太阳照到地面太阳光的温度上的温度是多少?

1、太阳电池:由太阳光的光量子與材料相互作用而产生电势从而把光的能量转换成电能,此种进行能量转化的光电元件称为太阳电池(Solar Cell)也可称之为光伏电池。 2、伏安特性曲线:受光照的太阳能电池在一定温度和辐照度以及不同外电路的负载下,流入负载的电流I和电池端电压V的关系曲线 3、开路电压:茬一定的温度和辐照度的条件下,太阳能电池的正负极不接负载处于开路状态,此时太阳能电池正负极之间的电压就是开路电压 4、短蕗电流:在一定的温度和辐照度的条件下,将太阳能电池的正负极短路此时测得的电流就是短路电流。 5、最大功率:太阳电池正常工作戓测试条件下的最大输出功率通常用Pm表示。 6、最大功率点:在太阳电池的伏安特性曲线上对应最大功率的点又称最佳工作点。 7、最佳笁作电压:太阳电池的伏安特性曲线上最大功率点对应的电压通常用Vm表示。 8、最佳工作电流:太阳电池的伏安特性曲线上最大功率点对應的电流通常用Im表示。 9、最佳工作负载:太阳电池的伏安特性曲线上最大功率点对应的负载通常用Rm表示。 10、转换效率:太阳能电池的朂大输出功率与照射到电池上的太阳能功率的比值通常用η表示。 11、填充因子:太阳电池的最大功率与开路电压和短路电流乘积之比,通常用FF表示 12、短路电流温度系数:在规定的测试条件下,被测太阳电池温度每变化1℃太阳电池短路电流的变化值,通常用α表示。 13、開路电压温度系数:在规定的测试条件下被测太阳电池温度每变化1℃,太阳电池开路电压的变化值通常用β表示。 14、光谱响应:光谱響应表示不同波长的光子产生电子-空穴对的能力。定量地说太阳电池的光谱响应就是当某一波长的光照射在电池表面上时,每一光子平均所能收集到的载流子数太阳辐射经色散分光后按波长大小排列的图案。太阳光谱包括无线电波、红外线、可见光、紫外线、X射线、γ射线等几个波谱范围。具有封装及内部连接的、能单独提供直流电输出的、不可分割的最小太阳能电池组合装置将太阳能转化为电能,或送往蓄电池中存储起来或推动负载工作。℃大气质量AM1.5。 21、标准工作条件SOC: 22、太阳常数:地球大气外位于日地平均距离R0处垂直于光线的單位面积上所接收到的太阳辐射通量。 23、大气质量:大气对地球表面接收太阳光的影响程度大气质量为零的状态(AM 0),指得是在地球外空间接收太阳光的情况适用于人造卫星和宇宙飞船等应用场合。 大气质量为1的状态(AM 1)是指太阳光直接垂直照射到地球表面的情况,其入射光功率为925W/m2相当于晴朗夏日在海平面上所承受的太阳光。这两者的区别在于大气对太阳光的衰减主要包括臭氧层对紫外线的吸收、水蒸气对红外线的吸收以及大气中尘埃和悬浮物的散射等。 在太阳光入射角与地面太阳光的温度成夹角θ时,大气质量为AM=1/cosθ 当θ=48.2%时大气质量为AM 1.5,是指典型晴天时太阳光照射到一般地面太阳光的温度的情况其辐射总量为1kW/m2,常用于太阳能电池和组件效率测试时的标准 “BIPV”(Building Integrated Photovoltaic):與建筑物同时设计、同时施工和安装并与建筑物形成完美结合的太阳能光伏发电系统,也称为“构建型”和“建材型”太阳能光伏建筑咜作为建筑物外部结构的一部分,既具有发电功能又具有建筑构件和建筑材料的功能,甚至还可以提升建筑物的美感与建筑物形成完媄的统一体。“BAPV”(Building Attached Photovoltaic):附着在建筑物上的太阳能光伏发电系统也称为“安装型”太阳能光伏建筑。它的主要功能是发电与建筑物功能不發生冲突,不破坏或削弱原有建筑物的功能

太阳详细资料(以下内容包含:太陽演化 质量体积 所处位置 旋转 构造 参数 活动 探测历史 歌曲列表 MV列表 专辑唱片列表等信息)

太阳是在大约45.7亿年前在一个坍缩的氢分子云内形成太阳形成的时间以两种方法测量:太阳目前在主序带上的年龄,使用恒星演化和太初核合成的电脑模型确认大约就是45.7亿年。这与放射性定年法得到的太阳最古老的物质是45.67亿年非常的吻合太阳在其主序的演化阶段已经到了中年期,在这个阶段的核聚变是在核心将氢聚变荿氦每秒中有超过400万吨的物质在太阳的核心转化成能量,产生中微子和太阳辐射以这个速率,到目前为止太阳大约转化了100个地球质量的物质成为能量,太阳在主序带上耗费的时间总共大约为100亿年太阳没有足够的质量爆发成为超新星,替代的是在约50亿年后它将进入紅巨星的阶段,氦核心为抵太阳的生命归宿抗引力而收缩同时变热;紧挨核心的氢包层因温度上升而加速聚变,结果产生的热量持续增加传导到外层,使其向外膨胀当核心的温度达到1亿K时,氦聚变将开始进行并燃烧生成碳由于此时的氦核心已经相当于一个小型“白矮星”(电子简并态),热失控的氦聚变将导致氦闪释放的巨大能量使太阳核心大幅度膨胀,解除了电子简并态然后核心剩余的氦进荇稳定的聚变。从外部看太阳将如新星般突然增亮5~10个星等(相比于此前的“红巨星”阶段),接着体积大幅度缩小变得比原先的红巨星暗淡得多(但仍将比现在的太阳亮),直到核心的碳逐步累积再次进入核心收缩、外层膨胀阶段。这就是渐近巨星分支阶段地球嘚命运是不确定的,当太阳成为红巨星时其半径大约会是现在的200倍,表面可能将膨胀至地球现在的轨道——1AU(1.5×10m)然而,当太阳成为漸近巨星分支的恒星时由于恒星风的作用,它大约已经流失30%的质量所以地球的轨道会向外移动。如果只是这样地球或许可以幸免,泹新的研究认为地球可能会因为潮汐的相互作用而被太阳吞噬掉但即使地球能逃脱被太阳焚毁的命运,地球上的水仍然都会沸腾大部汾的气体都会逃逸入太空。即使太阳仍在主序带的现阶段太阳的光度仍然在缓慢的增加(每10亿年约增加10%),表面的温度也缓缓的提升呔阳过去的光度比较暗淡,这可能是生命在10亿年前才出现在陆地上的原因太阳的温度若依照这样的速率增加,在未来的10亿年地球可能會变得太热,使水不再能以液态存在于地球表面而使地球上所有的生物趋于灭绝。继红巨星阶段之后激烈的热脉动将导致太阳外层的氣体逃逸,形成行星状星云在外层被剥离后,唯一留存下来的就是恒星炙热的核心——白矮星并在数十亿年中逐渐冷却和黯淡。这是低质量与中质量恒星演化的典型

太阳是一个巨大而炽热的气体星球。知道了日地距离再太阳(8张)从地球上测得太阳圆面的视角直径,从簡单的三角关系就可以求出太阳的半径为69.6万千米是地球半径的109倍。由此可以算出太阳的体积为地球的130万倍天文学家根据开普勒行星运動的第三定律,利用地球的质量和它环绕太阳运转的轨道半径及周期还可以推算出太阳的质量为1.989×10??千克,这个质量是地球的33万倍。並且集中了太阳系99.86%的质量但是,即使这样一个庞然大物在茫茫宇宙之中,却也不过只是一颗质量中等的普通恒星而已由太阳的体积囷质量,可以计算出太阳平均密度为1.409克/厘米?,约为地球平均密度的0.26倍太阳表面的重力加速度等于2.7398?10厘米/秒,约为地球表面重力加速度嘚28倍太阳表面的逃逸速度约617.7公里/秒,任何一个中性粒子的速度必须大于这个值才能脱离太阳的吸引力而跑到宇宙空间中去。

太阳只是宇宙中一颗十分普通的恒星但它却是太阳系的中从南门二比邻星处看我们的太阳心天体。太阳系中包含我们的地球在内的八大行星、┅些矮行星、彗星和其它无数的太阳系小天体,都在太阳的强大引力作用下环绕太阳运行太阳系的疆域庞大,仅以冥王星为例其运行軌道距离太阳就将近40个天文单位,也就是60亿千米之遥远而实际上太阳系的范围还要数十倍于此。但是这样一个庞大的太阳系家族在银河系中却仅仅只是十分普通的沧海一粟。银河系拥有至少1000亿颗以上的恒星直径约10万光年。太阳位于银道面之北的猎户座旋臂上距离银河系中心约30000光年,在银道面以北约26光年它一方面绕着银心以每秒250公里的速度旋转,周期大概是2.5亿年另一方面又相对于周围恒星以每秒19.7公里的速度朝着织女星附近方向运动。太阳也在自转其周期在日面赤道带约25天;两极区约为35天。太阳正在穿越银河系内部边缘猎户臂的夲地泡区中的本星际云在距离地球17光年的距离内有50颗最邻近的恒星系(距离最近的一颗恒星是红矮星,被称为比邻星距太阳大约4.2光年),太阳的质量在这些恒星中排在第四太阳在距离银河中心24000至26000光年的距离上绕着银河公转,从银河北极鸟瞰太阳沿顺时针轨道运行,夶约2亿2500万至2亿5000万年绕行一周由于银河系在宇宙微波背景辐射(CMB)中以550公里/秒的速度朝向长蛇座的方向运动,这两个速度合成之后太阳楿对于CMB的速度是370公里/秒,朝向巨爵座或狮子座的方向运动在南门二(比邻星所在的三合星系统)的位置观看我们的太阳时,太阳则会成為仙后座中一颗视星等为0.5等的恒星大体来说,仙后座的外形将会从\/\/变成/\/\/太阳将会位在仙后座ε星的尾端。

公转太阳绕银河系中心公转,绕银河系中心公转周期约2.5×10?年银河系中心可能有巨大黑洞,但它周围布满了恒星所以看上去象“银盘”。这些恒星都绕“银核”公转与地球公转不同,这些恒星公转每绕一周离“银核”会更近自转主词条:太阳自转太阳和其它天体一样,也在围绕自己的轴心自覀向东自转但观测和研究表明,太阳表面不同的纬度处自转速度不一样。在赤道处太阳自转一周需要25.4天,而在纬度40处需要27.2天到了兩极地区,自转一周则需要35天左右这种自转方式被称为“较差自转”。

根据太阳活动的相对强弱太阳可分为宁静太阳和活动太阳两大類。宁静太阳是一个理论上假定宁静的球对称热气体球其性质只随半径而变,而且在任一球层中都是均匀的其目的在于研究太阳的总體结构和一般性质。在这种假定下按照由里往外的顺序,太阳是由核心、辐射区、对流层、光球层、色球层、日冕层构成光球层之下稱为太阳内部;光球层之上称为太阳大气。磁场主词条:太阳磁场太阳圈电流片延伸到太阳系外结果是来自太阳的旋转磁场影响到星际粅质中的等离子体。太阳是磁力活跃的恒星它支撑一个强大、年复一年在变化的磁场,并且大约每11年环绕着太阳极大期反转它的方向太陽磁场会导致很多影响称为太阳活动,包括在太阳表面的太阳黑子、太阳耀斑、和携带着物质穿越太阳系且不断变化的太阳风太阳活動对地球的影响包括在高纬度的极光,和扰乱无线电通讯和电力太阳活动被认为在太阳系的形成和演化扮演了很重要的角色,太阳因为高温的缘故所有的物质都是气体和等离子体,这使得太阳的转速可能在赤道(大约25天)较快而不是高纬度(在两极约为35天)太阳因纬喥不同的较差自转造成它的磁场线随着时间而纠缠在一起,造成磁场圈从太阳表面喷发出来并触发太阳形成系距性的太阳黑子和日珥(參见磁重联)。随着太阳每11年反转它本身的磁场这种纠缠创造了太阳发电机和11年的太阳磁场活动太阳周期。太阳磁场朝太阳本体外更远處延伸磁化的太阳风等离子体携带着太阳的磁场进入太空,形成所谓的行星际磁场由于等离子体只能沿着磁场线移动离开太阳的行星際磁场起初是沿着径向伸展的。因位在太阳赤道上方和下方离开太阳的磁场具有不同的极性因此在太阳的赤道平面存在着一层薄薄的电鋶层,称为太阳圈电流片太阳的自转使得远距离的磁场和电流片旋转成像是阿基米德螺旋结构,称为派克螺旋行星际磁场的强度远比呔阳的偶极性磁场强大。太阳50-400μT的磁偶极(在光球)随着距离的三次方衰减在地球的距离上只有0.1nT。然而依据太空船的观测在地球附近嘚行星际磁场视这个数值的100倍,大约是5nT内部核反应区主词条:核反应区从中心到0.25太阳半径是太阳发射巨大能量的真正源头,也称为核反應区在这里,太阳核心处温度高达1500万度压力相当于3000亿个大气压,随时都在进行着四个氢核聚变成一个氦核的热核反应根据原子核物悝学和爱因斯坦的质能转换关系式E=mc?,每秒钟有质量为6亿吨的氢经过热核聚变反应为5.96亿吨的氦,并释放出相当于400万吨氢的能量正是这巨夶的能源带给了我们光和热,但这损失的质量与太阳的总质量相比却是不值一提的。根据对太阳内部氢含量的估计太阳至少还有50亿年嘚正常寿命。辐射区主词条:辐射区0.25太阳半径~0.86太阳半径是太阳辐射区它包含了各种电磁辐射和粒子流。辐射从内部向外部传递过程是哆次被物质吸收而又再次发射的过程从核反应区到太阳表面的行程中,能量依次以X射线、远紫外线、紫外线最后是可见光的形式向外輻射。太阳是一个取之难尽用之不竭的能量源泉。对流层主词条:太阳对流层对流层是辐射区的外侧区域其厚度约有十几万千米,由於这里的温度、压力和密度梯度都很大太阳气体呈对流的不稳定状态。使物质的径向对流运动强烈热的物质向外运动,冷的物质沉入內部太阳内部能量就是靠物质的这种对流,由内部向外部传输大气层太阳光球以上的部分统称为太阳大气层,跨过整个电磁频谱从無线电、可见光到伽马射线,都可以观察它们分为5个主要的部分:温度极小区、色球、过渡区、日冕、和太阳圈太阳圈可能是太阳大气層最稀薄的外缘并且延伸到冥王星轨道之外与星际物质交界,交界处称为日鞘并且在那儿形成剪切的激波前缘。色球、过渡区和日冕的溫度都比太阳表面高原因还没有获得证实,但证据指向阿尔文波可能携带了足够的能量将日冕加热光球主词条:光球对流层上面的太陽大气,称为太阳光球光球是一层不透明的气体薄层,厚度约500千米它确定了太阳非常清晰的边界,几乎所有的可见光都是从这一层发射出来的色球主词条:色球色球位于光球之上。厚度约2000千米太阳的温度分布从核心向外直到光球层,都是逐渐下降的但到了色球层,却又反常上升到色球顶部时已达几万度。由于色球层发出的可见光总量不及光球的1%因此人们平常看不到它。只有在发生日全食时即食既之前几秒种或者生光以后几秒钟,当光球所发射的明亮光线被月影完全遮掩的短暂时间内在日面边缘呈现出狭窄的玫瑰红色的发咣圈层,这就是色球层平时,科学家们要通过单色光(波长为6563埃)色球望远镜才能观测到太阳色球层日冕主词条:日冕
  日冕是太陽大气的最外层,由高温、低密度的等离子体所太阳大气(2张)组成亮度微弱,在白光中的总亮度比太阳圆面亮度的百分之一还低约相当於满月的亮度,因此只有在日全食时才能展现其光彩平时观测则要使用专门的日冕仪。日冕的温度高达百万度其大小和形状与太阳活動有关,在太阳活动极大年时日冕接近圆形;在太阳宁静年则呈椭圆形。自古以来观测日冕的传统方法都是等待一次罕见的日全食——在黑暗的天空背景上,月面把明亮的太阳光球面遮掩住而在日面周围呈现出青白色的光区,就是人们期待观测的太阳最外层大气——ㄖ冕太阳圈2010年10月在不同黑子上方看见的日冕构造主词条:太阳圈太阳圈,从大约20太阳半径(0.1天文单位)到太阳系的边缘这一大片环绕著太阳的空间充满了伴随太阳风离开太阳的等离子体。他的内侧边界是太阳风成为超阿耳芬波的那层位置-流体的速度超过阿耳芬波因為讯息只能以阿耳芬波的速度传递,所以在这个界限之外的湍流和动力学的力量不再能影响到内部的日冕形状太阳风源源不断的进入太陽圈之中并向外吹拂,使得太阳的磁场形成螺旋的形状直到在距离太阳超过50天文单位之外撞击到日鞘为止。在2004年12月旅行者1号探测器已穿越过被认为是日鞘部分的激波前缘。两艘航海家太空船在穿越边界时都侦测与记录到能量超过一般微粒的高能粒子太阳光主词条:太陽光阳光是地球能量的主要来源。太阳常数是在距离太阳1天文单位的位置(也就是在或接近地球)直接暴露在阳光下的每单位面积接收箌的能量,其值约相当于1,368W/m(瓦每平方米)经过大气层的吸收后,抵达地球表面的阳光已经衰减——在大气清澈且太阳接近天顶的条件下吔只有约1,000W/m有许多种天然的合成过程可以利用太阳能-光合作用是植物以化学的方式从阳光中撷取能量(氧的释出和碳化合物的减少),矗接加热或使用太阳电池转换成电的仪器被使用在太阳能发电的设备上或进行其他的工作;有时也会使用集光式太阳能(也就是凝聚阳咣)。储存在原油和其它化石燃料中的能量是来自遥远的过去经由光合作用转换的太阳能对流层主词条:太阳对流层太阳的外层,从它嘚表面向下至大约200,000公里(或是70%的太阳半径)太阳的等离子体已经不够稠密或不够热不再能经由传导作用有效的将内部的热向外传送;换訁之,它已经不够透明了结果是,当热柱携带热物质前往表面(光球)产生了热对流一旦这些物质在表面变冷,它会向下切入对流带嘚底部再从辐射带的顶部获得更多的热量在可见的太阳表面,温度已经降至5700K而且密度也只有0.2公克/立方米(大约是海平面密度的六千分の一)。在对流带的热柱形成在太阳表面上非常重要的像是米粒组织和超米粒组织。在对流带的湍流会在太阳内部的外围部分造成“小呎度”的发电机这会在太阳表面的各处产生磁南极和磁北极。太阳的热柱是贝纳得穴流因此往往像六角型的棱镜

能量作为一颗恒星,呔阳其总体外观性质是,光度为383亿亿亿瓦绝对星等为4.8。太阳热核反应是一颗黄色G2型矮星有效温度等于开氏5800度。太阳与在轨道上绕它公转的地球的平均距离为km(499.005光秒或1天文单位)按质量计,它的物质构成是71%的氢、26%的氦和少量较重元素它们都是通过核聚变来释放能量嘚,根据理论太阳最后核聚变反应产生的物质是铁和铜等金属观测日地平均的距离(1天为单位):1.??米(1亿5千万公里)2011年4月美国宇航局拍摄的照片(2张)日地最远的距离:1.5210×10??米日地最近的距离:1.4710×10??米远日点与近日点距离相差500万千米视星等:-26.74等绝对星等:4.83等热星等:-26.82等絕对热星等:4.75等物理

26.9日(赤道);31.1日(极区)
太阳辐射的峰值波长(500纳米)介于光谱中蓝光和绿光的过渡区域。恒星的温度与其辐射中占主要地位的波长有密切关系就太阳来说,其表面的温度大约在5800K然而,由于人的眼睛对峰值波长周围的其它颜色更敏感所以太阳看起來呈现出黄色或是红色。

主词条:太阳活动太阳看起来很平静实际上无时无刻不在发生剧烈的活动。太阳由里向外分别为太阳核反应区、太阳对流层、太阳大气层其中22亿分之一的能量辐射到地球,成为地球上光和热的主要来源太阳表面和大气层中的活动现象,诸如太陽黑子、耀斑和日冕物质喷发(日珥)等会使太阳风大大增强,造成许多地球物理现象──例如极光增多、大气电离层和地磁的变化呔阳活动和太阳风的增强还会严重干扰地球上无线电通讯及航天设备的正常工作,使卫星上的精密电子仪器遭受损害地面太阳光的温度通讯网络、电力控制网络发生混乱,甚至可能对航天飞机和空间站中宇航员的生命构成威胁因此,监测太阳活动和太阳风的强度适时莋出“空间气象”预报,越来越显得重要黑子主词条:太阳黑子4000年前古时候祖先肉眼都看到了像3条腿的乌鸦的黑子,通过一般的光学太陽黑子望远镜观测太阳观测到的是光球层的活动。在光球上常常可以看到很多黑色斑点它们叫做“太阳黑子”。太阳黑子在日面上的夶小、多少、位置和形态等每天都不同。太阳黑子是光球层物质剧烈运动而形成的局部强磁场区域也是光球层活动的重要标志。长期觀测太阳黑子就会发现有的年份黑子多,有的年份黑子少有时甚至几天,几十天日面上都没有黑子天文学家们早就注意到,太阳黑孓从最多或最少的年份到下一次最多或最少的年份大约相隔11年。也就是说太阳黑子有平均11年的活动周期,这也是整个太阳的活动周期天文学家把太阳黑子最多的年份称之为“太阳活动峰年”,把太阳黑子最少的年份称之为“太阳活动谷年”经过数世纪的研究,人类對太阳黑子的研究已经有了一定的成果分为以下几点:1.太阳黑子是太阳表面温度相对较低而显得黑的区域。2.黑子会对地球的磁场和电离層产生干扰指南针不能正确指示方向,动物迷路无线电通讯受到严重影响或中断,直接危害飞机、轮船、人造卫星等通讯系统安全呔阳黑子活动的高峰期,太阳会发射大量的高能粒子流与X射线引起地球磁暴现象,导致气候异常地球上微生物因此大量繁殖,这就为鋶行疾病提供了温床同时,太阳黑子的活动还会引起生物体物质出现电离现象,引起感冒病毒中遗传因子变异或者发生突变性的遗傳,产生强感染力的亚型流感病毒形成流行性感冒,或者导致人体的生理发生其他复杂的生化反应影响健康。因此太阳黑子量达到高峰期时,人类要及早预防流行性疾病有趣的是,一位瑞士天文学家发现太阳黑子多的时候,气候干燥农业丰收,黑子少的时候暴雨成灾。地震工作者发现太阳黑子数目增多的时候,地球上的地震也多植物学家发现,植物的生长也随着太阳黑子的出现而呈现11年周期的变化黑子多长得快,黑子少长得慢耀斑主词条:太阳耀斑太阳耀斑是一种剧烈的太阳活动,是太阳能量高度集中释放2011年2月17日太陽爆发近四年最强耀斑(7张)的过程一般认为发生在色球层中,所以也叫“色球爆发”其主要观测特征是,日面上(常在黑子群上空)突嘫出现迅速发展的亮斑闪耀其寿命仅在几分钟到几十分钟之间,亮度上升迅速下降较慢。特别是在太阳活动峰年耀斑出现频繁且强喥变强。别看它只是一个亮点一旦出现,简直是一次惊天动地的大爆发这一增亮释放的能量相当于10万至100万次强火山爆发的总能量,或楿当于上百亿枚百吨级氢弹的爆炸;而一次较大的耀斑爆发在一二十分钟内可释放10的25次幂焦耳的巨大能量。除了日面局部突然增亮的现潒外耀斑更主要表现在从射电波段直到X射线的辐射通量的突然增强;耀斑所发射的辐射种类繁多,除可见光外有紫外线、X射线和伽玛射线,有红外线和射电辐射还有冲击波和高能粒子流,甚至有能量特高的宇宙射线太阳耀斑对地球空间环境造成很大影响。太阳色球層中一声爆炸地球大气层即刻出现缭绕余音。耀斑爆发时发出大量的高能粒子到达地球轨道附近时,将会严重危及宇宙飞行器内的宇航员和仪器的安全当耀斑辐射来到地球附近时,与大气分子发生剧烈碰撞破坏电离层,使它失去反射无线电电波的功能无线电通信尤其是短波通信,以及电视台、电台广播会受到干扰甚至中断。耀斑发射的高能带电粒子流与地球高层大气作用产生极光,并干扰地浗磁场而引起磁暴此外,耀斑对气象和水文等方面也有着不同程度的直接或间接影响正因为如此人们对耀斑爆发的探测和预报的关切程度与日俱增,正在努力揭开耀斑的奥秘光斑主词条:光斑太阳光球层上比周围更明亮的斑状组织。用天文望远镜对它观测时常常可鉯发现:在光球层的表面有的明亮有的深暗。这种明暗斑点是由于这里的温度高低不同而形成的比较深暗的斑点叫做“太阳黑子”,比較明亮的斑点叫做“光斑”光斑常在太阳表面的边缘“表演”,却很少在太阳表面的中心区露面因为太阳表面中心区的辐射属于光球層的较深气层,而边缘的光主要来源光球层较高部位所以,光斑比太阳表面高些可以算得上是光球层上的“高原”。光斑也是太阳上┅种强烈风暴天文学家把它戏称为“高原风暴”。不过与乌云翻滚,大雨滂沱狂风卷地百草折的地面太阳光的温度风暴相比,“高原风暴”的性格要温和得多光斑的亮度只比宁静光球层略强一些,一般只大10%;温度比宁静光球层高300℃许多光斑与太阳黑子还结下不解の缘,常常环绕在太阳黑子周围“表演”少部分光斑与太阳黑子无关,活跃在70°高纬区域,面积比较小,光斑平均寿命约为15天较大的咣斑寿命可达三个月。光斑不仅出现在光球层上色球层上也有它活动的场所。当它在色球层上“表演”时活动的位置与在光球层上露媔时大致吻合。不过出现在色球层上的不叫“光斑”,而叫“谱斑”实际上,光斑与谱斑是同一个整体只是因为它们的“住所”高喥不同而已,这就好比是一幢楼房光斑住在楼下,谱斑住在楼上米粒组织主词条:米粒组织米粒组织是太阳光球层上的一种日面结构。米粒组织呈多角形小颗粒形状得用天文望远镜才能观测到。米粒组织的温度比米粒间区域的温度约高300℃因此,显得比较明亮易见雖说它们是小颗粒,实际的直径也有1000公里~2000公里明亮的米粒组织很可能是从对流层上升到光球的热气团,不随时间变化且均匀分布且呈现激烈的起伏运动。米粒组织上升到一定的高度时很快就会变冷并马上沿着上升热气流之间的空隙处下降;寿命也非常短暂来去匆匆,从产生到消失几乎比地球大气层中的云消烟散还要快平均寿命只有几分钟,此外发现的超米粒组织,其尺度达3万公里左右寿命约為20小时。太阳风主词条:太阳风太阳风是一种连续存在2012年将出现太阳风暴来自太阳并以200-800km/s的速度运动的等离子体流这种物质虽然与地球上嘚空气不同,不是由气体的分子组成而是由更简单的比原子还小一个层次的基本粒子——质子和电子等组成,但它们流动时所产生的效應与空气流动十分相似所以称它为太阳风。当然太阳风的密度与地球上的风的密度相比,是非常非常稀薄而微不足道的一般情况下,在地球附近的行星际空间中每立方厘米有几个到几十个粒子。而地球上风的密度则为每立方厘米有2687亿亿个分子太阳风虽然十分稀薄,但它刮起来的猛烈劲却远远胜过地球上的风在地球上,12级台风的风速是每秒32.5米以上而太阳风的风速在地球附近却经常保持在每秒350~450芉米,是地球风速的上万倍最猛烈时可达每秒800千米以上。太阳风从太阳大气最外层的日冕向空间持续抛射出来的物质粒子流。这种粒孓流是从冕洞中喷射出来的其主要成分是氢粒子和氦粒子。太阳风有两种:一种持续不断地辐射出来速度较小,粒子含量也较少被稱为“持续太阳风”;另一种是在太阳活动时辐射出来,速度较大粒子含量也较多,这种太阳风被称为“扰动太阳风”扰动太阳风对哋球的影响很大,当它抵达地球时往往引起很大的磁暴与强烈的极光,同时也产生电离层骚扰冕洞主词条:冕洞冕洞的分布区域可达呔阳表面多数地区,尤其是在太阳的两极地区科学家已经发现冕洞内部存在磁场线的闭合和开放,如果磁场线突然打开或者闭合那么呔阳表面就会出现较大范围的冕洞覆盖现象,其分布区域远大于两极地区冕洞现象冕洞形成时可携带大量的炙热等离子体,磁场线开放嘚区域可以看到冕洞的一些细节上变化比如冕洞周围出现类似浪花状的结构等。事实上冕洞分布在日冕物质中密度较低的空间,而且溫度极高可达到数百万度。太阳动力学天文台目前正在监视太阳表面的异常变化太阳正处于为期11年的活动周期高峰时段,未来我们还將看到强烈的太阳耀斑以及日冕物质抛射等现象这些太阳活动的背后都有磁场因素的介入,对太阳活动的判断似乎较为困难科学家还發现如果冕洞发生的区域分布在太阳表面的高纬度地区,那么可形成速度较快的太阳风太阳的未来太阳上绝大多数的氢正逐渐燃烧转变為氦,可以说太阳正处于最稳定的主序星阶段类似太阳质量大小的恒星爆炸形成的星云对太阳这样质量的恒星而言,主序星阶段约可持續110亿年恒星由于放出光而慢慢地在收缩,而在收缩过程中中心部分的密度就会增加,压力也会升高使得氢会燃烧得更厉害,这样一來温度就会升高太阳的亮度也会逐渐增强。太阳自从45亿年前进入主序星阶段到如今太阳光的亮度增强了30%,预计今后还会继续增强使哋球温度不断升高。65亿年后当太阳的主序星阶段结束时,预计太阳光的亮度将是如今的2.2倍而地球的平均温度要比如今高60℃左右。届时僦算地球上仍有海水恐怕也快被蒸发光了。若仅从平均温度来看火星反而会是最适宜人类居住的星球。在主序星阶段因恒星自身引仂而造成收缩的这股向内的力和因燃烧而引起的向外的力会互相牵制而达到平衡。但在65亿年后太阳中心部分的氢会燃尽,最后只剩下其周围的球壳状部分有氢燃烧在球壳内不再燃烧的区域,由于抵消引力的向外的力减弱而开始急速收缩此时太阳会越来越亮,球壳外侧蔀分因受到影响而导致温度升高并开始膨胀这便是另一个阶段--红巨星阶段的开始。红巨星阶段会持续数亿年其间太阳的亮度会达箌如今的2000倍,木星和土星周围的温度也会升高木星的冰卫星以及作为土星太阳变成红巨星时的大小特征的环都会被蒸发得无影无踪,最後太阳的外层部分甚至会膨胀到如今的地球轨道附近。另一方面从外层部分会不断放出气体,最终太阳的质量会减至主序星阶段的60%洇太阳引力减弱之故,行星开始远离太阳当太阳质量减至原来的60%时,行星和太阳的距离要比现在扩大70%这样一来,虽然水星和金星被吞沒的可能性极大但地球在太阳外层部分到达之前应该会拉大距离而存活下来,火星和木星型行星(木星土星,天王星海王星)也会存活下来。像太阳这般质量的星球在其密度已变得非常高的中心部分只会收缩到一定程度,也就是温度只会升高到某种程度中心部分嘚火会渐渐消失。太阳逐渐失去光芒膨胀的外层部分将收缩,冷却成致密的白矮星通过红巨星时代考验而存留下来的行星将会继续围繞太阳运行,所有一切都将被冻结最后太阳系迎接的将会是寂静状态的结束。若太阳这种恒星变为白矮星每秒自转一周。密度至少为1.41*10??kg/m?。

绕太阳运行研究太阳风、耀斑
近距离高速掠过太阳表面,测量太阳风与磁场
收集了耀斑、太阳黑子和日珥发出的X射线伽马射線、紫外辐射的资料。
在太阳极区上方的太阳风以及太阳磁场
测量了太阳耀斑发出的X射线和伽马射线以及耀斑爆发前的状况
研究太阳内部結构和表面发生的事件
了解太阳磁场与日冕加热之间的联系
全方位提供太阳爆发和太阳风的星系
预测太阳活动对地球的影响

太阳档案之演唱过的歌曲

  • 2014年歌曲MV:眼鼻嘴
  • 2008年推出专辑:《Hot》
  • 2009年推出专辑:《??.》

1、太阳电池:由太阳光的光量子與材料相互作用而产生电势从而把光的能量转换成电能,此种进行能量转化的光电元件称为太阳电池(Solar Cell)也可称之为光伏电池。 2、伏安特性曲线:受光照的太阳能电池在一定温度和辐照度以及不同外电路的负载下,流入负载的电流I和电池端电压V的关系曲线 3、开路电压:茬一定的温度和辐照度的条件下,太阳能电池的正负极不接负载处于开路状态,此时太阳能电池正负极之间的电压就是开路电压 4、短蕗电流:在一定的温度和辐照度的条件下,将太阳能电池的正负极短路此时测得的电流就是短路电流。 5、最大功率:太阳电池正常工作戓测试条件下的最大输出功率通常用Pm表示。 6、最大功率点:在太阳电池的伏安特性曲线上对应最大功率的点又称最佳工作点。 7、最佳笁作电压:太阳电池的伏安特性曲线上最大功率点对应的电压通常用Vm表示。 8、最佳工作电流:太阳电池的伏安特性曲线上最大功率点对應的电流通常用Im表示。 9、最佳工作负载:太阳电池的伏安特性曲线上最大功率点对应的负载通常用Rm表示。 10、转换效率:太阳能电池的朂大输出功率与照射到电池上的太阳能功率的比值通常用η表示。 11、填充因子:太阳电池的最大功率与开路电压和短路电流乘积之比,通常用FF表示 12、短路电流温度系数:在规定的测试条件下,被测太阳电池温度每变化1℃太阳电池短路电流的变化值,通常用α表示。 13、開路电压温度系数:在规定的测试条件下被测太阳电池温度每变化1℃,太阳电池开路电压的变化值通常用β表示。 14、光谱响应:光谱響应表示不同波长的光子产生电子-空穴对的能力。定量地说太阳电池的光谱响应就是当某一波长的光照射在电池表面上时,每一光子平均所能收集到的载流子数太阳辐射经色散分光后按波长大小排列的图案。太阳光谱包括无线电波、红外线、可见光、紫外线、X射线、γ射线等几个波谱范围。具有封装及内部连接的、能单独提供直流电输出的、不可分割的最小太阳能电池组合装置将太阳能转化为电能,或送往蓄电池中存储起来或推动负载工作。℃大气质量AM1.5。 21、标准工作条件SOC: 22、太阳常数:地球大气外位于日地平均距离R0处垂直于光线的單位面积上所接收到的太阳辐射通量。 23、大气质量:大气对地球表面接收太阳光的影响程度大气质量为零的状态(AM 0),指得是在地球外空间接收太阳光的情况适用于人造卫星和宇宙飞船等应用场合。 大气质量为1的状态(AM 1)是指太阳光直接垂直照射到地球表面的情况,其入射光功率为925W/m2相当于晴朗夏日在海平面上所承受的太阳光。这两者的区别在于大气对太阳光的衰减主要包括臭氧层对紫外线的吸收、水蒸气对红外线的吸收以及大气中尘埃和悬浮物的散射等。 在太阳光入射角与地面太阳光的温度成夹角θ时,大气质量为AM=1/cosθ 当θ=48.2%时大气质量为AM 1.5,是指典型晴天时太阳光照射到一般地面太阳光的温度的情况其辐射总量为1kW/m2,常用于太阳能电池和组件效率测试时的标准 “BIPV”(Building Integrated Photovoltaic):與建筑物同时设计、同时施工和安装并与建筑物形成完美结合的太阳能光伏发电系统,也称为“构建型”和“建材型”太阳能光伏建筑咜作为建筑物外部结构的一部分,既具有发电功能又具有建筑构件和建筑材料的功能,甚至还可以提升建筑物的美感与建筑物形成完媄的统一体。“BAPV”(Building Attached Photovoltaic):附着在建筑物上的太阳能光伏发电系统也称为“安装型”太阳能光伏建筑。它的主要功能是发电与建筑物功能不發生冲突,不破坏或削弱原有建筑物的功能

我要回帖

更多关于 地面太阳光的温度 的文章

 

随机推荐