如图所示,这个结果怎么恰恰得到与预期相反的结果的

本帖最后由 雕刻时光 于 23:32 编辑

  很多鱼友问我怎样让龙鱼吃饲料,问我用的是什么牌子的饲料,在这贴里,毫无保留的告诉大家,希望能够给广大鱼友起到一些启发和帮助。  关于刚入手的龙鱼如何训食,可以参见我的另一篇贴子《关于龙鱼训食的个人经验 》(),在这里节选部分:  新请龙到家后开食的第一口,个人认为至关重要,这相当于看人的第一印像一样,第一口开的凶猛、充满进食欲望,那么往后的训食方面将会变得非常容易,就像小孩子一样,开始你怎么对他他就会往什么方向发展,已经惯出来的孩子再去改正就很困难了。  但是大部分鱼友往往是请得一尾爱龙后,难以自制内心的欣喜和激动,往往待龙安全成功入缸后,就迫不及待的拿各种饵食诱龙逗龙,生怕爱龙经过一路颠簸,饿着委屈着,而结果恰恰相反,龙鱼对投进去的食物视而不见,让许多鱼友因此莫明失落,而又不甘心,隔阵又尝试,结果却都让人失望,最终的结果就是把龙也诱逗的皮踏了。也有鱼商停食几天发到鱼友家入缸非常顺利,当天就蹭缸要食的个体,鱼友也兴奋欣喜,投食后龙鱼开口吃了,于是鱼友开始Q群发消息论坛发贴子炫耀请得一尾好龙,当天就开口了。而当天喂食的后果也往往是此后两三天龙鱼不再开口,或是进食很没精打彩,完没失去了龙鱼应该有的那种进食时的欲望、凶猛和灵动。  试想一下,你饿了一两天或者两三天,麻醉着在暗无天日的袋子里,然后突然下到一个陌生的环境,然后有就给你摆了一掉饭,我的亲,你是那上去就没命海塞的变态么。正常人都不会,正常的鱼也不会,也有许多实例,人饿了很多天,突然吃一顿,不是病了就是暴毙,这样的实例不是没有,而且很典型。  所以我的经验是,对请来的龙鱼,要下狠心,最好两到三天内不喂食,让他有一个适应的过程,让他适应环境,慢慢熟悉它的新主人,让他慢慢排解和恢复旅途的劳顿,然后,使它充满进食的欲望,使它第一口就吃得凶猛、顺畅,使它一下就记住和熟悉你的身影,草木都知风雨,何况充满灵性的龙鱼,就像狼开口吃第一口的羊肉一样,它一辈子就记住了这个味,一辈子就记住了你、记住了你在缸前的身影。

  问题来了,许多鱼友手中的龙鱼,不是刚入手的,已经请回在家很久,已经染上了挑食、偏食甚至厌食的毛病,这该怎么办。  好了,现在手把手教。
  第一,首先要调整心态,你爱鱼我懂,你爱龙,我也理解,但是龙鱼就像小孩子,你把它惯坏了,那不是他的问题,问题在于你,关键点也在你身上,首先把自己的心态调整好,要明确一点,你是想把它养成熊孩子,还是想养成身心健康、不挑食的好孩子,这个你自己的心态首先要成熟,要调整好。OK,明确了这一点,我们再进行下一步。
  第二,改善和保持水质,使龙鱼有一个比较好的状态,所谓比较好的状态,包括:七鳍舒展、游动飘逸、眼神灵动、无疾病和体外伤。做到这一点,简单也不简单,如果你的缸体设计合理、滤材配置科学,水质保持的好,那么做到以上很简单,养鱼先养水就是这个道理,缸体的科学合理设计可以让龙鱼保持一定的游动量、转身灵活、避免冲撞损伤(比如有些鱼缸的设计宽度不够、拉筋低、底滤容积不够大等),滤材的科学配置以及规律合理的换水频次可以保证龙鱼生活在良好的水质当中,如果实在条件所限,那么尽可能的改善。OK,做到这一步,我们再往下。  第三,选一种你能方便买到的正规厂商的颗粒饲料吧,许多鱼友问我颗粒饲料的品牌,我真的没有选择特定的牌子,所以无从回答,因为训食就是要让它吃任何一种颗粒饲料,而不是挑某一牌子的颗粒饲料吃。当然,你非要问个究竟,那么如图所示,我现在喂食的就是这种:


  另外需要注意的是,根据龙鱼体形的大小,可以选择大小不同的颗粒,小龙喂小粒,大龙喂大一些的颗粒。  第四,好的,进入到关键的部分了,这个关键词就是饿  相信你已经准备好了一切,保括你的心态,望子成龙真成龙还是成为熊孩子,在此一举。  2天、3天、5天,一周,如果在家里是你经常固定喂它,那么像龙鱼这么有灵性的鱼类,只要它饿的时候,见你到缸前,都会像小猫小狗一样,期待你喂它,找你要食的。  那么在它摇头摆尾,迫不及待甚至抓狂的时候,投一颗粒给它。  它吃了,恭喜你,成功了。  看都不看,娘的,熊孩子,不惯,捞出投进去的饲料接着饿。  吃一口吐出来,玩我,不惯,小样儿的,接着饿!  一般的健康的龙鱼,在饿极的情况下,都会吃,实在挑食的,在三番五次之后,它发现,如果不吃这个就没有别的了,那么也会吃。龙鱼不傻,你在观察它、磨练它,它也在观察你磨练你,关键时候你如果心软了,那么功亏一篑,它赢了,你输了。  坦白从宽,抗拒从严,对于拒不改正的铁硬份子,你要有一颗比它还要硬还要牛逼的心。

  只要吃了一回,就会有第二回,在它对颗粒饲料习已为常之后,这时候,可以鱼、虾、饲料、其他铺食结合着来了。  我不明白,许多鱼友在尝试混养的时候,可以任龙鱼打斗、打掉鳞、打掉鳍、甚至自切、甚至Over的代价都在所不惜,为什么就不能饿龙鱼一个月!  好吧,如果你真的做不到,那就我只能耸耸肩,微笑一下,祝你好运。  这世界上没有一种忙是你自己都不努力别人就能帮得到的。  这世界上最难的就是你想改变一个他自己不想改变的人。

  如果你做到了,那么恭喜你,你不仅改变了龙鱼,也改变了自己,说到这里,你应该明白了,养龙不仅仅是养龙,它更是修养自己,明心见性的过程过程,自我的完养与修炼,变燥动不安的心为从容与淡定。

  不必感谢我,你应该感谢你自己。

  说了这么多,通过努力实在没有训食成功的鱼友也不必灰心失望,也应该坦然接受,你真正的努力了,付出了,就应该明白,事在人为,但是这个世界上很多事,并不是你努力了就会成功,接受失败本身也是一种成功。做事在人,成事在天,执意强求不如顺其自然,随遇而安,你有一个可爱的熊孩子,那就让它当一个健康的熊孩子吧。

  凡在所相,皆是虚无,若见诸相非相,即见如来。  大境界、大涅槃不是每一个凡人能够做到了,滚滚红尘、熙来攘往,我们还是不得不为家人、为自己、为明天去奋斗、去奔波,甚至去做一些违心违愿的事情,但是,我们还是可以尽量避免成为自己原本不喜欢的人,大千世界,纷繁世间,做一个内心宁静平和、从容淡定的人不容易,但是我希望你心中永保不失一块空谷幽兰之地,祝各位鱼友家庭幸福、快乐安康!  最后奉上双龙混养以及争食颗粒饲料的图片和视频:


视频1:双龙混养喂食颗粒饲料

视频2:六年前的双龙混养,怀旧一下

视频3:五年前的断尾龙


  注:视频2、3吉他演奏者:雕刻时光


    视频2曲目:《圣斗士冥王篇》又名《风》
    视频3曲目:《寂静岭2》    琴: Fender 美产8402TELE

轮询、轮询是默认的,每一个请求按顺序逐一分配到不同的后端服务器,如果后端服务器down掉了,则能自动剔除

ip_hash、个请求按访问IP的hash结果分配,这样来自同一个IP的访客固定访问一个后端服务器,有效解决了动态网页存在的session共享问题。

weight、weight是设置权重,用于后端服务器性能不均的情况,访问比率约等于权重之比

fair(第三方)、这是比上面两个更加智能的负载均衡算法。此种算法可以依据页面大小和加载时间长短智能地进行负载均衡,也就是根据后端服务器的响应时间来分配请求,响应时间短的优先分配。Nginx本身是不支持fair的,如果需要使用这种调度算法,必须下载Nginx的upstream_fair模块。

url_hash(第三方)此方法按访问url的hash结果来分配请求,使每个url定向到同一个后端服务器,可以进一步提高后端缓存服务器的效率。Nginx本身是不支持url_hash的,如果需要使用这种调度算法,必须安装Nginx 的hash软件包。

正向代理,也就是传说中的代理, 简单的说,我是一个用户,我访问不了某网站,但是我能访问一个代理服务器,这个代理服务器呢,他能访问那个我不能访问的网站,于是我先连上代理服务器,告诉他我需要那个无法访问网站的内容,代理服务器去取回来,然后返回给我。从网站的角度,只在代理服务器来取内容的时候有一次记录,有时候并不知道是用户的请求,也隐藏了用户的资料,这取决于代理告不告诉网站。

反向代理: 结论就是,反向代理正好相反,对于客户端而言它就像是原始服务器,并且客户端不需要进行任何特别的设置。客户端向反向代理的命名空间(name-space)中的内容发送普通请求,接着反向代理将判断向何处(原始服务器)转交请求,并将获得的内容返回给客户端,就像这些内容原本就是它自己的一样。

A、原子性 :对任意单个volatile变量的读/写具有原子性,但类似于volatile++这种复合操作不具有原子性。
B、可见性:对一个volatile变量的读,总是能看到(任意线程)对这个volatile变量最后的写入。

当写一个volatile变量时,JMM会把线程对应的本地内存中的共享变量值刷新到主内存。

当读一个volatile变量时,JMM会把线程对应的本地内存置为无效,线程接下来将从主内存中读取共享变量。

1、当第二个操作为volatile写操做时,不管第一个操作是什么(普通读写或者volatile读写),都不能进行重排序。这个规则确保volatile写之前的所有操作都不会被重排序到volatile之后;

2、当第一个操作为volatile读操作时,不管第二个操作是什么,都不能进行重排序。这个规则确保volatile读之后的所有操作都不会被重排序到volatile之前;

3、当第一个操作是volatile写操作时,第二个操作是volatile读操作,不能进行重排序。

这个规则和前面两个规则一起构成了:两个volatile变量操作不能够进行重排序;

除以上三种情况以外可以进行重排序。

1、第一个操作是普通变量读/写,第二个是volatile变量的读;
2、第一个操作是volatile变量的写,第二个是普通变量的读/写;

内存屏障(Memory Barrier,或有时叫做内存栅栏,Memory Fence)是一种CPU指令,用于控制特定条件下的重排序和内存可见性问题。编译器也会根据内存屏障的规则禁止重排序。(也就是让一个CPU处理单元中的内存状态对其它处理单元可见的一项技术。)

内存屏障可以被分为以下几种类型:

LoadLoad屏障:对于这样的语句Load1; LoadLoad; Load2,在Load2及后续读取操作要读取的数据被访问前,保证Load1要读取的数据被读取完毕。

StoreLoad屏障:对于这样的语句Store1; StoreLoad; Load2,在Load2及后续所有读取操作执行前,保证Store1的写入对所有处理器可见。它的开销是四种屏障中最大的。

在大多数处理器的实现中,这个屏障是个万能屏障,兼具其它三种内存屏障的功能。

内存屏障阻碍了CPU采用优化技术来降低内存操作延迟,必须考虑因此带来的性能损失。为了达到最佳性能,最好是把要解决的问题模块化,这样处理器可以按单元执行任务,然后在任务单元的边界放上所有需要的内存屏障。采用这个方法可以让处理器不受限的执行一个任务单元。合理的内存屏障组合还有一个好处是:缓冲区在第一次被刷后开销会减少,因为再填充改缓冲区不需要额外工作了。

如果一个操作执行的结果需要对另一个操作可见,那么这两个操作之间必须要存在happens-before关系。

Java是如何实现跨平台的?

跨平台是怎样实现的呢?这就要谈及Java虚拟机( Virtual Machine,简称 JVM)。

JVM也是一个软件,不同的平台有不同的版本。我们编写的Java源码,编译后会生成一种 .class 文件,称为字节码文件。Java虚拟机就是负责将字节码文件翻译成特定平台下的机器码然后运行。也就是说,只要在不同平台上安装对应的JVM,就可以运行字节码文件,运行我们编写的Java程序。

而这个过程中,我们编写的Java程序没有做任何改变,仅仅是通过JVM这一”中间层“,就能在不同平台上运行,真正实现了”一次编译,到处运行“的目的。

JVM是一个”桥梁“,是一个”中间件“,是实现跨平台的关键,Java代码首先被编译成字节码文件,再由JVM将字节码文件翻译成机器语言,从而达到运行Java程序的目的。

注意:编译的结果不是生成机器码,而是生成字节码,字节码不能直接运行,必须通过JVM翻译成机器码才能运行。不同平台下编译生成的字节码是一样的,但是由JVM翻译成的机器码却不一样。

所以,运行Java程序必须有JVM的支持,因为编译的结果不是机器码,必须要经过JVM的再次翻译才能执行。即使你将Java程序打包成可执行文件(例如 .exe),仍然需要JVM的支持。

注意:跨平台的是Java程序,不是JVM。JVM是用C/C++开发的,是编译后的机器码,不能跨平台,不同平台下需要安装不同版本的JVM。

    1. 串行 串行垃圾回收器一次只使用一个线程进行垃圾回收
    2. 并行 并行垃圾回收器一次将开启多个线程同时进行垃圾回收。
    1. 并发 并发式垃圾回收器与应用程序线程交替工作,以尽可能减少应用程序的停顿时间
    2. 独占 一旦运行,就停止应用程序中的其他所有线程,直到垃圾回收过程完全结束
    1. 压缩式 压缩式垃圾回收器会在回收完成后,对存活对象进行压缩整消除回收后的碎片;
    2. 非压缩式 非压缩式的垃圾回收器不进行这步操作。
  1. 按工作的内存区间 可分为新生代垃圾回收器和老年代垃圾回收器

新生代串行收集器 serial 它仅仅使用单线程进行垃圾回收;第二,它独占式的垃圾回收。使用复制算法。

老年代串行收集器 serial old 年代串行收集器使用的是标记-压缩算法。和新生代串行收集器一样,它也是一个串行的、独占式的垃圾回收器

并行收集器 parnew 并行收集器是工作在新生代的垃圾收集器,它只简单地将串行回收器多线程化。它的回收策略、算法以及参数和串行回收器一样 并行回收器也是独占式的回收器,在收集过程中,应用程序会全部暂停。但由于并行回收器使用多线程进行垃圾回收,因此,在并发能力比较强的 CPU 上,它产生的停顿时间要短于串行回收器,而在单 CPU 或者并发能力较弱的系统中,并行回收器的效果不会比串行回收器好,由于多线程的压力,它的实际表现很可能比串行回收器差。

新生代并行回收 (Parallel Scavenge) 收集器 新生代并行回收收集器也是使用复制算法的收集器。从表面上看,它和并行收集器一样都是多线程、独占式的收集器。但是,并行回收收集器有一个重要的特点:它非常关注系统的吞吐量。

老年代并行回收收集器 parallel old 老年代的并行回收收集器也是一种多线程并发的收集器。和新生代并行回收收集器一样,它也是一种关注吞吐量的收集器。老年代并行回收收集器使用标记-压缩算法,,相当于总店招牌,比如宝洁公司,也可以指定一个域下的具体某台机器比如或者,可以用飘柔来做比。
路径就是跟在域名后面的URL路径,比如/或者/foo等等,可以用某飘柔专柜做比。路径与域合在一起就构成了cookie的作用范围。如果不设置过期时间,则表示这个cookie的生命期为浏览器会话期间,只要关闭浏览器窗口,cookie就消失了。这种生命期为浏览器会话期的cookie被称为会话cookie。会话cookie一般不存储在硬盘上而是保存在内存里,当然这种行为并不是规范规定的。如果设置了过期时间,浏览器就会把cookie保存到硬盘上,关闭后再次打开浏览器,这些cookie仍然有效直到超过设定的过期时间。
存储在硬盘上的cookie可以在不同的浏览器进程间共享,比如两个IE窗口。而对于保存在内存里的cookie,不同的浏览器有不同的处理方式。对于IE,在一个打开的窗口上按Ctrl-N(或者从文件菜单)打开的窗口可以与原窗口共享,而使用其他方式新开的IE进程则不能共享已经打开的窗口的内存cookie;对于Mozilla

注意一下,前面说实现Comparable接口的类是可以支持和自己比较的,但是其实代码里面Comparable的泛型未必就一定要是Domain,将泛型指定为String或者指定为其他任何任何类型都可以----只要开发者指定了具体的比较算法就行。

Comparator可以认为是是一个外比较器,个人认为有两种情况可以使用实现Comparator接口的方式:

1、一个对象不支持自己和自己比较(没有实现Comparable接口),但是又想对两个对象进行比较

2、一个对象实现了Comparable接口,但是开发者认为compareTo方法中的比较方式并不是自己想要的那种比较方式

Comparator接口里面有一个compare方法,方法有两个参数T o1和T o2,是泛型的表示方式,分别表示待比较的两个对象,方法返回值和Comparable接口一样是int,有三种情况:

1、o1大于o2,返回正整数

3、o1小于o3,返回负整数

写个很简单的例子,上面代码的Domain不变(假设这就是第2种场景,我对这个compareTo算法实现不满意,要自己写实现):

当然因为泛型指定死了,所以实现Comparator接口的实现类只能是两个相同的对象(不能一个Domain、一个String)进行比较了,因此实现Comparator接口的实现类一般都会以"待比较的实体类+Comparator"来命名

总结一下,两种比较器Comparable和Comparator,后者相比前者有如下优点:

1、如果实现类没有实现Comparable接口,又想对两个类进行比较(或者实现类实现了Comparable接口,但是对compareTo方法内的比较算法不满意),那么可以实现Comparator接口,自定义一个比较器,写比较算法

2、实现Comparable接口的方式比实现Comparator接口的耦合性 要强一些,如果要修改比较算法,要修改Comparable接口的实现类,而实现Comparator的类是在外部进行比较的,不需要对实现类有任何修 改。从这个角度说,其实有些不太好,尤其在我们将实现类的.class文件打成一个.jar文件提供给开发者使用的时候。实际上实现Comparator 接口的方式后面会写到就是一种典型的策略模式

手写单例模式(线程安全)

解法一:只适合单线程环境(不好)

注解:Singleton的静态属性instance中,只有instance为null的时候才创建一个实例,构造函数私有,确保每次都只创建一个,避免重复创建。
缺点:只在单线程的情况下正常运行,在多线程的情况下,就会出问题。例如:当两个线程同时运行到判断instance是否为空的if语句,并且instance确实没有创建好时,那么两个线程都会创建一个实例。

解法二:多线程的情况可以用。(懒汉式,不好)

注解:在解法一的基础上加上了同步锁,使得在多线程的情况下可以用。例如:当两个线程同时想创建实例,由于在一个时刻只有一个线程能得到同步锁,当第一个线程加上锁以后,第二个线程只能等待。第一个线程发现实例没有创建,创建之。第一个线程释放同步锁,第二个线程才可以加上同步锁,执行下面的代码。由于第一个线程已经创建了实例,所以第二个线程不需要创建实例。保证在多线程的环境下也只有一个实例。
缺点:每次通过getInstance方法得到singleton实例的时候都有一个试图去获取同步锁的过程。而众所周知,加锁是很耗时的。能避免则避免。

解法三:加同步锁时,前后两次判断实例是否存在(可行)

那这个其实很明了,注释上我也已经写清楚了,不再赘述。

下面的问题是,代理对象生成了,那切面是如何织入的?

前面说了 Servlet 容器作为一个独立发展的标准化产品,目前它的种类很多,但是它们都有自己的市场定位,很难说谁优谁劣,各有特点。例如现在比较流行的 Jetty,在定制化和移动领域有不错的发展,我们这里还是以大家最为熟悉 Tomcat 为例来介绍 Servlet 容器如何管理 Servlet。Tomcat 本身也很复杂,我们只从 Servlet 与 Servlet 容器的接口部分开始介绍,关于 Tomcat 的详细介绍可以参考我的另外一篇文章《 Tomcat 系统架构与模式设计分析》。

从上图可以看出 Tomcat 的容器分为四个等级,真正管理 Servlet 的容器是 Context 容器,一个 Context 对应一个 Web 工程,在 Tomcat 的配置文件中可以很容易发现这一点,如下:

前面已经介绍了一个 Web 应用对应一个 Context 容器,也就是 Servlet 运行时的 Servlet 容器,添加一个 Web 应用时将会创建一个 StandardContext 容器,并且给这个 Context 容器设置必要的参数,url 和 path 分别代表这个应用在 Tomcat 中的访问路径和这个应用实际的物理路径,这个两个参数与清单 1 中的两个参数是一致的。其中最重要的一个配置是 ContextConfig,这个类将会负责整个 Web 应用配置的解析工作,后面将会详细介绍。最后将这个 Context 容器加到父容器 Host 中。

接下去将会调用 Tomcat 的 start 方法启动 Tomcat,如果你清楚 Tomcat 的系统架构,你会容易理解 Tomcat 的启动逻辑,Tomcat 的启动逻辑是基于观察者模式设计的,所有的容器都会继承 Lifecycle 接口,它管理者容器的整个生命周期,所有容器的的修改和状态的改变都会由它去通知已经注册的观察者(Listener),关于这个设计模式可以参考《 Tomcat 的系统架构与设计模式,第二部分:设计模式》。Tomcat 启动的时序图可以用图 2 表示。

图 2. Tomcat 主要类的启动时序图(

上图描述了 Tomcat 启动过程中,主要类之间的时序关系,下面我们将会重点关注添加 examples 应用所对应的 StandardContext 容器的启动过程。

  1. 读取默认 context.xml 配置文件,如果存在解析它
  2. 读取默认 Host 配置文件,如果存在解析它
  3. 读取默认 Context 自身的配置文件,如果存在解析它
  1. 创建读取资源文件的对象
  2. 修改启动状态,通知感兴趣的观察者(Web 应用的配置)

Web 应用的初始化工作

Web 应用的初始化工作是在 ContextConfig 的 configureStart 方法中实现的,应用的初始化主要是要解析 web.xml 文件,这个文件描述了一个 Web 应用的关键信息,也是一个 Web 应用的入口。

前面已经完成了 Servlet 的解析工作,并且被包装成 StandardWrapper 添加在 Context 容器中,但是它仍然不能为我们工作,它还没有被实例化。下面我们将介绍 Servlet 对象是如何创建的,以及如何被初始化的。

创建 Servlet 对象的相关类结构图如下:

Servlet 对象将在后面做详细解析。

如果该 Servlet 关联的是一个 jsp 文件,那么前面初始化的就是 JspServlet,接下去会模拟一次简单请求,请求调用这个 jsp 文件,以便编译这个 jsp 文件为 class,并初始化这个 class。

这样 Servlet 对象就初始化完成了,事实上 Servlet 从被 web.xml 中解析到完成初始化,这个过程非常复杂,中间有很多过程,包括各种容器状态的转化引起的监听事件的触发、各种访问权限的控制和一些不可预料的错误发生的判断行为等等。我们这里只抓了一些关键环节进行阐述,试图让大家有个总体脉络。

下面是这个过程的一个完整的时序图,其中也省略了一些细节。

我们知道 Java Web 应用是基于 Servlet 规范运转的,那么 Servlet 本身又是如何运转的呢?为何要设计这样的体系结构。

运行时被用到。而 ServletContext 又是干什么的呢? Servlet 的运行模式是一个典型的“握手型的交互式”运行模式。所谓“握手型的交互式”就是两个模块为了交换数据通常都会准备一个交易场景,这个场景一直跟随个这个交易过程直到这个交易完成为止。这个交易场景的初始化是根据这次交易对象指定的参数来定制的,这些指定参数通常就会是一个配置类。所以对号入座,交易场景就由

通过 ServletContext 可以拿到 Context 容器中一些必要信息,比如应用的工作路径,容器支持的 Servlet 最小版本等。

内部使用的描述一次请求和相应的信息类它们是一个轻量级的类,它们作用就是在服务器接收到请求后,经过简单解析将这个请求快速的分配给后续线程去处理,所以它们的对象很小,很容易被 JVM 回收。接下去当交给一个用户线程去处理这个请求时又创建 org.apache.catalina.connector. Request 和 org.apache.catalina.connector.

我们已经清楚了 Servlet 是如何被加载的、Servlet 是如何被初始化的,以及 Servlet 的体系结构,现在的问题就是它是如何被调用的。

port 是用来与服务器建立 TCP 连接,而后面的 URL 才是用来选择服务器中那个子容器服务用户的请求。那服务器是如何根据这个 URL 来达到正确的 Servlet 容器中的呢?

这段代码的作用就是将 MapperListener 类作为一个监听者加到整个 Container 容器中的每个子容器中,这样只要任何一个容器发生变化,MapperListener 都将会被通知,相应的保存容器关系的 MapperListener 的 mapper 属性也会修改。for 循环中就是将 host 及下面的子容器注册到 mapper 中。

上图描述了一次 Request 请求是如何达到最终的 Wrapper 容器的,我们现正知道了请求是如何达到正确的 Wrapper 容器,但是请求到达最终的 Servlet 还要完成一些步骤,必须要执行 Filter 链,以及要通知你在 web.xml 中定义的 listener。

Servlet 的确已经能够帮我们完成所有的工作了,但是现在的 web 应用很少有直接将交互全部页面都用 servlet 来实现,而是采用更加高效的 MVC 框架来实现。这些 MVC 框架基本的原理都是将所有的请求都映射到一个 Servlet,然后去实现 service 方法,这个方法也就是 MVC 框架的入口。

前面我们已经说明了 Servlet 如何被调用,我们基于 Servlet 来构建应用程序,那么我们能从 Servlet 获得哪些数据信息呢?

StandardWrapperFacade,到底能获得哪些容器信息可以看看这类提供了哪些接口。还有一部分数据是由 ServletRequest 类提供,它的实际对象是 RequestFacade,从提供的方法中发现主要是描述这次请求的 HTTP 协议的信息。所以要掌握 Servlet 的工作方式必须要很清楚 HTTP 协议,如果你还不清楚赶紧去找一些参考资料。关于这一块还有一个让很多人迷惑的 Session 与 Cookie。

Session 与 Cookie 不管是对 Java Web 的熟练使用者还是初学者来说都是一个令人头疼的东西。Session 与 Cookie 的作用都是为了保持访问用户与后端服务器的交互状态。它们有各自的优点也有各自的缺陷。然而具有讽刺意味的是它们优点和它们的使用场景又是矛盾的,例如使用 Cookie 来传递信息时,随着 Cookie 个数的增多和访问量的增加,它占用的网络带宽也很大,试想假如 Cookie 占用 200 个字节,如果一天的 PV 有几亿的时候,它要占用多少带宽。所以大访问量的时候希望用 Session,但是 Session 的致命弱点是不容易在多台服务器之间共享,所以这也限制了 Session 的使用。

不管 Session 和 Cookie 有什么不足,我们还是要用它们。下面详细讲一下,Session 如何基于 Cookie 来工作。实际上有三种方式能可以让 Session 正常工作:

Session 的生命周期,Session 过期将被回收,服务器关闭,Session 将被序列化到磁盘等。只要这个 HttpSession 对象存在,用户就可以根据 Session ID 来获取到这个对象,也就达到了状态的保持。

整个 Tomcat 服务器中 Listener 使用的非常广泛,它是基于观察者模式设计的,Listener 的设计对开发 Servlet 应用程序提供了一种快捷的手段,能够方便的从另一个纵向维度控制程序和数据。目前 Servlet 中提供了 5 种两类事件的观察者接口,它们分别是:4 个 EventListeners

它们基本上涵盖了整个 Servlet 生命周期中,你感兴趣的每种事件。这些 Listener 的实现类可以配置在 web.xml 中的 <listener> 标签中。当然也可以在应用程序中动态添加 Listener,需要注意的是 ServletContextListener 在容器启动之后就不能再添加新的,因为它所监听的事件已经不会再出现。掌握这些 Listener 的使用,能够让我们的程序设计的更加灵活

下表总结了Java NIO和IO之间的主要差别,我会更详细地描述表中每部分的差异。

Java NIO和IO之间第一个最大的区别是,IO是面向流的,NIO是面向缓冲区的。 Java IO面向流意味着每次从流中读一个或多个字节,直至读取所有字节,它们没有被缓存在任何地方。此外,它不能前后移动流中的数据。如果需要前后移动从流中读取的数据,需要先将它缓存到一个缓冲区。 Java NIO的缓冲导向方法略有不同。数据读取到一个它稍后处理的缓冲区,需要时可在缓冲区中前后移动。这就增加了处理过程中的灵活性。但是,还需要检查是否该缓冲区中包含所有您需要处理的数据。而且,需确保当更多的数据读入缓冲区时,不要覆盖缓冲区里尚未处理的数据。

Java IO的各种流是阻塞的。这意味着,当一个线程调用read() 或 write()时,该线程被阻塞,直到有一些数据被读取,或数据完全写入。该线程在此期间不能再干任何事情了。 Java NIO的非阻塞模式,使一个线程从某通道发送请求读取数据,但是它仅能得到目前可用的数据,如果目前没有数据可用时,就什么都不会获取。而不是保持线程阻塞,所以直至数据变的可以读取之前,该线程可以继续做其他的事情。 非阻塞写也是如此。一个线程请求写入一些数据到某通道,但不需要等待它完全写入,这个线程同时可以去做别的事情。 线程通常将非阻塞IO的空闲时间用于在其它通道上执行IO操作,所以一个单独的线程现在可以管理多个输入和输出通道(channel)。

Java NIO的选择器允许一个单独的线程来监视多个输入通道,你可以注册多个通道使用一个选择器,然后使用一个单独的线程来“选择”通道:这些通道里已经有可以处理的输入,或者选择已准备写入的通道。这种选择机制,使得一个单独的线程很容易来管理多个通道。

NIO和IO如何影响应用程序的设计

无论您选择IO或NIO工具箱,可能会影响您应用程序设计的以下几个方面:

3.用来处理数据的线程数。

当然,使用NIO的API调用时看起来与使用IO时有所不同,但这并不意外,因为并不是仅从一个InputStream逐字节读取,而是数据必须先读入缓冲区再处理。

使用纯粹的NIO设计相较IO设计,数据处理也受到影响。

在IO设计中,我们从InputStream或 Reader逐字节读取数据。假设你正在处理一基于行的文本数据流,例如:

该文本行的流可以这样处理:

请注意处理状态由程序执行多久决定。换句话说,一旦reader.readLine()方法返回,你就知道肯定文本行就已读完, readline()阻塞直到整行读完,这就是原因。你也知道此行包含名称;同样,第二个readline()调用返回的时候,你知道这行包含年龄等。 正如你可以看到,该处理程序仅在有新数据读入时运行,并知道每步的数据是什么。一旦正在运行的线程已处理过读入的某些数据,该线程不会再回退数据(大多如此)。下图也说明了这条原则:

(Java IO: 从一个阻塞的流中读数据) 而一个NIO的实现会有所不同,下面是一个简单的例子:

注意第二行,从通道读取字节到ByteBuffer。当这个方法调用返回时,你不知道你所需的所有数据是否在缓冲区内。你所知道的是,该缓冲区包含一些字节,这使得处理有点困难。
假设第一次 read(buffer)调用后,读入缓冲区的数据只有半行,例如,“Name:An”,你能处理数据吗?显然不能,需要等待,直到整行数据读入缓存,在此之前,对数据的任何处理毫无意义。

所以,你怎么知道是否该缓冲区包含足够的数据可以处理呢?好了,你不知道。发现的方法只能查看缓冲区中的数据。其结果是,在你知道所有数据都在缓冲区里之前,你必须检查几次缓冲区的数据。这不仅效率低下,而且可以使程序设计方案杂乱不堪。例如:

bufferFull()方法必须跟踪有多少数据读入缓冲区,并返回真或假,这取决于缓冲区是否已满。换句话说,如果缓冲区准备好被处理,那么表示缓冲区满了。

bufferFull()方法扫描缓冲区,但必须保持在bufferFull()方法被调用之前状态相同。如果没有,下一个读入缓冲区的数据可能无法读到正确的位置。这是不可能的,但却是需要注意的又一问题。

如果缓冲区已满,它可以被处理。如果它不满,并且在你的实际案例中有意义,你或许能处理其中的部分数据。但是许多情况下并非如此。下图展示了“缓冲区数据循环就绪”:


3) 用来处理数据的线程数

NIO可让您只使用一个(或几个)单线程管理多个通道(网络连接或文件),但付出的代价是解析数据可能会比从一个阻塞流中读取数据更复杂。

如果需要管理同时打开的成千上万个连接,这些连接每次只是发送少量的数据,例如聊天服务器,实现NIO的服务器可能是一个优势。同样,如果你需要维持许多打开的连接到其他计算机上,如P2P网络中,使用一个单独的线程来管理你所有出站连接,可能是一个优势。一个线程多个连接的设计方案如

如果你有少量的连接使用非常高的带宽,一次发送大量的数据,也许典型的IO服务器实现可能非常契合。下图说明了一个典型的IO服务器设计:

Java IO: 一个典型的IO服务器设计- 一个连接通过一个线程处理

Java中堆内存和栈内存区别

Java把内存分成两种,一种叫做栈内存,一种叫做堆内存

在函数中定义的一些基本类型的变量和对象的引用变量都是在函数的栈内存中分配。当在一段代码块中定义一个变量时,java就在栈中为这个变量分配内存空间,当超过变量的作用域后,java会自动释放掉为该变量分配的内存空间,该内存空间可以立刻被另作他用。

堆内存用于存放由new创建的对象和数组。在堆中分配的内存,由java虚拟机自动垃圾回收器来管理。在堆中产生了一个数组或者对象后,还可以在栈中定义一个特殊的变量,这个变量的取值等于数组或者对象在堆内存中的首地址,在栈中的这个特殊的变量就变成了数组或者对象的引用变量,以后就可以在程序中使用栈内存中的引用变量来访问堆中的数组或者对象,引用变量相当于为数组或者对象起的一个别名,或者代号。

引用变量是普通变量,定义时在栈中分配内存,引用变量在程序运行到作用域外释放。而数组&对象本身在堆中分配,即使程序运行到使用new产生数组和对象的语句所在地代码块之外,数组和对象本身占用的堆内存也不会被释放,数组和对象在没有引用变量指向它的时候,才变成垃圾,不能再被使用,但是仍然占着内存,在随后的一个不确定的时间被垃圾回收器释放掉。这个也是java比较占内存的主要原因,********实际上,栈中的变量指向堆内存中的变量,这就是

java中内存分配策略及堆和栈的比较
  按照编译原理的观点,程序运行时的内存分配有三种策略,分别是静态的,栈式的,和堆式的.
静态存储分配是指在编译时就能确定每个数据目标在运行时刻的存储空间需求,因而在编译时就可以给他们分配固定的内存空间.这种分配策略要求程序代码中不允许有可变数据结构(比如可变数组)的存在,也不允许有嵌套或者递归的结构出现,因为它们都会导致编译程序无法计算准确的存储空间需求.
  栈式存储分配也可称为动态存储分配,是由一个类似于堆栈的运行栈来实现的.和静态存储分配相反,在栈式存储方案中,程序对数据区的需求在编译时是完全未知的,只有到运行的时候才能够知道,但是规定在运行中进入一个程序模块时,必须知道该程序模块所需的数据区大小才能够为其分配内存.和我们在数据结构所熟知的栈一样,栈式存储分配按照先进后出的原则进行分配。
  静态存储分配要求在编译时能知道所有变量的存储要求,栈式存储分配要求在过程的入口处必须知道所有的存储要求,而堆式存储分配则专门负责在编译时或运行时模块入口处都无法确定存储要求的数据结构的内存分配,比如可变长度串和对象实例.堆由大片的可利用块或空闲块组成,堆中的内存可以按照任意顺序分配和释放.
  上面的定义从编译原理的教材中总结而来,除静态存储分配之外,都显得很呆板和难以理解,下面撇开静态存储分配,集中比较堆和栈:
  从堆和栈的功能和作用来通俗的比较,堆主要用来存放对象的,栈主要是用来执行程序的.而这种不同又主要是由于堆和栈的特点决定的:
  在编程中,例如C/C++中,所有的方法调用都是通过栈来进行的,所有的局部变量,形式参数都是从栈中分配内存空间的。实际上也不是什么分配,只是从栈顶向上用就行,就好像工厂中的传送带(conveyor belt)一样,Stack Pointer会自动指引你到放东西的位置,你所要做的只是把东西放下来就行.退出函数的时候,修改栈指针就可以把栈中的内容销毁.这样的模式速度最快, 当然要用来运行程序了.需要注意的是,在分配的时候,比如为一个即将要调用的程序模块分配数据区时,应事先知道这个数据区的大小,也就说是虽然分配是在程序运行时进行的,但是分配的大小多少是确定的,不变的,而这个"大小多少"是在编译时确定的,不是在运行时.
  堆是应用程序在运行的时候请求操作系统分配给自己内存,由于从操作系统管理的内存分配,所以在分配和销毁时都要占用时间,因此用堆的效率非常低.但是堆的优点在于,编译器不必知道要从堆里分配多少存储空间,也不必知道存储的数据要在堆里停留多长的时间,因此,用堆保存数据时会得到更大的灵活性。事实上,面向对象的多态性,堆内存分配是必不可少的,因为多态变量所需的存储空间只有在运行时创建了对象之后才能确定.在C++中,要求创建一个对象时,只需用 new命令编制相关的代码即可。执行这些代码时,会在堆里自动进行数据的保存.当然,为达到这种灵活性,必然会付出一定的代价:在堆里分配存储空间时会花掉更长的时间!这也正是导致我们刚才所说的效率低的原因,看来列宁同志说的好,人的优点往往也是人的缺点,人的缺点往往也是人的优点(晕~).
JVM是基于堆栈的虚拟机.JVM为每个新创建的线程都分配一个堆栈.也就是说,对于一个Java程序来说,它的运行就是通过对堆栈的操作来完成的。堆栈以帧为单位保存线程的状态。JVM对堆栈只进行两种操作:以帧为单位的压栈和出栈操作。
  我们知道,某个线程正在执行的方法称为此线程的当前方法.我们可能不知道,当前方法使用的帧称为当前帧。当线程激活一个Java方法,JVM就会在线程的 Java堆栈里新压入一个帧。这个帧自然成为了当前帧.在此方法执行期间,这个帧将用来保存参数,局部变量,中间计算过程和其他数据.这个帧在这里和编译原理中的活动纪录的概念是差不多的.
  从Java的这种分配机制来看,堆栈又可以这样理解:堆栈(Stack)是操作系统在建立某个进程时或者线程(在支持多线程的操作系统中是线程)为这个线程建立的存储区域,该区域具有先进后出的特性。
  每一个Java应用都唯一对应一个JVM实例,每一个实例唯一对应一个堆。应用程序在运行中所创建的所有类实例或数组都放在这个堆中,并由应用所有的线程共享.跟C/C++不同,Java中分配堆内存是自动初始化的。Java中所有对象的存储空间都是在堆中分配的,但是这个对象的引用却是在堆栈中分配,也就是说在建立一个对象时从两个地方都分配内存,在堆中分配的内存实际建立这个对象,而在堆栈中分配的内存只是一个指向这个堆对象的指针(引用)而已。
Java把内存划分成两种:一种是栈内存,一种是堆内存。
  在函数中定义的一些基本类型的变量和对象的引用变量都在函数的栈内存中分配。
  当在一段代码块定义一个变量时,Java就在栈中为这个变量分配内存空间,当超过变量的作用域后,Java会自动释放掉为该变量所分配的内存空间,该内存空间可以立即被另作他用。
  堆内存用来存放由new创建的对象和数组。
  在堆中分配的内存,由Java虚拟机的自动垃圾回收器来管理。
  在堆中产生了一个数组或对象后,还可以在栈中定义一个特殊的变量,让栈中这个变量的取值等于数组或对象在堆内存中的首地址,栈中的这个变量就成了数组或对象的引用变量。
  引用变量就相当于是为数组或对象起的一个名称,以后就可以在程序中使用栈中的引用变量来访问堆中的数组或对象。
  栈与堆都是Java用来在Ram中存放数据的地方。与C++不同,Java自动管理栈和堆,程序员不能直接地设置栈或堆。
Java的堆是一个运行时数据区,类的(对象从中分配空间。这些对象通过new、newarray、anewarray和multianewarray等指令建立,它们不需要程序代码来显式的释放。堆是由垃圾回收来负责的,堆的优势是可以动态地分配内存大小,生存期也不必事先告诉编译器,因为它是在运行时动态分配内存的,Java的垃圾收集器会自动收走这些不再使用的数据。但缺点是,由于要在运行时动态分配内存,存取速度较慢。
  栈的优势是,存取速度比堆要快,仅次于寄存器,栈数据可以共享。但缺点是,存在栈中的数据大小与生存期必须是确定的,缺乏灵活性。栈中主要存放一些基本类型的变量(,int, short, long, byte, float, double, boolean, char)和对象句柄。
  栈有一个很重要的特殊性,就是存在栈中的数据可以共享。假设我们同时定义:
  编译器先处理int a = 3;首先它会在栈中创建一个变量为a的引用,然后查找栈中是否有3这个值,如果没找到,就将3存放进来,然后将a指向3。接着处理int b = 3;在创建完b的引用变量后,因为在栈中已经有3这个值,便将b直接指向3。这样,就出现了a与b同时均指向3的情况。这时,如果再令a=4;那么编译器会重新搜索栈中是否有4值,如果没有,则将4存放进来,并令a指向4;如果已经有了,则直接将a指向这个地址。因此a值的改变不会影响到b的值。要注意这种数据的共享与两个对象的引用同时指向一个对象的这种共享是不同的,因为这种情况a的修改并不会影响到b, 它是由编译器完成的,它有利于节省空间。而一个对象引用变量修改了这个对象的内部状态,会影响到另一个对象引用变量

反射讲一讲,主要是概念,都在哪需要反射机制,反射的性能,如何优化

是在运行状态中,对于任意的一个类,都能够知道这个类的所有属性和方法,对任意一个对象都能够通过反射机制调用一个类的任意方法,这种动态获取类信息及动态调用类对象方法的功能称为java的反射机制。

1、动态地创建类的实例,将类绑定到现有的对象中,或从现有的对象中获取类型。

2、应用程序需要在运行时从某个特定的程序集中载入一个特定的类

如何预防MySQL注入

所谓SQL注入,就是通过把SQL命令插入到Web表单递交或输入域名或页面请求的查询字符串,最终达到欺骗服务器执行恶意的SQL命令。

我们永远不要信任用户的输入,我们必须认定用户输入的数据都是不安全的,我们都需要对用户输入的数据进行过滤处理。

1.以下实例中,输入的用户名必须为字母、数字及下划线的组合,且用户名长度为 8 到 20 个字符之间:

让我们看下在没有过滤特殊字符时,出现的SQL情况:

以上的注入语句中,我们没有对 $name 的变量进行过滤,$name 中插入了我们不需要的SQL语句,将删除 users 表中的所有数据。

2.在PHP中的 mysql_query() 是不允许执行多个SQL语句的,但是在 SQLite 和 PostgreSQL 是可以同时执行多条SQL语句的,所以我们对这些用户的数据需要进行严格的验证。

防止SQL注入,我们需要注意以下几个要点:

1.永远不要信任用户的输入。对用户的输入进行校验,可以通过正则表达式,或限制长度;对单引号和 双"-"进行转换等。
2.永远不要使用动态拼装sql,可以使用参数化的sql或者直接使用存储过程进行数据查询存取。
3.永远不要使用管理员权限的数据库连接,为每个应用使用单独的权限有限的数据库连接。
4.不要把机密信息直接存放,加密或者hash掉密码和敏感的信息。
5.应用的异常信息应该给出尽可能少的提示,最好使用自定义的错误信息对原始错误信息进行包装
6.sql注入的检测方法一般采取辅助软件或网站平台来检测,软件一般采用sql注入检测工具jsky,网站平台就有亿思网站安全平台检测工具。MDCSOFT SCAN等。采用MDCSOFT-IPS可以有效的防御SQL注入,XSS攻击等。

在脚本语言,如Perl和PHP你可以对用户输入的数据进行转义从而来防止SQL注入。

like查询时,如果用户输入的值有""和"%",则会出现这种情况:用户本来只是想查询"abcd",查询结果中却有"abcd_"、"abcde"、"abcdf"等等;用户要查询"30%"(注:百分之三十)时也会出现问题。

在PHP脚本中我们可以使用addcslashes()函数来处理以上情况,如下实例:

addcslashes()函数在指定的字符前添加反斜杠。

采用空间换时间,它用于线程间的数据隔离,为每一个使用该变量的线程提供一个副本,每个线程都可以独立地改变自己的副本,而不会和其他线程的副本冲突。

ThreadLocal类中维护一个Map,用于存储每一个线程的变量副本,Map中元素的键为线程对象,而值为对应线程的变量副本。

ThreadLocal在中发挥着巨大的作用,在管理Request作用域中的Bean、事务管理、任务调度、AOP等模块都出现了它的身影。

Spring中绝大部分Bean都可以声明成Singleton作用域,采用ThreadLocal进行封装,因此有状态的Bean就能够以singleton的方式在多线程中正常工作了。

GC是在什么时候,对什么东西,做了什么事情?

1.新生代有一个Eden区和两个survivor区,首先将对象放入Eden区,如果空间不足就向其中的一个survivor区上放,如果仍然放不下就会引发一次发生在新生代的minor GC,将存活的对象放入另一个survivor区中,然后清空Eden和之前的那个survivor区的内存。在某次GC过程中,如果发现仍然又放不下的对象,就将这些对象放入老年代内存里去。

2.大对象以及长期存活的对象直接进入老年区。

3.当每次执行minor GC的时候应该对要晋升到老年代的对象进行分析,如果这些马上要到老年区的老年对象的大小超过了老年区的剩余大小,那么执行一次Full GC以尽可能地获得老年区的空间。

对什么东西:从GC Roots搜索不到,而且经过一次标记清理之后仍没有复活的对象。

老年代:标记-清除和标记-压缩;
永久代:存放Java中的类和加载类的类加载器本身。

\1. 虚拟机栈中的引用的对象
\2. 方法区中静态属性引用的对象,常量引用的对象
\3. 本地方法栈中JNI(即一般说的Native方法)引用的对象。

1 粒度不同,前者锁对象和类,后者针对变量
\1. 保证此变量对所有线程的可见性,指一条线程修改了这个变量的值,新值对于其他线程来说是可见的,但并不是多线程安全的。
\2. 禁止指令重排序优化。
1.当写一个volatile变量时,JMM会把该线程对应的本地内存中的共享变量刷新到主内存。
2.当读一个volatile变量时,JMM会把该线程对应的本地内存置为无效。线程接下来将从主内存中读取共享变量。

同步:就是一个任务的完成需要依赖另外一个任务,只有等待被依赖的任务完成后,依赖任务才能完成。
异步:不需要等待被依赖的任务完成,只是通知被依赖的任务要完成什么工作,只要自己任务完成了就算完成了,被依赖的任务是否完成会通知回来。(异步的特点就是通知)。
打电话和发短信来比喻同步和异步操作。
阻塞:CPU停下来等一个慢的操作完成以后,才会接着完成其他的工作。
非阻塞:非阻塞就是在这个慢的执行时,CPU去做其他工作,等这个慢的完成后,CPU才会接着完成后续的操作。
非阻塞会造成线程切换增加,增加CPU的使用时间能不能补偿系统的切换成本需要考虑。

在程序启动的时候就创建若干线程来响应处理,它们被称为线程池,里面的线程叫工作线程
第一:降低资源消耗。通过重复利用已创建的线程降低线程创建和销毁造成的消耗。
第二:提高响应速度。当任务到达时,任务可以不需要等到线程创建就能立即执行。
第三:提高线程的可管理性。
常用线程池:ExecutorService 是主要的实现类,其中常用的有

索引:B+,B-,全文索引

的索引是一个数据结构,旨在使数据库高效的查找数据。
常用的数据结构是B+Tree,每个叶子节点不但存放了索引键的相关信息还增加了指向相邻叶子节点的指针,这样就形成了带有顺序访问指针的B+Tree,做这个优化的目的是提高不同区间访问的性能。

  1. 经常与其他表进行连接的表,在连接字段上应该建立索引
  2. 经常出现在Where子句中的字段
  3. 经常出现用作查询选择的字段

IOC容器:就是具有依赖注入功能的容器,是可以创建对象的容器,IOC容器负责实例化、定位、配置应用程序中的对象及建立这些对象间的依赖。通常new一个实例,控制权由程序员控制,而"控制反转"是指new实例工作不由程序员来做而是交给Spring容器来做。。在Spring中BeanFactory是IOC容器的实际代表者

Spring支持三种依赖注入方式,分别是属性(Setter方法)注入,构造注入和接口注入。

在Spring中,那些组成应用的主体及由Spring IOC容器所管理的对象被称之为Bean。

Spring的IOC容器通过反射的机制实例化Bean并建立Bean之间的依赖关系。
简单地讲,Bean就是由Spring IOC容器初始化、装配及被管理的对象。
获取Bean对象的过程,首先通过Resource加载配置文件并启动IOC容器,然后通过getBean方法获取bean对象,就可以调用他的方法。
Prototype:每一个请求,会产生一个新的Bean实例。
Request:每一次http请求会产生一个新的Bean实例。

AOP就是纵向的编程,如业务1和业务2都需要一个共同的操作,与其往每个业务中都添加同样的代码,不如写一遍代码,让两个业务共同使用这段代码。在日常有订单管理、商品管理、资金管理、库存管理等业务,都会需要到类似日志记录事务控制、****权限控制、性能统计、异常处理及事务处理等。AOP把所有共有代码全部抽取出来,放置到某个地方集中管理,然后在具体运行时,再由容器动态织入这些共有代码。

性能检测,访问控制,日志管理,事务等。
默认的策略是如果目标类实现接口,则使用JDK动态代理技术,如果目标对象没有实现接口,则默认会采用CGLIB代理

代理的共有优点:业务类只需要关注业务逻辑本身,保证了业务类的重用性。

代理对象和目标对象实现了相同的接口,目标对象作为代理对象的一个属性,具体接口实现中,代理对象可以在调用目标对象相应方法前后加上其他业务处理逻辑。
缺点:一个代理类只能代理一个业务类。如果业务类增加方法时,相应的代理类也要增加方法。
Java动态代理是写一个类实现InvocationHandler接口,重写Invoke方法,在Invoke方法可以进行增强处理的逻辑的编写,这个公共代理类在运行的时候才能明确自己要代理的对象,同时可以实现该被代理类的方法的实现,然后在实现类方法的时候可以进行增强处理。
实际上:代理对象的方法 = 增强处理 + 被代理对象的方法

JDK和CGLIB生成动态代理类的区别:
JDK动态代理只能针对实现了接口的类生成代理(实例化一个类)。此时代理对象和目标对象实现了相同的接口,目标对象作为代理对象的一个属性,具体接口实现中,可以在调用目标对象相应方法前后加上其他业务处理逻辑
CGLIB是针对类实现代理,主要是对指定的类生成一个子类(没有实例化一个类),覆盖其中的方法 。

TCP三次握手,四次挥手

TCP作为一种可靠传输控制协议,其核心思想:既要保证数据可靠传输,又要提高传输的效率,而用三次恰恰可以满足以上两方面的需求!****双方都需要确认自己的发信和收信功能正常,收信功能通过接收对方信息得到确认,发信功能需要发出信息—>对方回复信息得到确认。

  1. 第一次握手:建立连接。客户端发送连接请求报文段,将SYN位置为1,Sequence Number为x;然后,客户端进入SYN_SEND状态,等待服务器的确认;
  2. 第二次握手:服务器收到客户端的SYN报文段,需要对这个SYN报文段进行确认,设置ACK为x+1(Sequence Number+1);同时,自己还要发送SYN请求信息,将SYN位置为1,Sequence Number为y;服务器端将上述所有信息放到一个报文段(即SYN+ACK报文段)中,一并发送给客户端,此时服务器进入SYN_RECV状态;
  3. 第三次握手:客户端收到服务器的SYN+ACK报文段。然后将Acknowledgment Number设置为y+1,向服务器发送ACK报文段,这个报文段发送完毕以后,客户端和服务器端都进入ESTABLISHED状态,完成TCP三次握手。

TCP工作在网络OSI的七层模型中的第四层——Transport层,IP在第三层——Network层
?ARP在第二层——Data Link层;在第二层上的数据,我们把它叫Frame,在第三层上的数据叫Packet,第四层的数据叫Segment。

  1. 第一次分手:主机1(可以使客户端,也可以是服务器端),设置Sequence Number和Acknowledgment Number,向主机2发送一个FIN报文段;此时,主机1进入FIN_WAIT_1状态;这表示主机1没有数据要发送给主机2了;
  2. 第三次分手:主机2向主机1发送FIN报文段,请求关闭连接,同时主机2进入LAST_ACK状态;
  3. 第四次分手:主机1收到主机2发送的FIN报文段,向主机2发送ACK报文段,然后主机1进入TIME_WAIT状态;主机2收到主机1的ACK报文段以后,就关闭连接;此时,主机1等待2MSL后依然没有收到回复,则证明Server端已正常关闭,那好,主机1也可以关闭连接了。

    这是因为服务端在LISTEN状态下,收到建立连接请求的SYN报文后,把ACK和SYN放在一个报文里发送给客户端。

为什么建立连接是三次握手

这是因为服务端在LISTEN状态下,收到建立连接请求的SYN报文后,把ACK和SYN放在一个报文里发送给客户端。

关闭连接却是四次挥手呢

而关闭连接时,当收到对方的FIN报文时,仅仅表示对方不再发送数据了但是还能接收数据,己方也未必全部数据都发送给对方了,所以己方可以立即close,也可以发送一些数据给对方后,再发送FIN报文给对方来表示同意现在关闭连接,因此,己方ACK和FIN一般都会分开发送。

HTTPS和HTTP 为什么更安全,先看这些

http是HTTP协议运行在TCP之上。所有传输的内容都是明文,客户端和服务器端都无法验证对方的身份。

https是HTTP运行在SSL/TLS之上,SSL/TLS运行在TCP之上。所有传输的内容都经过加密,加密采用对称加密,但对称加密的密钥用服务器方的证书进行了非对称加密。此外客户端可以验证服务器端的身份,如果配置了客户端验证,服务器方也可以验证客户端的身份。HTTP(应用层) 和TCP(传输层)之间插入一个SSL协议,

DNS域名解析 –> 发起TCP的三次握手 –> 建立TCP连接后发起http请求 –> 服务器响应http请求,浏览器得到html代码 –> 浏览器解析html代码,并请求html代码中的资源(如js、css、图片等) –> 浏览器对页面进行渲染呈现给用户

整的流程是:Filter对用户请求进行预处理,接着将请求交给Servlet进行处理并生成响应,最后Filter再对服务器响应进行后处理。

Filter有如下几个用处:
Filter可以进行对特定的url请求和相应做预处理和后处理。

实际上Filter和Servlet极其相似,区别只是Filter不能直接对用户生成响应。实际上Filter里doFilter()方法里的代码就是从多个Servlet的service()方法里抽取的通用代码,通过使用Filter可以实现更好的复用。

3.如果Servlet没有配置1 ,该Servlet不会在Tomcat启动时初始化,而是在请求到来时初始化。
4.每次请求, Request都会被初始化,响应请求后,请求被销毁
5.Servlet初始化后,将不会随着请求的结束而注销。

ConcurrentHashMap是使用了锁分段技术技术来保证线程安全的,锁分段技术:首先将数据分成一段一段的存储,然后给每一段数据配一把锁,当一个线程占用锁访问其中一个段数据的时候,其他段的数据也能被其他线程访问

LinkedHashMap维护一个双链表,可以将里面的数据按写入的顺序读出

1:ConcurrentHashMap的应用场景是高并发,但是并不能保证线程安全,而同步的HashMap和HashMap的是锁住整个容器,而加锁之后ConcurrentHashMap不需要锁住整个容器,只需要锁住对应的Segment就好了,所以可以保证高并发同步访问,提升了效率。

1.get时,不加锁,先定位到segment然后在找到头结点进行读取操作。而value是volatile变量,所以可以保证在竞争条件时保证读取最新的值,如果读到的value是null,则可能正在修改,那么久调用ReadValueUnderLock函数,加锁保证读到的数据是正确的。
2.Put时会加锁,一律添加到hash链的头部。
3.Remove时也会加锁,由于next是final类型不可改变,所以必须把删除的节点之前的节点都复制一遍。
4.ConcurrentHashMap允许多个修改操作并发进行,其关键在于使用了锁分离技术。它使用了多个锁来控制对Hash表的不同Segment进行的修改。

ConcurrentHashMap的应用场景是高并发,但是并不能保证线程安全,而同步的HashMap和HashTable的是锁住整个容器,而加锁之后ConcurrentHashMap不需要锁住整个容器,只需要锁住对应的segment就好了,所以可以保证高并发同步访问,提升了效率。

  1. 管道( pipe ):管道是一种半双工的通信方式,数据只能单向流动,而且只能在具有亲缘关系的进程间使用。进程的亲缘关系通常是指父子进程关系。
  2. 有名管道 (named pipe) : 有名管道也是半双工的通信方式,但是它允许无亲缘关系进程间的通信。
    3.信号量( semophore ) : 信号量是一个计数器,可以用来控制多个进程对共享资源的访问。它常作为一种锁机制,防止某进程正在访问共享资源时,其他进程也访问该资源。因此,主要作为进程间以及同一进程内不同线程之间的同步手段。
  3. 消息队列( message queue ) : 消息队列是由消息的链表,存放在内核中并由消息队列标识符标识。消息队列克服了信号传递信息少、管道只能承载无格式字节流以及缓冲区大小受限等缺点。
    5.信号 ( sinal ) : 信号是一种比较复杂的通信方式,用于通知接收进程某个事件已经发生。
    6.共享内存( shared memory ) :共享内存就是映射一段能被其他进程所访问的内存,这段共享内存由一个进程创建,但多个进程都可以访问。共享内存是最快的 IPC 方式,它是针对其他进程间通信方式运行效率低而专门设计的。它往往与其他通信机制,如信号量,配合使用,来实现进程间的同步和通信。
    7.套接字( socket ) : 套解口也是一种进程间通信机制,与其他通信机制不同的是,它可用于不同机器间的进程通信。
  1. 互斥 至少有一个资源处于非共享状态
  2. 解决死锁,第一个是死锁预防,就是不让上面的四个条件同时成立。二是,合理分配资源。
    三是使用银行家算法,如果该进程请求的资源剩余量可以满足,那么就分配。

我要回帖

更多关于 恰恰得到与预期相反的结果 的文章

 

随机推荐