位有助于及时发现故障隐患,提高局部放电活动测量的实效性

2、SHHZPD-9000数字式局部放电巡检仪引用标准

高压开关设备和控制设备标准的共鼡技术要求 DL/T 593

2个电信号接口,一个外同步接口

7” TFT真彩色触摸液晶显示屏

标配16G卡可升级为32G,用于存储试验记录及试验数据

用于与PC机同步传输接口

可外接鼠标键盘以及外接移动存储设备

电池供电(16.8V锂电池)+外置电源(18V)可连续提供8小时供电

2BNC接口(前后面板各两个),用于信号输叺

可插入最大支持32GSD

4-1后面板接口说明表

外置电源输入端口(18V

USB接口可外接鼠标键盘,以及外接移动存储设备

SD卡槽可插入最大支持32GSD

RS232接口,用于与PC机同步传输接口

SMA接口外同步接口

电信号接口,输入通道2BNC接口,用于信号输入

电信号接口输入通道1BNC接口用于信号輸入

电池槽,16.8V锂电池供电

5.1 初次启动系统软件增加一个新的巡检试验档案

用户可以根据自己的需求利用系统软件,为每次试验建立试验档案填写检测说明信息,保存检测数据以便将检测数据与检测信息对应起来。

当软件一次启动时系统会出现“试验设置”对话框,提醒用户填写试验信息同时可以对试验列表进行查看和删除某个试验,当单击试验列表中某个试验时试验信息区将显示对应试验信息。

洳果你点击取消按钮不建立自己的试验档案,系统软件也可以快速建立默认数据库quik_test.db3保证完成试验数据的存储。

软件会在SD卡中建立存储目录以保存数据例如:

所有的检测原始数据都以二进制方式保存以节省存储空间,所有的记录数据都存储在SQLite数据库中以备生成报告使鼡。

利用本系统进行检测数据都存储在SD卡中SD卡最大支持32G,可以导出到PC机进行备份历史数据可以被加载入系统进行追踪分析。

当上述参數均设置完毕后点击确定进行试验。

“试验档案”对话框在停止运行状态下可以打开只需点击5-2中文件按钮控件即可。

5.2 系统软件主窗ロ

当系统软件启动之后状态栏就会显示当前系统状态,如记录存储状况、系统时间、运行状况、触发方式以及设备电池电量

记录存储狀态:提示当前存储的是波形记录还是统计记录,同时提示当前存储总条数

系统时间:显示当前系统日期及时间。

触发模式:提示当前觸发方式从而保证系统根据触发方式正确的使用。

电池电量:提示当前电池剩余电量当剩余电量小于5%时,系统会发出嘀嘀嘀嘀报警声提示用户应连接适配器充电,或保存数据关闭系统防止因电池没电关机导致试验数据丢失。

5.4 系统设置仪器参数配置

“系统设置”对話框包含了对采样、显示、记录以及增益调节的设置如5-5所示

触发方式:软件自动、外部触发和软件同步三种方式。

同步频率:系统工莋频率(50Hz60Hz

显示方式:波形显示模式下,可选择直线、正弦和椭圆三种方式来显示时域波形

自动记录:√为开启自动记录,  为禁止自動记录

时间间隔:自动记录开启后,记录的间隔单位为s

自动调节:√为开启自动增益,  为禁止自动增益

上阈:采样满度百分比,当高于此阈值时达到设定次数后向放大倍数低的档位切换

下阈:采样满度百分比,当低于此阈值时达到设定次数后向放大倍数高的档位切換

显示公司信息和软件版本信息。

对于系统的两个检测通道其参数配置可以分别设置。进入“系统设置”对话框如5-7CH1CH2分别进行設置。

对每个通道有下列参数:

传感器:选择合适的传感器类型具体通道对应的传感器类型根据需要出厂配置。

供电:通道BNC口可对外输絀12V直流电压开为输出电压,关为不输出电压

带宽:可选带宽为20k-100kHz40k-300kHz3M低通,如上选择传感器后带宽会自动切换到该传感器出厂默認的带宽,当用户需要选择其他带宽时可手动切换,进行试验当系统重启后,传感器对应带宽将恢复至出厂默认带宽

量值:输入校准时传感器对应的校准值。

校准:该按钮对当前选中传感器和选中频带进行校准对于HFCT无需输入口令即可进行现场校准,而TEVUA现场不能校准在设备出厂时,需要输入口令进行出厂校准目的是避免用户自行对UHFTEVUA校准,影响设备准确度

对于传感器选择不同频带,都应进荇校准校准后会提示已校准信息。

预警阈值:输入当前传感器预警阈值当测得局放幅值小于该值时为绿色正常信号。

报警阈值:输入當前传感器报警阈值当测得局放幅值大于等于预警阈值且小于报警阈值时为黄色预警信号,当大于等于报警阈值时为红色报警信号

5.5 检測通道显示模式波形图

点击5-9 “显示模式”按钮,切换到波形图模式

5.6 检测通道显示模式统计图

该模式下纵轴代表放电水平,横轴玳表相位0-360度不同的像素颜色代表不同的放电频次(0%100%分别指示放电频次由低到高)

点击“清除统计”按钮开始重新统计

纵轴代表放电次數,横轴代表相位该模式将若干周波局部放电信号进行统计和处理,反应出放电次数与发生放电相位的关系

纵轴代表放电水平,横轴玳表相位该模式将若干周波局部放电信号进行统计和处理,反应出局部放电量与发生放电相位的关系

三维图谱(Q-Φ-T

该模式纵轴代表放电水平,横轴代表相位Z轴代表时间,脉冲不同颜色代表放电水平的大小不同右侧颜色标识代表纵轴不同的百分比所使用的不同颜色。通过该模式可以区分干扰和放电以及随时间变化不同相位信号的变化。

每一个通道的波形显示窗口内可以同时开两个红色子窗口(楿位窗)。此功能一般用来避开某些相位的干扰,对所开窗相位内的波形进行读数以下称开窗。

将鼠标的光标放置在图形显示区的适當位置按下鼠标左键并保持,同时拖动鼠标到另一位置释放鼠标左键即完成开窗操作。重复以上操作可在同一通道开另一个相位窗哃一通道最多显示两个相位窗。注意开窗时开窗区域必须框选注基线,否则开窗无效有相位窗时,读数显示的是相位窗口内的最大放電量同时信息区提示当前开窗个数。

需要关闭哪一个相位窗口就将鼠标的光标放置在哪一个相位窗(红色矩形框)内,单击鼠标左键即可关闭该窗口。在存在两个相位窗口的情况下再进行开窗操作可以关闭前两个相位窗口。

运行过程中还可以对局放数据进行脉冲分析即对已经采集的数据可以详细查看波形形状,从而分析放电波形的性质

要进行脉冲分析,首先要进行开窗操作并保证开一个相位窗,把要分析的波形选进所开窗口内然后点击5.16中“分析”按钮,即弹出开窗分析界面

开窗分析提供了对幅值显示的动态缩放,脉冲左祐移动和水平压缩拉伸功能按键均采用可加速处理,长按自动加速脉冲分析窗口中提供了峰值显示和光标处放电幅值水平显示。点击脈冲显示区光标随之移动,同时水平拉伸和压缩以其为基准进行缩放从而实现快速对脉冲信号的捕捉和展开。

5-17中点击“频域”按鈕就进入频谱分析窗口它是对脉冲分析窗口内波形的频谱展开分析。

[频域]/[时域]按钮就可在脉冲分析窗口和频谱分析窗口之间切换。

5.10 報警、报警历史和最大读数功能

报警功能:色彩编码类似于交通指示灯可根据设定阈值进行报警提示。

正常:局部放电在正常范围内為绿灯。

预警:局部放电大于预警值且小于报警值为黄灯。

报警:局部放电大于报警值为红灯。

报警历史读数:以流动柱状态图的形式显示最近 64 个测量值色彩编码类似于交通指示灯。可点击“复位历史”对报警历史进行复位

最大读数:进入该传感器测量以来,所测嘚的最大读数点击“复位最大”可对最大读数进行复位。

5.11查看采样满幅比例以及显示缩放倍数

    对于采样数据软件提供了对采样数据满幅比例的指示;同时在波形图模式下软件提供对显示波形缩放比例的提示,方便用户在两通道对比时将缩放比例放在同一位置

自动增益:软件根据设定,自动调节增益状态

手动调节增益:软件提供了对当前增益状态指示,提示用户手动调节至合适的增益保证测量的准確性。

增益放大倍数过高:提示向低放大倍数方向调节

增益放大倍数过低:提示向高放大倍数方向调节。

数据存储前用户还必须输入檢测位置信息(5-24),建立检测位置与检测数据之间的对应关系便于用户事后数据的分析,报告的生成

记录存储可选手动记录和自动記录,软件会在SD卡中建立存储数据库和原始数据文件例如:

原始记录可供时域脉冲分析使用。

软件每记录一条数据会将每个通道的图爿以bmp格式存储到SD卡中,以后导出查看具体存储路径为:

其中一个X为通道标识,后一个X为记录号标识

同时软件提供抓屏功能,将图片存儲在:Storage Card试验管理SHHZPD图片屏幕抓图 bmpX.bmp

5.14 浏览记录回放分析

软件提供对记录的分析和查看功能方便用户对已检测记录数据的事后分析处理。

查看记錄可自动播放也可逐条浏览,也可定位某一记录进行脉冲分析

5.15 外部触发的使用

在现场试验时,为了得到稳定而且准确的相位可以采鼡外部触发方式,在系统设置里将触发方式改成外部触发,主机后面板接线如图将外同步模块接到试验电源上,点击运行此时放电楿位为稳定而准确的相位。

5.16 充电及电池更换

本仪器内置高性能锂电池其容量高达4Ah,充满电后可供本仪器连续工作6~8个小时当内置电池电量不足时仪器自动报警,此时应把需要保存的数据及时保存并关闭机器及时充电。

对本仪器内置电池进行充电时把本仪器配带专用电源适配器的交流端插头(普通三芯插头)插入AC220V电源插座内,并通电然后把电源适配器直流端插头插入仪器后面板的充电插座中,即开始對电池充电在充电过程中,充电指示灯为桔红色充电指示灯变为绿色后表示电池已充满电,此时拔除电源适配器即完成整个充电过程整个充电过程大约需要4.5小时左右的时间。如果接入电源适配器后充电指示灯不亮表示充电线路有故障,请检查电源适配器是否通电

紸:对本仪器内置电池进行充电时,必须使用本仪器配带的专用电源适配器充电不得使用其它电源,否则可能造成电池或仪器损坏!

6、開关柜局部放电检测

开关柜局部放电检测采用TEV传感器、超声传感器在线检测高压开关柜局部放电情况 设备采用便携式,操作简单TEV传感器贴在箱壁,超声波传感器沿着开关柜上的缝隙扫描检测对高压开关及开关柜无任何损害,所有的检测对高压开关及开关柜设备的运行鈈产生任何影响

可同时利用超声、TEV检测法进行巡检,发挥各自的优势实现全功能检测。

检测过程实现即时测量、显示PD数据及放电波形同时可对其进行保存,建立相应的数据库供设备今后的分析比较,对某一设备的测试结果可以通过横向比较和纵向比较两种方法确定放电发生及定位放电位置

现场对于高压开关柜的带电巡检方式采用瞬时地电压(TEV)检测方式。当高压开关柜中出现局部放电以后沿放電通道将会有过程极短的脉冲电流产生,并激发瞬态电磁波放电过程的时间比较短,电流脉冲的陡度比较大辐射高频电磁波的能力比較强,可以通过金属外壳的开孔向外传播这些开孔可以是外壳密封垫圈或者其他绝缘部件周围的间隙。这些高频电磁波传播到开关柜外媔时会在金属外壳上产生瞬时对地电压。瞬时地电压在几个毫伏至几伏的范围内只有几个纳秒的上升时间,将专用的TEV传感器布置在开關柜外面采用这种非侵入方式来检测局放活动。测量原理如下图所示:

暂态对地电压法检测部位主要是母排(连接处、穿墙套管支撑絕缘件等)、断路器,CTPT、电缆等设备所对应到开关柜柜壁的位置这些设备大部分位于开关柜前面板中部及下部,后面板上部、中部及丅部、侧面板的上部、中部及下部开关柜暂态对地电压法检测部位如下图:

6.3 超声波检测工作原理

局部放电产生的声波的频谱很宽,可以從几十Hz 到几MHz其中频率低于20kHz 的信号能够被人耳听到,而高于这一频率的超声波信号必须用超声波传感器才能接收到通过测量超声波信号嘚声压大小,可以推测出放电的强弱

超声波检测过程中,应将超声波传感器沿着开关柜上的缝隙扫描检测开关柜超声法检测部位可参栲6-3进行测试。

6.4 传感器技术参数

CS-I空气式超声传感器

开关柜局部放电检测流程如下:
1) 按照5.1节中步骤新建试验档案。
2) 按照5.4节中打开系统设置对话框如果不接外同步模块,则触发方式设置成软件同步若接外同步模块,则设置成外部触发;记录采用手动方式记录;增益调节选中自动调节其他增益相关默认;对CH1传感器配置成TEV模式,供电开(通道指示灯点亮)CH2配置成UA-A模式,供电开(通道指示灯点煷);对其它采用系统默认设置点击确定,回到主界面
3) 点击主界面运行按钮,将显示模式调成波形模式进行检测。首先对环境進行检测记录环境空气和金属部件的背景噪声。然后按顺序对开关柜逐个进行检测并手动记录相应数值及波形,同时也可以记录统计波形供后期分析详细步骤如下:
a) 首先将测试仪的TEV传感器指向空气中,测量开关室内大气背景噪声,记录数据和波形;
b) TEV传感器与开关室内金属粅件紧密接触,测试开关室金属物体的背景噪声,记录数据和波形;
c) TEV传感器与开关柜柜体紧密接触,测试开关柜局放幅值和波形情况,分别测试开關柜正面中间及下部,背面及侧面的上、中、下部位,记录测试结果;
d) 将超声传感器沿着开关柜上的缝隙进行扫描检测监听异常声音信号,并测试开关柜超声波局放幅值和波形分别测试开关柜正面及背面的缝隙部位,记录测试结果

4) 试验完毕后,将SD卡中的数据用读卡器拷貝到PC机用报告生成软件将报告导出,并对数据库数据进行横向纵向分析对开关柜进行评估。

程中TEV传感器应垂直于开关柜表面,并且與柜体紧密接触
b) 尽量靠近观察窗等局部放电信号等易泄漏部位的金属面板上
c) 侧面无法检测时可以跳过
d) 禁止使用无线通信设备
e) 试中应减少走動停止其他工作,减少噪声产生
f) 常设备的检测结果应与背景噪声及在同等条件下同类设备无明显差异
g) 次读数时为确保数值稳定,先按丅停止按钮再进行数据和波形记录

7、GIS局部放电检测

GIS局部放电检测采用特高频法、超声波法检测,可根据实际情况选择传感器类型亦可兩种检测方法同时使用。

    特高频检测法:可有效检测GIS内部的由悬浮颗粒、导体和壳体上的突起、盆式绝缘子内部绝缘缺陷等原因引起的局蔀放电特高频传感器的检测频率范围:300MHz1.5GHz,由于检测频率高可有效的避免现场干扰

超声波检测法:可以检测、识别和定位GIS中的局部放電故障或振动的微粒,不需要预先在GIS上安装内部耦合器和传感器检测时可在胸前背挎本仪器,手持传感器在GIS的腔体进行检测超声传感器的频率范围:20kHz120kHz

GIS局部放电检测系统构成表

CS-II型超声传感器

GIS发生绝缘故障的原因是其内部电场的畸变往往伴随着局部放电现象,产生脉沖电流电流脉冲上升时间及持续时间仅为纳秒( nS ) 级,该电流脉冲将激发出高频电磁波其主要频段为0.33GHz,该电磁波可以从GIS上的盘式绝缘子處泄露出来采用特高频传感器(频段为0.33GHz )测量绝缘缝隙处的电磁波,然后根据接收的信号强度来分析局部放电的严重程度

优点:可以带电測量,测量方法不改变设备的运行方式并且可以实现在线连续监测。可有效地抑制背景噪声如空气电晕等产生的电磁干扰频率一般均較低,特高频方法可对其进行有效抑制。抗干扰能力强

缺点:仅仅能知道发生了故障,但不能对发生故障的点进行准确的定位而且目前沒有相应的国际及国内标准,不能给出一个放电量大小的结果

7.3 超声波检测工作原理

GIS内部产生局部放电信号的时候,会产生冲击的振动及聲音GIS局部放电会产生声波,其类型包括纵波、横波和表面波纵波通过气体传到外壳、横波则需要通过固体介质(比如绝缘子等)传到外壳。通过贴在GIS外壳表面的压电式传感器接收这些声波信号以达到监测GIS局放的目的。因此可以用在腔体外壁上安装的超声波传感器来测量局部放电信号

优点:传感器与 GIS设备的电气回路无任何联系,不受电气方面的干扰设备使用简便,技术相对比较成熟现场应用经验仳较丰富, 可不改变设备的运行方式进行带电测量由于测量的是超声波信号,因此对电磁干扰的抗干扰能力比较强可以对缺陷进行定位。

缺点:声音信号在 气体中的传输速率很低(340m/s )且信号 中的高频部分衰减很快,信号通过不同介质的时候传播速率不同且在不同材料嘚边界处会产生反射,因此信号模式变得很 复杂另外传感器监测有效范围较小,对大型设备器需要众多的传感器现场应用较为不便。

7.4 UHF囷超声波联合检测

1.GIS盆式绝缘子处放置UHF传感器进行特高频检测,进行电磁波信号的测量判断是否存在电磁波信号。

2.使用超声传感器逐點进行声信号检测判断是否存在声信号。之后根据出现的几种具体情况进行进一步的分析判断

如果电信号和声信号都存在,则使用特高频法根据盆式绝缘子的位置进行粗略定位  同时使用超声法进行精确定位,如果两者都定位到同一个GIS腔体且表现一致则判断该腔体内蔀存在放电故障,具有绝缘缺陷应根据具体情况进行进一步跟踪检测或采取相应措施 

如果只测量到了特高频电磁波信号而没有超声波信号则应通过改变UHF传感器的位置摆放和传感器的方向性及信号的频率分布,判断是否是周围设备发生了局部放电或者是否存在另外的干擾源并对GIS设备进行重点跟踪观察  

如果超声波法测量到了声信号而特高频法没有测量到电磁波信号则在使用超声法在 超声信号最大的蔀位进行精确定位。通过具体位置及设备结构进行分析是否是设备本身的正常振动或者是设备的结构导致特高频信号衰减很大,不能通過检测位置测量到并对设备进行重点跟踪观察。

7.5 传感器技术参数

SHHZCS-II型磁吸附式超声传感器

GIS局部放电检测流程如下:

按照5.1节中步骤新建试驗档案。

按照5.4节中打开“系统设置”对话框如果不接外同步模块,则“触发方式”设置成软件同步若接外同步模块,则设置成外部触發;记录采用手动方式记录;增益调节选中自动调节其他增益相关默认;对CH1传感器配置成UHF模式,供电—开(通道指示灯点亮)CH2配置成UA-P模式,供电—开(通道指示灯点亮);对其它采用系统默认设置点击确定,回到主界面

点击主界面“运行”按钮,将显示模式调成波形模式进行检测。用UHF通道对盆式绝缘子位置进行检测用超声通道对腔体进行检测,手动记录相应数值及波形同时也可以记录统计波形供后期分析。

试验完毕后将SD卡中的数据用读卡器拷贝到PC机,用报告生成软件将报告导出对GIS进行评估。

8、18v直流变压器器局部放电检测

18v矗流变压器器局部放电检测采用超声波法、脉冲电流法及电、声综合法检测

超声波法:在18v直流变压器器(电抗器)内部一旦发生局部放電,就会产生超声波信号以球面波形式向周围传播,只要在18v直流变压器器(电抗器)箱壁外侧放置超声传感器就可以接收到放电产生嘚超声波信号。

脉冲电流法:18v直流变压器器(电抗器)的绕组与铁芯之间为绝缘材料存在分布电容,而放电信号是几百千赫到几兆赫的高频信号能通过该电容从绕组传到铁芯,在铁芯或夹件接地线上卡装高频电流传感器能够检测到局放脉冲信号

电、声综合法检测是将脈冲电流法、超声波法综合使用(简称电、声综合检测法),该方法既能结合两种检测方法的优点全面检测各种类型的放电信号,还能通过电、声之间的时间差来判断局部放电故障点的位置

18v直流变压器器局部放电检测系统构成表

局部放电信号在18v直流变压器器内的传播途徑:

脉冲电流(LC传输回路)

高频电磁波(需要18v直流变压器器内预置特高频天线)

天线(需要18v直流变压器器内预置特高频天线)

利用宽频带電流互感器(SHHZCT)接收信号位置为:

 经改造后的套管末屏

利用超声波检测则在油箱箱壁处检测。

局部放电测试一个最重要的步骤就是校正泹是带电局部放电在线检测都是在设备运行状态下,无法在待测物上注入校正信号所以在线局部放电测试法都是利用比较法或者间接校准方式来校正,也就是校正信号直接注入到传感器来校正此方法在IEC-62478称为性能及灵敏度确认。

SHHZCT采用现场校准方法未校准测得的数据为无效数据。打开“系统设置”对话框如5-7HFCT通道进行校准。

将校准脉冲发生器按8-4方法接入试验回路并施加适当的放电脉冲。

根据校准脈冲发生器输出的电荷量输入需要校准的放电值。

点击 “校准”按钮并在弹出的确认框中选择“确定”后,校正过程开始同时,“校准”按钮变为“保存”按钮

持续几秒后,待放电检测数据稳定后按“保存”按钮保存所对应通道的校准结果。

校正完毕后应拆除校准脉冲发生器准备正式检测。

8.5 传感器技术参数

SHHZCT-I型宽频带电流互感器

SHHZCS-II型磁吸附式超声传感器

18v直流变压器器局部放电检测流程如下:

按照5.1节Φ步骤新建试验档案。

按照5.4节中打开“系统设置”对话框如果不接外同步模块,则“触发方式”设置成软件同步若接外同步模块,則设置成外部触发;记录采用手动方式记录;增益调节选中自动调节其他增益相关默认;对CH1传感器配置成HFCT模式,供电—关(通道指示灯熄灭)CH2配置成UA-P模式,供电—开(通道指示灯点亮);对其它采用系统默认设置

按照8.4节中的方法对HFCT进行现场校准。

点击主界面“运行”按钮将显示模式调成波形模式,根据8.3节中的检测方法进行检测并手动记录相应数值及波形,同时也可以记录统计波形供后期分析

试驗完毕后,将SD卡中的数据用读卡器拷贝到PC机用报告生成软件将报告导出,对18v直流变压器器进行评估

电缆局部放电检测采用脉冲电流法囷局部放电定位探测器检测。

电缆局部放电检测系统构成表

由于制造或安装的缺陷会在电缆端头(接头)的绝缘部分发生放电,直至发苼绝缘击穿损坏有的会发生着火或爆炸。所以如何在事故发生之前发现故障隐患是解决问题的关键。这就需要我们有带电检测的手段

脉冲电流法:在高压电缆中,导线和金属屏蔽之间由绝缘材料隔开形成分布电容该电容约为几百pF,对高频信号形成通路因此,高频嘚局部放电信号由分布电容对接地引线构成回路传输在电缆接头屏蔽接地线上安装高频电流传感器可检测到放电脉冲信号,并能够确定局部放电的量值

局部放电定位探测器法:SHHZPD-9000局部放电定位探测器集电信号和超声信号的检测于一体,其操作简单方便与试品无任何接线,非接触测试定位准确,探测器内安装了电、声空间定位传感器通过对电、声信号幅值和时差变化的分析,可准确定位放电点的位置

电缆接头发生放电的几个阶段

无放电信号:利用SHHZPD-9000局部放电定位探测器接收不到任何电信号和超声信号。说明该接头绝缘状况良好

发生微弱放电:利用SHHZPD-9000局部放电定位探测器可接收到微弱的电信号,但收不到超声信号说明该接头已存在绝缘缺陷,但在短时间内不会发生击穿故障可进行跟踪检测观察。

发生较强放电:利用SHHZPD-9000局部放电定位探测器可接收到较强的电信号但收不到超声信号。说明该接头已存在較严重绝缘缺陷放电有可能发生在内部,超声波信号的衰减较严重所以暂时收不到超声信号,在这种情况下可加紧跟踪观察,也可栲虑维修更换

发生严重放电:利用组合探测器可接收到较强的电信号,也可收到到超声信号说明该接头已存在较严重绝缘损坏,应立即维修更换

参见8.4节中的校准方法。

9.4 传感器技术参数

SHHZCT-I型宽频带电流互感器

工作时间: 5小时

传感器灵敏度:-65 dB

传感器中心频率:40kHz

电缆局部放電检测流程如下:

按照5.1节中步骤新建试验档案。

按照5.4节中打开“系统设置”对话框如果不接外同步模块,则“触发方式”设置成软件哃步若接外同步模块,则设置成外部触发;记录采用手动方式记录;增益调节选中自动调节其他增益相关默认。

采用HFCT检测时对CH1传感器配置成HFCT模式供电—关(通道指示灯熄灭),若采用单HFCT则只使用CH1,对其它采用系统默认设置继续第三步操作。

采用SHHZPD-9000局部放电定位探测器时CH1传感器配置成CB-UA模式,供电—关(通道指示灯熄灭)CH2传感器配置成CB-E模式,供电—关(通道指示灯熄灭)其他采用默认设置。不进行校准直接进行第四部操作。

按照8.4节中的方法对CT进行现场校准

点击主界面“运行”按钮,将显示模式调成波形模式根据9.2节中的检测方法進行检测,并手动记录相应数值及波形同时也可以记录统计波形供后期分析。

试验完毕后将SD卡中的数据用读卡器拷贝到PC机,用报告生荿软件将报告导出对电缆进行评估。

巡检数据可通过SD卡导出到PC机中从而完成用户报告的创建。报告生成要求PC机应安装Microsoft Word2003SQLite数据报告生成系统Version1.0

已打开数据库树列表,点击根节点刷新④及⑤列表点击表节点刷新②列表。

PRPS记录列表点击记录可进行图片预览。

统计图记录列表点击记录可进行图片预览。

选中、清除以及创建报告功能按键

11、现场干扰及处理方法

1) 户外架空线的强电晕干扰会对开关室的进线柜忣相邻柜的超声波和暂态对地电压测试值造成影响。

2) 主变冷却器等大电机运转时由于内部线圈的转动会在外壳产生较高的暂态对地电压测試值进而对开关室的进线柜及相邻柜的超声波和暂态对地电压测试值造成影响。

3) 蓄电池屏柜和直流屏柜由于内部的整流电路其暂态对哋电压测试值会异常高,但影响范围小在2开外即可忽略。

4) 靠近灯源会使超声波测试值异常大

5) 屋顶日光灯损坏后镇流器不停启动会導致暂态对地电压测试值提高很多,其影响范围较大可以覆盖一个主控室或高压开关室。

6) 开关柜背面的带电指示器会造成暂态对地电压測试值偏高

7) 有些电子电路版、控制箱等会产生一定的干扰,对暂态对地电压测试值产生影响但影响范围仅限于与其连接的金属面,且鈈超过0.5m 的距离如消防控制箱、开关柜就近控制保护屏等。

8) 闹市区的构架暂态对地电压测试值受车辆等原因影响很大但存在房屋的屏蔽措施时,内部的设备受影响较小

9) 人耳可听的声音等会对超声波测试带来极大干扰。

10) 电晕放电可明显增大超声测试法的数值且其声响与開关柜内部产生的声音基本类同。

11) 超声测试法的干扰源影响距离一般较小且有一定的方向性。

1) 关闭干扰源如一些室内的排风扇、日光燈等。

2) 采用不同的时间进行测试

3) 避开无线电及其它电子装置的干扰信号。

4) 通过局部放电定位仪确定信号的传播方向来确定与被测设备相距较远的放电干扰源等方法实现

12、局部放电定位系统基本操作

版本号——当前系统的版本

间——显示当前系统时间

运行情况——显示當前软件所处的状态运行或者停止

电量——显示当前电池的电量百分比

退出系统——退出当前系统的按钮

峰值——显示通道CH1CH2峰值,颜色汾别与相应的通道波形颜色相一致

CursorA——显示当前图谱中光标A的坐标值分别为时间和幅值;CursorB——显示当前图谱中光标B的坐标值,分别为时間和幅值;△t——显示当前图谱中光标A和光标B时间差

定位距离——显示距离局部放电源的距离

1——显示通道CH1波形的基线;2——显示通道CH2波形的基线

①——指示光标Cursor1②——指示光标Cursor2

——通道CH1CH2在图谱中每个方格的幅值随着增益的变化也会发生变化

Cursor1——显示当前光标1的幅值;Cursor2——显示当前光标2的幅值;△V——显示当前Cursor1Cursor2的幅值差

——点击可选中按钮可以配合左右调整光标的位置

——点击选中按键可以配合左祐调整波形位置

——点击选中按键可以配合使用 上下调整光标位置

——点击选中按键可以配合分别调整基线垂直位置,从而更好的对信号進行对比

——点击按键或按住按键可以调整幅值

——调整横轴即时间轴的值

——切换光标信源,CH1图谱部分对应黄色切换CH2变为玫红色

——点击运行,系统启动

进入局部放电定位系统点击按键系统设置按键,系统弹出系统设置对话框可以分别设置采集、声速、通道参数等信息。

同步方式:分为内同步和外同步两种方式

采样时长: 采样时长默认为5秒也可以根据具体情况在输入框中输入采样时长,点击输叺法中的按键即可完成输入

在系统设置,声速输入框中输入平均声速其中不同的材料的声速不同,详细的声速表参见12-1不同材料的声速参考表

对外供电:默认为关,如果采用通道供电需打开对外供电设置

传感器系数:传感器放大倍数,默认1.0可以根据需要在输入框Φ输入传感器系数

自动增益:根据现场情况,定位过程中我们首先选用自动增益,如果信号周期性出现可以关闭自动增益,改为手动調节

上限:采样满度百分比,当高于此阈值时达到设定次数后向放大倍数低的档位切换

下限:采样满度百分比,当低于此阈值时达到設定次数后向放大倍数高的档位切换

设置通道:通常1通道为电信号通道,2通道为超声信号通道

CH1接电信号,CH2连接超声信号注意如果采用通道供电,需打开对外供电设置

设定采样中的采样率,同步方式采样时长

设定声速:根据所使用的材料设置响应的声速

设置通道參数:根据12.2系统设置中的通道参数设置部分设置通道参数。

完成设置后点击运行当信号出现并稳定后,点击停止按照12.1中介绍的方法分別移动光标的位置到CH1CH2对应波形出现的其起始位置,系统将自动计算出定位距离此时定位距离显示的数值即为当前位置到局部放电源的距离。

仪器自购买之日起一年内属产品质量问题免费包修包换,终身提供维修和技术服务如发现仪器有异常情况或故障请与公司及时聯系,以便为您安排便捷的处理方案

我要回帖

更多关于 18v变压器 的文章

 

随机推荐